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Abstract In this article, we consider a 1D linear Schrödinger equation with potential
V and bilinear control. Under appropriate assumptions on V , we prove the exact
controllability of high frequencies, in H3, locally around any H3-trajectory of the
free system. In particular, any initial state in H3 can be steered to a regular state, for
instance a finite sum of eigenfunctions of (−�+V ). This fact, coupled with a previous
result due to Nersesyan, proves the global exact controllability of the system in H3,
under appropriate assumptions.
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1 Introduction

1.1 Main result

In this article, we consider the 1D Schrödinger equation

⎧
⎪⎨

⎪⎩

i∂tψ(t, x) =
(

− ∂2
x + V (x) − u(t)μ(x)

)
ψ(t, x) , (t, x) ∈ (0, T ) × (0, 1) ,

ψ(t, 0) = ψ(t, 1) = 0 , t ∈ (0, T ) ,

ψ(0, x) = ψ0(x) , x ∈ (0, 1) ,

(1)
where V, μ ∈ L∞((0, 1),R) and u : (0, T ) → R. It is a bilinear control system in
which the state is ψ and the control is u.

To state our results, we first need to introduce few notations and recall well-
posedness results. We denote by 〈., .〉 the L2((0, 1),C)-scalar product,

〈 f, g〉 := �
(∫ 1

0
f (x)g(x)dx

)

,

by AV the operator

D(AV ) := H2 ∩ H1
0 ((0, 1),C) , AV := −∂2

x + V ,

(which is assumed to be positive: replacing V (x) by V (x) +C which only affects the
global phase of ψ) by (λk,V )k∈N∗ the nondecreasing sequence of its eigenvalues, by
(ϕk,V )k∈N∗ associated eigenfunctions,

⎧
⎨

⎩

−ϕ′′
k,V (x) + V (x)ϕk,V (x) = λk,Vϕk,V (x) , x ∈ (0, 1) ,

ϕk,V (0) = ϕk,V (1) = 0 ,

‖ϕk,V ‖L2(0,1) = 1 ,

(2)

by PK ,V , for K ∈ N
∗, the projection

PK ,V : L2((0, 1),C) → SpanC(ϕk,V ; k � K ) ,

ξ �→ ξ −
K−1∑

k=1
〈ξ, ϕk,V 〉ϕk,V

by Hs
(V )(0, 1), for s > 0, the Sobolev spaces

Hs
(V )(0, 1) := D(As/2

V ) , ‖ξ‖Hs
(V )

:=
( ∞∑

k=1

λsk,V |〈ξ, ϕk,V 〉|2
)1/2

, (3)

which satisfy, in particular,

H3
(V )(0, 1) = H3

(0)(0, 1) = {ξ ∈ H3((0, 1),C); ξ = ξ ′′ = 0 at x = 0 , 1} ,
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and by S the unitary L2((0, 1),C)-sphere. The following well-posedness result is a
consequence of [3, Lemma 1] and the usual fixed point strategy (see [3, Proposition
3] for a the proof with V = 0).

Proposition 1 Let T > 0, V , μ ∈ H3((0, 1),R), ψ0 ∈ H3
(0)((0, 1),C) and

u ∈ L2((0, T ),R). There exists a unique solution ψ ∈ C0([0, T ], H3
(0)(0, 1)) of

(1). Moreover, ‖ψ(t)‖L2(0,1) = ‖ψ0‖L2 for every t ∈ [0, T ].
The goal of this article is the proof of the following result.

Theorem 1 Let T > 0, ψ0 ∈ H3
(0)((0, 1),C) ∩ S, ψre f (t) := e−i AV tψ0, and V, μ ∈

H3((0, 1),R) be such that

AV has a simple spectrum (4)

μ′(1)ϕ′
k,V (1) + μ′(0)ϕ′

k,V (0) 
= 0 and

μ′(1)ϕ′
k,V (1) − μ′(0)ϕ′

k,V (0) 
= 0 , for every k ∈ N
∗ . (5)

1. There exist K ∈ N
∗, δ > 0 and a C1-map

	 : V → L2((0, T ),R)

where

V := {ψ f ∈ PK ,V [H3
(0)(0, 1)]; ‖ψ f − PK ,V [ψre f (T )]‖H3

(0)
< δ}

such that
• 	

(
PK ,V [ψre f (T )]) = 0,

• for every ψ f ∈ V the solution of (1) with control u = 	[ψ f ] satisfies
PK ,V [ψ(T )] = ψ f .

2. As a consequence, there exist K ′ � K and u ∈ L2((0, T ),R) such that the solution
of (1) satisfies PK ′,V [ψ(T )] = 0; in particular, ψ(T, .) ∈ H4

(V )((0, 1),C).

This result allows to prove the global exact controllability of (1) in H3
(V )((0, 1),C),

instead of H4
(V )((0, 1),C) in [14] (or H3+

(V )((0, 1),C) as can be proved by following
the original proof [16]).

Corollary 1 Let V, μ ∈ H4((0, 1),R) that satisfy (5) and

∃C > 0 such that |〈μϕ1,V , ϕk,V 〉| � C

k3 ,∀k ∈ N
∗ , (6)

λk,V − λ1,V 
= λp,V − λq,V ,∀k, p, q ∈ N
∗ such that {1, k} 
= {p, q} . (7)

For every ψ0 , ψ f ∈ H3
(V )((0, 1),C) ∩ S, there exist T > 0 and u ∈ L2((0, T ),R)

such that the solution of (1) satisfies ψ(T ) = ψ f .
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Let us now comment about the conclusion and hypothesis of Theorem 1. First, why
to control only the high frequencies? The main interest of this strategy is that we can
perform this control close to any given free trajectory. It could then happen that the
linearization close to this trajectory contains a lot of directions lost for the control. Yet,
these lost directions are necessary in finite number and we can control all the state,
except a finite-dimensional subspace.

Concerning the hypothesis, we first notice they are likely to be generic in (V, μ)

for an appropriate topology; see [3, Appendix A] for such a proof for a similar prob-
lem. Also, even in the case where the assumptions are not fulfilled, there are many
“tricks” already available in the litterature to face this problem, see [16] or [2]. For
instance, replacing u(t) by u(t) − δ and V by V + δμ may allow very often to fulfill
our assumptions, up to changing the eigenfunctions by ϕk,V+δμ. Note also that pertur-
bation arguments (see (18) below) allow to get that μ′(1)ϕ′

k,V (1) ± μ′(0)ϕ′
k,V (0) =√

2(kπ)
[
μ′(1)(−1)k ± μ′(0)

] + Ok→+∞(1). In particular, if μ′(1) ± μ′(0) 
= 0,
assumption (5) is always fulfilled for large k. Yet, the important example μ(x) = x
does not satisfy this assumptions, for reasons of symmetry. But in [2], it was possible
to break this symmetry. We believe that it should still be possible in our context with
similar arguments.

The main idea of the proof is a decomposition of the control inspired by [18]. We
decompose the control in two components: one term which contains the boundary
terms and is close to a control from the boundary and another remainder term which
contains the interior part. It turns out that the effective part of the control actually
comes from the boundary term, the internal part being compact from the point of
view of control. It satisfies, for instance, the condition of noncontrolability of [1]. The
“boundary” control is then sufficient to control the large frequencies.

1.2 Bibliographical comments

The Schrödinger equation with bilinear control has been widely studied in the littera-
ture. The multi-d model writes

{
(i∂t + � − V )ψ(t, x) = u(t)μ(x)ψ(t, x) , (t, x) ∈ (0, T ) × �,

ψ(t, x) = 0 , (t, x) ∈ (0, T ) × ∂� ,
(8)

where � is a bounded open subset ofRN , N ∈ N
∗, V, μ : � → R are given functions,

the state ψ lives in the L2(�,C)-sphere, denoted S and the control is the real-valued
function u : (0, T ) → R.

1.2.1 A negative result

A negative control result was proved by Turinici in [19], as a consequence of a general
result by Ball, Marsden and Slemrod in [1]. It states that, for V = 0, for a given
function μ ∈ C2(�,R), for a given initial condition ψ0 ∈ (H2 ∩ H1

0 )(�,C) ∩
S, and by using controls u ∈ Lr

loc((0,∞),R) with r > 1, one may only reach a
subset of (H2 ∩ H1

0 )(�) ∩ S that has an empty interior in (H2 ∩ H1
0 )(�,C) ∩ S.
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Recently, Boussaid, Caponigro and Chambrion extended this negative result to the
case of controls in L1

loc((0,∞),R), see [7]. However, this negative result is actually
due to a bad choice of functional setting, as emphasized in the next paragraph.

It is interesting to compare these negative results to our result. Indeed, they prove
that our result is optimal concerning the attainable set of (8) for integer Sobolev
regularity.

Concerning intermediate regularity, s ∈ [2, 3], it seems that for μ ∈ C3(�,R) the
counterexamples in [19] could be extended to Hs

(0) for s < 5/2 which is the last space
for which the multiplication by μ is continuous. For the specific example of μ(x) = x
(which is not directly covered by our paper but gives some interesting insights), the
results of [7] proves that the attainable set cannot contain H5/2

(0) even for control Radon
measure. This leaves the possibility of controllability for 5/2 < s < 3. This might be
possible for some controls in L1. Yet, we believe that for a control in L2, the regularity
H3

(0) is optimal since it is the case for the linearized equation.

1.2.2 Local exact results in 1-d

Beauchard proved in [2] the exact controllability of Eq. (8), locally around the ground
state in H7, with controls u ∈ H1((0, T ),R) in large time T , in the case N = 1,
� = (−1/2, 1/2), μ(x) = x and V = 0. The proof of [2] relies on Coron’s return
method and Nash–Moser theorem.

Reference [3] improves this result and establishes the exact controllability of Eq. (8),
locally around the ground state in H3, with controls u ∈ L2((0, T ),R), in arbitrary
time T > 0, and with generic functions μ when N = 1, � = (0, 1), V = 0. This result
can be extended to an arbitrary potential V , as explained in [14]. The proof relies on a
smoothing effect, that allows to conclude with the inverse mapping theorem (instead
of Nash–Moser’s one).

Then, Morancey and Nersesyan developed this strategy to control a Schrödinger
equation with a polarizability term [13] and a finite number of Schrödinger equations
with one control [12,14].

1.2.3 Global approximate results in N-d

Three strategies have been developed to study approximate controllability for Eq. (8).
The first strategy is a variational argument introduced by Nersesyan in [15].

It proves, under appropriate assumptions on (V, μ), that any initial condition in
H3+

(0) (�,C)∩S can be steered to the ground state, approximately in H3, with smooth
controls u ∈ C∞

c ((0, T ),R), in large time T , in arbitrary dimension N .
Note that, in 1D, this result can be coupled with the previous local exact con-

trollability results. Then, under appropriate assumptions on (V, μ), we get that any
initial condition in H3+

(0) ((0, 1),C) ∩ S can be steered to the ground state, exactly,

in large time T > 0, with controls u ∈ L2((0, T ),R). See [16] for one Eq. (8),
[13] for a Schrödinger equation with a polarizability term, [14] for a finite number of
Schrödinger equations with the same control.
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A second strategy consists in deducing approximate controllability in regular spaces
(containing H3) from exact controllability results in infinite time by Nersesyan and
Nersisyan [10]

A third strategy, due to Chambrion, Mason, Sigalotti, and Boscain [9], relies on
geometric techniques for the controllability of the Galerkin approximations. It proves
(under appropriate assumptions on V and μ) the approximate controllability of (8) in
L2, with piecewise constant controls. The hypotheses of this result were refined by
Boscain, Caponigro, Chambrion and Sigalotti in [4]. The approximate controllability
is proved in higher Sobolev norms in [7] for one equation, and in [6] for a finite
number of equations with one control. For more details and more references about the
geometric techniques, we refer the reader to the recent survey [5].

1.3 Structure of this article

In Sect. 2, we give the main steps of the proof of Theorem 1. Two intermediary results
are stated and used in this proof, but proved later, in Sects. 3 and 4. Finally, in Sect. 5,
we prove Corollary 1.

2 Proof of the main result

In this section, V, μ, T, ψ0, ψre f are fixed and satisfy the assumptions of Theorem 1.
The first statement of this theorem comes by applying the inverse mapping theorem
to the map

�K : L2((0, T ),R) → PK ,V [H3
(0)(0, 1)]

u �→ PK ,V [ψ(T )]

where ψ solves (1). Adapting the proof of [3, Proposition 3] to the case V 
= 0, we
see that �K is a C1-map and

d�K (0) : L2((0, T ),R) → PK ,V [H3
(0)(0, 1)]

v �→ PK ,V [
(T )]

where 
 solves the linearized system

⎧
⎪⎨

⎪⎩

i∂t
(t, x)=
(

− ∂2
x +V (x)

)

(t, x)−v(t)μ(x)ψre f (t, x) , (t, x)∈(0, T )×(0, 1) ,


(t, 0)=
(t, 1) , t ∈ (0, T ) ,


(0, x)=0 , x ∈ (0, 1) .

(9)
Thus, to prove Theorem 1.1, it suffices to prove that, for K large enough, d�K (0) has
a continuous right inverse between the following spaces

d�K (0)−1 : PK ,V [H3
(0)(0, 1)] → L2((0, T ),R) .
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To this aim, we introduce the decomposition μ(x)ψre f (t, x) = (μ1 +μ2)(t, x) where
μ2 ∈ C0([0, T ], H3

(0)(0, 1)) solves

{
(−∂2

x + V )2μ2 = (−∂2
x + V )2[μψre f ] , (t, x) ∈ (0, T ) × (0, 1) ,

μ2(t, σ ) = ∂2
xμ2(t, σ ) = 0 , (t, σ ) ∈ (0, T ) × {0, 1} ,

(10)

and

μ1(t, x) := μ(x)ψre f (t, x) − μ2(t, x) , ∀(t, x) ∈ (0, T ) × (0, 1) , (11)

i.e., ⎧
⎨

⎩

(−∂2
x + V )2μ1 = 0 , (t, x) ∈ (0, T ) × (0, 1) ,

μ1(t, σ ) = 0 , (t, σ ) ∈ (0, T ) × {0, 1} ,

∂2
xμ1(t, σ ) = 2μ′(σ )∂xψre f (t, σ ) (t, σ ) ∈ (0, T ) × {0, 1} .

(12)

This decomposition is inspired by [18]. Then,

d�K (0).v =
(
LK + KK

)
(v)

where

LK : L2((0, T ),R) → PK ,V [H3
(0)(0, 1)]

v �→ PK ,V [
1(T )]
KK : L2((0, T ),R) → PK ,V [H3

(0)(0, 1)]
v �→ PK ,V [
2(T )]

and, for j = 1, 2,

⎧
⎪⎨

⎪⎩

i∂t
 j (t, x)=
(

− ∂2
x +V (x)

)

 j (t, x)−v(t)μ j (t, x) , (t, x)∈(0, T )×(0, 1) ,


 j (t, 0)=
 j (t, 1) , t ∈(0, T ) ,


 j (0, x)=0 , x ∈(0, 1) .

(13)
By [3, Lemma 1], for every v ∈ L2((0, T ),R), 
 j ∈ C0([0, T ], H3

(0)(0, 1)), and thus,
LK ,KK are continuous operators. The following 2 results will be proved in Sects. 3
and 4.

Proposition 2 There exist K∗ ∈ N
∗, C > 0 and a decreasing sequence (HK )K�K∗

of closed vector subspaces of L2((0, T ),R) satisfying

∩
K�K ∗ HK = {0} , (14)

such that for every K � K∗, the operator LK : HK → PK [H3
(0)(0, 1)] is an isomor-

phism and
‖L−1

K ‖
PK ,V [H3

(0)
]→L2 � C . (15)
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Proposition 3 For every K ∈ N
∗, the operator KK : L2((0, T ),R) → PK [H3

(0)

(0, 1)] is compact.
To end the proof of Theorem 1.1, it suffices to prove the existence of K � K∗ such

that d�K (0) = (LK + KK ) is an isomorphism from HK to PK ,V [H3
(0)(0, 1)].

Working by contradiction, we assume that, for every K � K∗, (LK +KK ) : HK →
PK [H3

(0)(0, 1)] is not an isomorphism. By Fredholm alternative (see Theorem VI of

[8]) on I + L−1
K KK , there exists a sequence (vK )K�K∗ such that

vK ∈ HK , ‖vK ‖L2 = 1 , (LK + KK )(vK ) = 0 , ∀K � K∗ .

Then, by (14)
vK ⇀ 0 in L2((0, T ),R) (16)

and

1 = ‖vK ‖L2(0,T ) = ‖L−1
K ◦ LK (vK )‖L2(0,T ) because vK ∈ HK

� C‖LK (vK )‖H3
(0)

(0,1) by (15)

� C‖KK (vK )‖H3
(0)

(0,1)

� C‖K1(vK )‖H3
(0)

(0,1) −→
K→∞ 0

because K1 is compact. This is a contradiction.
To prove the second statement of Theorem 1, one considers K ′ � K such

that ‖PK ′,V (ψre f (T ))‖H3
(0)

< δ and applies statement 1 to ψ f := (PK ,V −
PK ′,V )[ψre f (T )].

3 Ingham inequality

The goal of this section is to prove Proposition 2, by reducing the problem to an
Ingham inequality. First, we recall useful estimates (see [17, Theorem 4 Chap. 2]).

λk,V = (kπ)2 +
∫ 1

0
V (x)dx + rk where

∞∑

k=1

r2
k < ∞ , (17)

∃C = C(V ) > 0 such that ‖ϕ′
k,V − ϕ′

k,0‖L∞(0,1) � C , ∀k ∈ N
∗ . (18)

By the Duhamel formula, we have


 j (T ) = i
∞∑

k=1

∫ T

0
v(t)〈μ j (t), ϕk,V 〉e−iλk,V (T−t)dt ϕk,V . (19)

For every t ∈ (0, T ), the function x �→ μ1(t, x) solves a ordinary differential equation
of order 4 with continuous coefficients, because V ∈ H3((0, 1),R) (see (12)); thus,
μ1(t, .) ∈ C4([0, 1],C) and the following integrations by parts are legitimate
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〈μ1(t), ϕk,V 〉 = 1
λ2
k,V

∫ 1
0 μ1(t, x)

(
− ∂2

x + V (x)
)2

ϕk,V (x)dx

= 2
λ2
k,V

(
μ′(1)∂xψre f (t, 1)ϕ′

k,V (1) − μ′(0)∂xψre f (t, 0)ϕ′
k,V (0)

)
.

Thus, for a given target 
 f ∈ PK [H3
(0)(0, 1)] and a function v ∈ L2((0, T ),R), the

equality LK (v) = 
 f is equivalent to the moment problem

∫ T

0
v(t) fk(t)dt = λ2

k,V

2kπ
〈
 f , ϕk,V 〉eiλk,V T , ∀k � K , (20)

where

fk(t) :=
(
μ′(1)∂xψre f (t, 1)ϕ′

k,V (1) − μ′(0)∂xψre f (t, 0)ϕ′
k,V (0)

)eiλk,V t

kπ
,∀k ∈ N

∗ .

Note that the right-hand side of (20) belongs to l2 thanks to (17) and (3). Let

HC

K := AdhL2((0,T ),C)

(
Vect{ fk; |k| � K }

)
and HK := HC

K ∩ L2((0, T ),R) (21)

where fk(t) := f−k(t) ,∀k � −1. Clearly, (14) is satisfied. The following Ingham
inequality - that will be proved later on - proves that, for K large enough, ( fk)|k|�K
is a Riesz basis of HC

K .

Proposition 4 There exists K∗ ∈ N
∗ and C1, C2 > 0 such that

C1‖b‖l2 �

⎛

⎜
⎝

∫ T

0

∣
∣
∣
∣
∣
∣

∑

|k|�K∗
bk fk(t)

∣
∣
∣
∣
∣
∣

2

dt

⎞

⎟
⎠

1/2

� C2‖b‖l2 , ∀b ∈ l2(ZK∗ ,C) , (22)

where ZK∗ := {k ∈ Z; |k| � K∗}.
This proposition has 3 consequences: for every K � K∗

• for every (dk)|k|�K ∈ l2(ZK ,C), there exists a unique function v ∈ HC

K such that

∫ T

0
v(t) fk(t)dt = dk , ∀|k| � K , (23)

• in particular, if d−k = dk for every k, then v is real-valued (consequence of
uniqueness); this proves that LK : HK → PK ,V [H3

(0)(0, 1)] is bijective,

• moreover, this candidate is the unique solution in L2((0, T ),R) of the moment
problem (23) with minimal L2(0, T )-norm; this proves that the sequence(
‖L−1

K ‖
PK ,V [H3

(0)
]→HK

)

K�K∗
is decreasing, and thus, (15) holds.

which ends the proof of Proposition 2.
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Proof of Proposition 4
Step 1: We prove that the 2 functions g± : (0, T ) → C defined by

g±(t) := μ′(1)∂xψre f (t, 1) ± μ′(0)∂xψre f (t, 0)

are not identically zero on (0, T ).
It is a consequence of (4), (5) and the explicit expression

g±(t) =
∞∑

k=1

(
μ′(1)ϕ′

k,V (1) ± μ′(0)ϕ′
k,V (0)

)
〈ψ0, ϕk,V 〉e−iλk,V t .

More precisely, (4) implies that all the λk,V are distinct, while (17) implies an asymp-
totic spectral gap. This allows to apply some Ingham type inequality (see, for instance,
Haraux [11] or Theorem 6 of [3] that we extend by density). This implies

‖g±‖2
L2(0,T )

≥ C
∞∑

k=1

∣
∣
∣

(
μ′(1)ϕ′

k,V (1) ± μ′(0)ϕ′
k,V (0)

)
〈ψ0, ϕk,V 〉

∣
∣
∣
2
. (24)

Yet, since ψ0 
= 0, there exists k so that 〈ψ0, ϕk,V 〉 
= 0. Combined with (5), this gives
‖g±‖L2(0,T ) 
= 0.

Step 2: We prove the existence of K0, C0
1 , C0

2 > 0 such that

C0
1‖b‖l2 �

⎛

⎜
⎝

∫ T

0

∣
∣
∣
∣
∣
∣

∑

|k|�K0

bkhk(t)

∣
∣
∣
∣
∣
∣

2

dt

⎞

⎟
⎠

1/2

� C0
2‖b‖l2 , ∀b ∈ l2(ZK0 ,C) , (25)

where

hk(t) :=
(
(−1)kμ′(1)∂xψre f (t, 1) − μ′(0)∂xψre f (t, 0)

)
eiλk,V t , ∀k ∈ N

∗ ,

Thanks to (4) and (17), for every 0 � τ1 < τ2 < ∞, there exists C′
j = C′

j (τ1, τ2) > 0
such that

C′
1‖b‖l2 �

⎛

⎜
⎝

∫ τ2

τ1

∣
∣
∣
∣
∣
∣

∑

|k|�1

bke
±iλk,V t

∣
∣
∣
∣
∣
∣

2

dt

⎞

⎟
⎠

1/2

� C′
2‖b‖l2 , ∀b ∈ l2(Z − {0},C) ,

(26)
where λk,V := −λk,V ,∀k � −1 (see [11]).
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Let (bk)|k|�K be a sequence of complex numbers with finite support. We have

∥
∥
∥
∥
∥

∑

|k|�K
bkhk

∥
∥
∥
∥
∥

2

L2(0,T )

=
∥
∥
∥
∥
∥
g+(t)

∑

|k|odd�K
bkeiλk,V t

∥
∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥
∥
g−(t)

∑

| j |even�K
b j eiλ j,V t

∥
∥
∥
∥
∥

2

L2(0,T )

−2�(TK )

(27)

where

TK :=
∑

|k|odd�K

∑

| j |even�K

bkb j

∫ T

0
g+(t)g−(t)ei(λk,V −λ j,V )t dt .

For any x ∈ [0, 1], the map t �→ ∂xψre f (t, x) belongs to H1(0, T ); indeed,

∂t∂xψre f (t, x) = −i
∞∑

k=1

λk,V 〈ψ0, ϕk,V 〉e−iλk,V tϕ′
k,V (x);

thus, by (18) and (26)

∫ T

0
|∂t∂xψre f (t, x)|2dt � C′

2(0, T )2
∞∑

k=1

|λk,V (kπ + C)〈ψ0, ϕk,V 〉|2 � C ′‖ψ0‖2
H3

(0)

.

Therefore, the maps g± belong to H1((0, T ),C), which is an algebra; thus, there exists
C > 0 such that (integration by part)

∣
∣
∣
∣

∫ T

0
g+(t)g−(t)eiωt dt

∣
∣
∣
∣ � C

|ω| , ∀|ω| � 1 .

Then, by Cauchy–Schwarz inequality,

|TK | � C

⎛

⎝
∑

|k|odd�K

|bk |2
⎞

⎠

1/2 ⎛

⎝
∑

| j |even�K

|b j |2
⎞

⎠

1/2
√

εK

where

εK :=
∑

|k|odd�K

∑

| j |even�K

1

(λk,V − λ j,V )2 .

is finite and converges to zero when K → ∞. Indeed, by (17), there exists C , K ′ > 0
such that |λk,V − λ j,V | � C |k2 − j2| for every odd integer k � K ′ and even integer
j � K ′. Moreover, using the decomposition
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1

(k2 − j2)2 = 1

4k2

(
1

( j − k)2 + 1

( j + k)2

)

− 1

4k3

(
1

j − k
− 1

j + k

)

we get

∑

k odd �K

∑

j even�K

1

(k2 − j2)2 � C ′ ∑

k odd�K

1

k2 � C ′′

K
.

By Step 1, there exists 0 � τ±
1 < τ±

2 � T and m > 0 such that |g±(t)| � m for
every t ∈ (τ±

1 , τ±
2 ) . We deduce from (27) and (26) that

∥
∥
∥
∥
∥
∥

∑

|k|�K

bkhk

∥
∥
∥
∥
∥
∥

2

L2(0,T )

�
(
A − C

√
εK

) ∑

|k|�K

|bk |2

where A := m2 min{C′
1(τ

+
1 , τ+

2 )2; C′
1(τ

−
1 , τ−

2 )2}. This gives the lower bound of (25)
with K0 large enough so that C0

1 := √
A − C

√
εK0 > 0. Let M > 0 be such that

g±(t) � M for every t ∈ (0, T ). We deduce from (27) and (26) that the upper bound

of (25) holds with C0
2 :=

√
MC′

2(0, T ) + C
√

εK0 .

Step 3: Conclusion. By (18), there exists C > 0 such that

∥
∥
∥
∥
∥
∥

∑

|k|�K

bk( fk − hk)

∥
∥
∥
∥
∥
∥
L2(0,T )

� C
∑

|k|�K

|bk |
k

� C

⎛

⎝
∑

|k|�K

|bk |2
⎞

⎠

⎛

⎝
∑

|k|�K

1

k2

⎞

⎠ .

We deduce from (25) that, for every K � K0 and b ∈ l2(ZK ,C), we have

(

C0
1 − 2

K − 1

)

‖b‖l2 �

⎛

⎜
⎝

∫ T

0

∣
∣
∣
∣
∣
∣

∑

|k|�K

bk fk

∣
∣
∣
∣
∣
∣

2

dt

⎞

⎟
⎠

1/2

�
(

C0
2 + 2

K − 1

)

‖b‖l2

which gives the conclusion with any K∗ � K0 large enough so that C1 := C0
1 − 2

K∗−1 >

0.

4 Compactness property

The goal of this section is to prove Proposition 3. Let K ∈ N
∗ and (vn)n∈N be a

sequence in L2((0, T ),R) that weakly converges to 0, and is bounded by 1. Then,

‖KK (vn)‖2
H3

(0)

=
∑

k�K

∣
∣
∣
∣(kπ)3

∫ T

0
vn(t)〈μ2(t), ϕk,V 〉eiλk,V t dt

∣
∣
∣
∣

2

.
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Each term of this sum converges to zero when [n → ∞]. Moreover, using the
explicit expression ϕk,0(x) = √

2 sin(kπx), integrations by part (note that μ2 ∈
C0([0, T ], H3

(0)(0, 1))), Cauchy–Schwarz inequality and (18), we get

∣
∣
∣
∣(kπ)3

∫ T

0
vn(t)〈μ2(t), ϕk,V 〉eiλk,V t dt

∣
∣
∣
∣

�C

∣
∣
∣
∣k

3
∫ T

0
vn(t)〈μ2(t), ϕk,0〉eiλk,V t dt

∣
∣
∣
∣ + C

∣
∣
∣
∣k

3
∫ T

0
vn(t)〈μ2(t), ϕk,V − ϕk,0〉eiλk,V t dt

∣
∣
∣
∣

�C

∣
∣
∣
∣

∫ T

0
vn(t)〈∂3

xμ2(t),
√

2 cos(kπx)〉eiλk,V t dt
∣
∣
∣
∣ + C

k

∫ T

0
|vn(t)|‖μ2(t)‖H3

(0)
dt

�C

(∫ T

0
|〈∂3

xμ2(t),
√

2 cos(kπx)〉|2dt
)1/2

+ C

k

(∫ T

0
‖μ2(t)‖2

H3
(0)

dt

)1/2

.

This right-hand side belongs to l2(ZK ) and does not depend on n; thus, by the domi-
nated convergence theorem KK (vn) −→

n→∞ 0 in H3
(0)(0, 1).

5 Global exact controllability in H3
(0)(0, 1)

The following result is proved in [14, Theorem 5.1], by following the proof developed
in the original article [16].

Proposition 5 Let V, μ ∈ H4((0, 1),R) that satisfy (6) and (7). Then for every
ψ0 , ψ f ∈ H4

(V )((0, 1),C) ∩ S, there exists T > 0 and u ∈ L2((0, T ),R) such that
the solution of (1) satisfies ψ(T ) = ψ f .

Proof of Corollary 1 Starting from an initial condition ψ0 ∈ H3
(0), we first use a

control u ∈ L2((0, T1),R) to reach a function ψ(T1) ∈ H4
(V )(0, 1), thanks to the

second statement of Theorem 1. Then, by the previous proposition, there exists a
control u ∈ L2((T1, T2),R) that steers the solution from ψ(T1) to ψ(T2) = ϕ1,V .

Given a target ψ f ∈ H3
(0), thanks to the previous result and the time reversibility

of the Schrödinger equation (i.e., (ψ, u) is a trajectory ⇒ (ψ(T − t), u(T − t)) is a
trajectory) there exists u ∈ L2((T2, T3),R) that steers the solution from ψ(T2) = ϕ1,V

to ψ(T3) = ψ f . ��
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