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ABSTRACT. It is by now well known that the use of Carleman estimates allows to establish the control-
lability to trajectories of nonlinear parabolic equations. However, by this approach, it is not clear how to
decide whether a given function is indeed reachable. In this paper, we pursue the study of the reachable
states of parabolic equations based on a direct approach using control inputs in Gevrey spaces by consider-
ing a semilinear heat equation in dimension one. The nonlinear part is assumed to be an analytic function of
the spatial variable x, the unknown y, and its derivative ∂xy. By investigating carefully a nonlinear Cauchy
problem in the spatial variable and the relationship between the jet of space derivatives and the jet of time
derivatives, we derive an exact controllability result for small initial and final data that can be extended as
analytic functions on some ball of the complex plane.
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1. INTRODUCTION

The null controllability of nonlinear parabolic equations is well understood since the nineties. It was
derived in [6] in dimension one by solving some “ill-posed problem” with Cauchy data in some Gevrey
spaces, and in [4, 5] in any dimension and for any control region by using some “parabolic Carleman
estimates”.

The null controllability was actually extended to the controllability to trajectories in [5]. However, it
is a quite hard task to decide whether a given state is the value at some time of a trajectory of the system
without control (free evolution). In practice, the only known examples of such states are the steady states.

As noticed in [17], in the linear case, the steady states are Gevrey functions of order 1/2 in x (and
thus analytic over C) for which infinitely many traces vanish at the boundary, a fact which is also a very
conservative condition leading to exclude e.g. all the nontrivial polynomial functions.

The recent paper [17] used the flatness approach and a Borel theorem to provide an explicit set of
reachable states composed of states that can be extended as analytic functions on a ball B. It was also
noticed in [17] that any reachable state could be extended as an analytic function on a square included in
the ball B. We refer the reader to [1, 7] for new sets of reachable states for the linear 1D heat equation,
with control inputs chosen in L2(0,T ). We notice that the flatness approach applied to the control of
PDEs, first developed in [12, 3, 19, 24], was revisited recently to recover the null controllability of (i) the
heat equation in cylinders [15]; (ii) a family of parabolic equations with unsmooth coefficients [16]; (iii)
the Schrödinger equation [18]; (iv) the Korteweg-de Vries equation with a control at the left endpoint

1



2 LAURENT AND ROSIER

[14]. One of the main features of the flatness approach is that it provides control inputs developed as
explicit series, which leads to very efficient numerical schemes.

The aim of the present paper is to extend the results of [17] to semilinear heat equations. Roughly,
we shall prove that a reachable state for the linear heat equation is also reachable for the semilinear one,
provided that its magnitude is not too large and its poles and those of the nonlinear term are sufficiently
far from the origin. The method of proof is inspired by [6] where a Cauchy problem in the variable x
is investigated. The main novelty is that we prove an exact controllability result (and not only a null
controllability result as in [6]), and we need to investigate the influence of the nonlinear terms on the
jets of the time derivatives of two traces at x = 0. Here, we do not use some series expansions of the
control inputs as in the flatness approach, but we still use some Borel theorem as in [22, 17]. It is unclear
whether the same results could be obtained by the classical approach using the exact controllability of
the linearized system and a fixed-point argument.

To be more precise, we are concerned with the exact controllability of the following semilinear heat
equation

∂ty = ∂
2
x y+ f (x,y,∂xy), x ∈ [−1,1], t ∈ [0,T ], (1.1)

y(−1, t) = h−1(t), t ∈ [0,T ], (1.2)
y(1, t) = h1(t), t ∈ [0,T ], (1.3)

y(x,0) = y0(x), x ∈ [−1,1], (1.4)

where f : R3 → R is analytic with respect to all its arguments in a neighborhood of (0,0,0). More
precisely, we assume that

f (x,0,0) = 0 ∀x ∈ (−4,4), (1.5)

and that
f (x,y0,y1) = ∑

(p,q,r)∈N3

ap,q,r(y0)
p(y1)

qxr ∀(x,y0,y1) ∈ (−4,4)3, (1.6)

with

|ap,q,r| ≤
M

bp
0bq

1br
2

∀p,q,r ∈ N (1.7)

for some constants
M > 0, b0 > 4, b1 > 4, and b2 > 4. (1.8)

Note that a0,0,r = 0 for all r ∈ N by (1.5). For p,q ∈ N let

Ap,q(x) = ∑
r∈N

ap,q,rxr, |x|< b2.

We infer from (1.6) and (1.7) that

f (x,y0,y1) = ∑
p,q ∈ N,
p+q > 0

Ap,q(x)(y0)
p(y1)

q,

|Ap,q(x)| ≤
M

bp
0bq

1

1

1− |x|b2

, |x|< b2.

Among the many physically relevant instances of (1.1) satisfying (1.5)-(1.8), we quote:
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(1) the heat equation with an analytic potential:

∂ty = ∂
2
x y+ϕ(x)y

where ϕ(x) = ∑r≥0 arxr, with |ar| ≤M/br
2 for all r ∈ N and some constants M > 0, |b2|> 4.

(2) the Allen-Cahn equation
∂ty = ∂

2
x y+ y− y3

(3) the viscous Burgers’ equation
∂ty = ∂

2
x y− y∂xy. (1.9)

Note that our controllability result is still valid when the nonlinear term−y∂xy in (1.9) is replaced
by a term like ϕ(x)yp(∂xy)q with ϕ as in (1), and p,q ∈ N.

Because of the smoothing effect, the exact controllability result has to be stated in a space of analytic
functions (see [17] for the linear heat equation). For given R > 1 and C > 0, we denote by RR,C the set

RR,C := {y : [−1,1]→ R; ∃(αn)n≥0 ∈ RN, |αn| ≤C
n!
Rn ∀n≥ 0 and y(x) =

∞

∑
n=0

αn
xn

n!
∀x ∈ [−1,1]}.

We say that a function h ∈C∞([t1, t2]) is Gevrey of order s≥ 0 on [t1, t2], and we write h ∈ Gs([t1, t2]), if
there exist some positive constants M,R such that

|∂ p
t h(t)| ≤M

(p!)s

Rp ∀t ∈ [t1, t2], ∀p≥ 0.

Similarly, we say that a function y ∈ C∞([x1,x2]× [t1, t2]) is Gevrey of order s1 in x and s2 in t, with
s1,s2 ≥ 0, and we write y ∈ Gs1,s2([x1,x2]× [t1, t2]), if there exist some positive constants M,R1,R2 such
that

|∂ p1
x ∂

p2
t y(x, t)| ≤M

(p1!)s1(p2!)s2

Rp1
1 Rp2

2
∀(x, t) ∈ [x1,x2]× [t1, t2], ∀(p1, p2) ∈ N2.

The main result in this paper is the following exact controllability result.

Theorem 1.1. Let f = f (x,y0,y1) be as in (1.5)-(1.8) with b2 > R̂ := 4e(2e)−1 ≈ 4.81. Let R > R̂ and T >
0. Then there exists some number Ĉ > 0 such that for all y0,y1 ∈RR,Ĉ, there exists h−1,h1 ∈ G2([0,T ])
such that the solution y of (1.1)-(1.4) is defined for all (x, t)∈ [−1,1]× [0,T ] and satisfies y(x,T ) = y1(x)
for all x ∈ [−1,1]. Furthermore, we have that y ∈ G1,2([−1,1]× [0,T ]).

It is clear that using the smoothing effect, a similar result could be obtained with a less regular initial
data (e.g. in L2(−1,1)) as for the linear Korteweg-de Vries equation in [14, Corollary 1.1]. This would
however require to estimate carefully the domain of analyticity in x of the solution.

A similar result with only one control can be derived assuming that f is odd w.r.t. (x,y0). Consider
the control system

∂ty = ∂
2
x y+ f (x,y,∂xy), x ∈ [0,1], t ∈ [0,T ], (1.10)

y(0, t) = 0, t ∈ [0,T ], (1.11)
y(1, t) = h(t), t ∈ [0,T ], (1.12)

y(x,0) = y0(x), x ∈ [0,1]. (1.13)
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Corollary 1.2. Let f = f (x,y0,y1) be as in (1.5)-(1.8) with b2 > R̂ := 4e(2e)−1 ≈ 4.81, and assume that

f (−x,−y0,y1) =− f (x,y0,y1) ∀x ∈ [−1,1], ∀y0,y1 ∈ (−4,4). (1.14)

Let R > R̂ and T > 0. Then there exists some number Ĉ > 0 such that for all y0,y1 ∈ RR,Ĉ with
(y0(−x),y1(−x)) = (−y0(x),−y1(x)) for all x ∈ [−1,1], there exists h ∈ G2([0,T ]) such that the so-
lution y of (1.10)-(1.13) is defined for all (x, t) ∈ [−1,1]× ∈ [0,T ] and satisfies y(x,T ) = y1(x) for all
x ∈ [0,1]. Furthermore, we have that y ∈ G1,2([0,1]× [0,T ]).

Corollary 1.2 can be applied e.g. to (i) the heat equation with an even analytic potential; (ii) the
Allen-Cahn equation; (iii) the viscous Burgers’ equation.

The constant R̂ := 4e(2e)−1
is probably not optimal, but our main aim was to provide an explicit (rea-

sonable) constant. It is expected that the optimal constant is R̂ := 1, with a diamond-shaped domain of
analyticity as in [1] and [7] for the linear heat equation.

Our method of proof combines two steps.

• The first one is the analysis of a Cauchy problem in the spatial variable. We prove the existence of
global solutions of the semilinear heat equation defined for x in the full interval [−1,1] associated
with two initial data y(0, t) = g0(t), yx(0, t) = g1(t) for t ∈ [0,T ]. To do that, we refine the method
developed in [20, 21] which gives solely local solutions in x. The solution is completely defined
in terms of the initial data g0 and g1 (flatness property) but, in contrast to [17], there is no
representation of the solution as an explicit series.
• The second one is a “jets analysis” which investigate the relationship between the jet (∂ n

x y(0,0))n≥0
and the jets (∂ n

t y(0,0))n≥0 and (∂x∂ n
t y(0,0))n≥0. This step is needed to reach a given state in the

reachable space.

We notice that the method of proof in the linear case (see [17]) was also based on the same two
steps, the computations being however easier and explicit. We note also that our approach does not
follow the classical “linearization + fixed point-argument” approach which is widely used to deal with
the controllability of nonlinear PDEs. Among the advantages of our method, we could mention (i) its
robustness, in the sense that it can be adapted to many other PDEs (see [11] for an extension to PDEs of
the form ∂ N

t y = ∂ M
x y+ f (x,y, ...,∂ M−1

x y) with N < M) (ii) its possible use to elaborate efficient numerical
schemes (see [15] in the linear case). For the restrictions of the method, we should say that (i) the
constants are not optiomal and (ii) it is (to date) only applicable in dimension one.

The paper is organized as follows. Section 2 is concerned with the wellposedness of the Cauchy
problem in the x-variable (Theorem 2.1). The relationship between the jet of space derivatives and the jet
of time derivatives at some point (jet analysis) for a solution of (1.1) is studied in Section 3. In particular,
we show that the semilinear heat equation (1.1) can be (locally) solved forward and backward if the
initial data y0 can be extended as an analytic function in some ball of C (Proposition 3.6). Finally, the
proofs of Theorem 1.1 and Corollary 1.2 are displayed in Section 4.
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2. CAUCHY PROBLEM IN THE SPACE VARIABLE

2.1. Statement of the global wellposedness result. Let f = f (x,y0,y1) be as in (1.5)-(1.8). We are
concerned with the wellposedness of the Cauchy problem in the variable x:

∂
2
x y = ∂ty− f (x,y,∂xy), x ∈ [−1,1], t ∈ [t1, t2], (2.1)

y(0, t) = g0(t), t ∈ [t1, t2], (2.2)
∂xy(0, t) = g1(t), t ∈ [t1, t2], (2.3)

for some given functions g0,g1 ∈ G2([t1, t2]). The aim of this section is to prove the following result.

Theorem 2.1. Let f = f (x,y0,y1) be as in (1.5)-(1.8). Let −∞ < t1 < t2 < +∞ and R > 4. Then there
exists some number C > 0 such that for all g0,g1 ∈ G2([t1, t2]) with

|g(n)i (t)| ≤C
(n!)2

Rn , i = 0,1, n≥ 0, t ∈ [t1, t2], (2.4)

there exist some numbers R1,R2 with 4/e < R1 < R2 and a solution y ∈ G1,2([−1,1]× [t1, t2]) of (2.1)-
(2.3) satisfying for some constant M > 0

|∂ p1
x ∂

p2
t y(x, t)| ≤M

(p1 +2p2)!

Rp1
1 R2p2

2

∀(x, t) ∈ [−1,1]× [t1, t2], ∀(p1, p2) ∈ N2. (2.5)

Assuming that f is defined for x ∈ (−4,4) instead of x ∈ (−1,1) is likely not optimal, and only
technical.

2.2. Abstract existence theorem. We consider a family of Banach spaces (Xs)s∈[0,1] satisfying for 0≤
s′ ≤ s≤ 1

Xs ⊂ Xs′ , (2.6)
‖ f‖Xs′

≤ ‖ f‖Xs
; (2.7)

that is, the natural embedding Xs ⊂ Xs′ for s′ ≤ s is of norm less than 1.
We are concerned with an abstract Cauchy problem

∂xU(x) = G(x)U(x), −1≤ x≤ 1,

U(0) = U0,

where U0 ∈ X1 and
(
G(x)

)
x∈[−1,1] is a familly of possibly nonlinear operators.

Our first result is a global wellposedness result. It extends the abstract result in [20, 21] which gives
solely local solutions.

Theorem 2.2. For any ε ∈ (0,1/4), there exists a constant D > 0 such that for any family (G(x))x∈[−1,1]
of nonlinear maps from Xs to Xs′ for 0≤ s′ < s≤ 1 satisfying

‖G(x)U‖Xs′
≤ ε

s− s′
‖U‖Xs

(2.8)

‖G(x)U−G(x)V‖Xs′
≤ ε

s− s′
‖U−V‖Xs

(2.9)
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for 0 ≤ s′ < s ≤ 1, x ∈ [−1,1] and U,V ∈ Xs with ‖U‖Xs
≤ D, ‖V‖Xs

≤ D, there exists η > 0 so that
for any U0 ∈ X1 with

∥∥U0
∥∥

X1
≤ η , there exists a solution U ∈C([−1,1],Xs0) for some s0 ∈ (0,1) to the

integral equation

U(x) =U0 +
∫ x

0
G(τ)U(τ)dτ. (2.10)

Moreover, we have the estimate

‖U(x)‖Xs
≤C1

(
1− λ |x|

a∞(1− s)

)−1∥∥U0∥∥
X1
, for 0≤ s < 1, |x|< a∞

λ
(1− s),

where λ ∈ (0,1), a∞ ∈ (λ ,1) and C1 > 0 are some constants. In particular, we have

‖U(x)‖Xs
≤C1

(
1− 2

a∞

λ
+1

)−1∥∥U0∥∥
X1
, for 0≤ s≤ s0 =

1
2
(1− λ

a∞

), |x| ≤ 1.

If, in addition, we assume that

for all U0 ∈ Xs with ‖U0‖Xs ≤ D, the map τ ∈ [−1,1]→ G(τ)U0 ∈ Xs′ is continuous, (2.11)

then U is solution in the classical sense of{
∂xU(x) = G(x)U(x), −1≤ x≤ 1,

U(0) = U0.
(2.12)

We prove first the existence of a solution of (2.10) on an interval [−(1−δ ),1−δ ], where δ ∈ (0,1).
Next, we use a scaling argument to obtain a solution of (2.10) for x ∈ [−1,1].

Consider a sequence of numbers (ak)k≥0 satisfying the following properties (the existence of such a
sequence is proved in Lemma 2.4, see below):

(i) a0 = 1;
(ii) (ak)k≥0 is a decreasing sequence converging to a∞ > 1−δ ;

(iii) ∑
∞
i=0

(4ε)i

1− ai+1
ai

<+∞.

Next, we pick η small enough so that η ∑
∞
i=0

(4ε)i

1− ai+1
ai

< D.

We define, for k ∈ N∪{∞}, the space Yk = {U ∈
⋂

0≤s<1C(−ak(1− s),ak(1− s),Xs); ‖U‖Yk < ∞}
with the norm

‖U‖Yk
:= sup
|x|<ak(1−s)

0≤s<1

‖U(x)‖Xs

(
1− |x|

ak(1− s)

)
if k ∈ N, (2.13)

‖U‖Y∞
:= sup
|x|<a∞(1−s)

0≤s<1

‖U(x)‖Xs

(
1− |x|

a∞(1− s)

)
if k = ∞. (2.14)

Clearly, Yk for k < ∞ and Y∞ are Banach spaces (see [20, 21]). Note that for |x|< ak(1−s), 0≤ s < 1, we
have that 1− |x|

ak(1−s) ∈ (0,1]. Note also that we have Yk ⊂ Yk+1 and ‖U‖Yk+1
≤ ‖U‖Yk

, for the sequence
(ak)k∈N is decreasing.
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Proposition 2.3. For any ε ∈ (0,1/4), any δ ∈ (0,1) and any G and D as in (2.9) and (2.11), there exists
some numbers a∞ > 1−δ and η > 0 such that for any U0 ∈ X1 with

∥∥U0
∥∥

X1
≤ η , there exists a unique

solution for x ∈ (−a∞,a∞) to (2.10) in the space Y∞. Moreover, we have the estimate

‖U(x)‖Xs
≤C1

(
1− |x|

a∞(1− s)

)−1∥∥U0∥∥
X1
, for 0≤ s < 1, |x|< a∞(1− s),

where C1 > 0 is a constant.

Proof of Proposition 2.3. We follow closely the proof of [8], taking care of the choice of the constants
and of the time of existence.

We want to define a sequence (Uk)k≥0 by the relations

U0 = 0, Uk+1 = TUk for k ∈ N

where

(TU)(x) =U0 +
∫ x

0
G(τ)U(τ)dτ.

Note that U1(x) = (TU0)(x) =U0 for |x|< 1. Introduce

Vk :=Uk+1−Uk, k ∈ N.

We prove by induction on k ∈ N the following statements (that contain the fact that the sequence
(Uk)k∈N is indeed well defined):

λk := ‖Vk‖Yk
≤ (4ε)k

η , (2.15)

‖Uk+1(x)‖Xs
≤

k

∑
i=0

λi

1− ai+1
ai

≤ D for |x|< ak+1(1− s), (2.16)

so that G(x)Uk+1(x) is well defined in Xs′ for |x| ≤ ak+1(1− s).
Let us first check that (2.15)-(2.16) are valid for k = 0. For (2.15), we have that

λ0 = ‖U1−U0‖Y0 ≤ ‖U0‖X1 ≤ η .

For (2.16), we notice that

‖U1‖Xs = ‖U0‖Xs ≤ ‖U0‖X1 ≤ η ≤ η

1−a1
≤ D.

Assume that (2.15)-(2.16) are true up to the rank k. Let us check that they are also true at the rank
k+1.

Take s and x (for simplicity, we assume x≥ 0) so that 0≤ x < ak+1(1− s). For any 0≤ τ ≤ x, (2.16)
gives max

(
‖Uk+1(τ)‖s ,‖Uk(τ)‖s

)
≤ D (recall ak+1 ≤ ak). In particular, we can apply (2.9) replacing s′

by s and s by s(τ) = 1
2

(
1+ s− τ

ak+1

)
, obtaining

‖G(τ)Uk+1(τ)−G(τ)Uk(τ)‖Xs
≤ ε

s(τ)− s
‖Uk+1(τ)−Uk(τ)‖Xs(τ)
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Note that we have indeed 0≤ s < s(τ)< 1. Next

‖Vk+1(x)‖Xs
= ‖(TUk+1)(x)− (TUk)(x)‖Xs

≤
∫ x

0
‖G(τ)Uk+1(τ)−G(τ)Uk(τ)‖Xs

dτ

≤
∫ x

0

ε

s(τ)− s
‖Uk+1(τ)−Uk(τ)‖Xs(τ)

dτ

≤ ε ‖Vk‖Yk

∫ x

0

ak+1

s(τ)− s

(
1− s(τ)

ak+1(1− s(τ))− τ

)
dτ

where we have used the fact that s(τ) satisfies τ < ak+1(1− s(τ)) (for ak+1(1− s(τ))− τ = 1
2(ak+1(1−

s)− τ)> 0) and 0 < s(τ)< 1, so that with (2.13)

‖Vk(τ)‖Xs(τ)
≤
(

1− |τ|
ak+1(1− s(τ))

)−1

‖Vk‖Yk+1
≤
(

1− |τ|
ak+1(1− s(τ))

)−1

‖Vk‖Yk
. (2.17)

Let us go back to the estimate of the integral. To simplify the notations, we denote A = ak+1(1− s)
and recall 0≤ τ ≤ x < A. We have∫ x

0

ak+1(1− s(τ))
(s(τ)− s)(ak+1(1− s(τ))− τ)

dτ = 2ak+1

∫ x

0

A+ τ

(A− τ)2 dτ

≤
∫ x

0

4ak+1A
(A− τ)2 dτ = ak+1

4A
A− τ

]x

0
≤ ak+1

4A
A− x

·

So, recalling A
A−x =

(
1− x

A

)−1
=
(

1− |x|
ak+1(1−s)

)−1
, we have obtained

‖Vk+1(x)‖s

(
1− |x|

ak+1(1− s)

)
≤ 4ak+1ε ‖Vk‖Yk

.

So, we have proved that

‖Vk+1‖Yk+1
≤ 4a0ε ‖Vk‖Yk

, (2.18)

and hence λk+1 ≤ 4a0ελk. This yields (2.15) at rank k+1.
Let us proceed with the proof of (2.16) at rank k+1.
Since Uk+2 =Uk+1 +Vk+1, we only need to prove ‖Vk+1(x)‖s ≤

λk+1

1− ak+2
ak+1

for |x| < ak+2(1− s). This is

obtained by noticing that

‖Vk+1(x)‖s ≤
(

1− |x|
ak+1(1− s)

)−1

‖Vk+1‖Yk+1
≤
(

1− ak+2

ak+1

)−1

λk+1

since |x|< ak+2(1− s). The proof by induction of (2.15)-(2.16) is complete.
We are now in a position to prove the existence of a solution to (2.12). Let us introduce the function

U∞ := limk→+∞Uk = ∑
+∞

k=0Vk. Note that the convergence of the series is normal in Y∞. Indeed,
+∞

∑
k=0
‖Vk‖Y∞

≤
+∞

∑
k=0
‖Vk‖Yk

≤
+∞

∑
k=0

λk <+∞.

Note also that (2.16) remains true for U∞ for |x|< a∞(1− s), so that G(τ)U∞ is well defined.
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Let us prove that U∞ is indeed a solution of (2.10). Using the fact that Uk+1−TUk = 0, we have

U∞− (TU∞)(x) =U∞−Uk+1 +
∫ x

0
[G(τ)Uk(τ)−G(τ)U∞(τ)]dτ

where all the terms in the equation are in Y∞. The same estimates as before yield for 0 ≤ s < 1 and
|x|< a∞(1− s)

‖
∫ x

0
[G(τ)Uk(τ)−G(τ)U∞(τ)]dτ‖Xs ≤ 4a∞ε‖Uk−U∞‖Y∞

(
1− |x|

a∞(1− s)

)−1

,

and hence
‖U∞−TU∞‖Y∞

≤ ‖U∞−Uk+1‖Y∞
+4a∞ε‖Uk−U∞‖Y∞

→ 0

as k→+∞. Thus U∞ is a solution of (2.10).
Let us prove the uniqueness of the solution of (2.10) in the same space Y∞. Assume that U and Ũ are

two solutions of (2.10) in Y∞. Pick λ ∈ (0,1), and let a′0 = 1, a′k = λak for k ∈ N∗∪{∞}. Notice that (i),
(ii) and (iii) are still valid for the a′k. Denote by Y ′k , k ∈ N∪{∞}, the space associated with a′k. Note that
a′k < a∞ and hence Y∞ ⊂ Y ′k for k� 1. Then we have by the same computations as above that

‖U−Ũ‖Y ′k ≤ (4ε)k‖U−Ũ‖Y ′0
which yields

‖U−Ũ‖Y ′∞ ≤ lim
k→+∞

‖U−Ũ‖Y ′k = 0.

Thus U(x) = Ũ(x) for |x|< a′∞ = λa∞, with λ as close to 1 as desired. �

It remains to prove the existence of the sequence (ak)k≥0. This is done in the next lemma.

Lemma 2.4. There exists a sequence (ak)k∈N satisfying (i), (ii) and (iii).

Proof. We denote C0 = 4ε < 1 and we require ∑
∞
i=0

Ci
0

1− ai+1
ai

<+∞. Picking a0 = 1 and γ > 0 small enough,

we define the sequence (ak)k∈N by induction by setting

ak+1 = ak

(
1− γ

(1+ k)2

)
, k ∈ N.

The sequence (ak)k∈N is clearly decreasing, Ci
0

1− ai+1
ai

= γ−1(1+ i)2Ci
0, and hence ∑

∞
i=0

Ci
0

1− ai+1
ai

< +∞, for

C0 < 1. Finally, bk = ln(ak) converges to ∑
∞
k=0 ln

(
1− γ

(1+k)2

)
≥−2γ ∑

∞
k=0

1
(1+k)2 for γ small enough. In

particular, a∞ ≥ e−2γζ (2) which can be made greater than 1−δ for γ small. �

Let us complete the proof of Theorem 2.2 by using a scaling argument. Pick any number λ ∈ (0,1)
with

ε

λ
<

1
4
·

Let δ = 1−λ ∈ (0,1) and pick a∞ ∈ (λ ,1). Introduce the new variables x̃ := λx ∈ [−λ ,λ ] = [−(1−
δ ),1−δ ] for x ∈ [−1,1], and the new unknown

Ũ(x̃) :=U(x) =U(λ−1x̃).
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Then Ũ should solve

Ũ(x̃) =U0 +
∫ x̃

0
G̃(τ)Ũ(τ)dτ. (2.19)

where

G̃(x̃) :=

 λ−1G(λ−1x̃) if x̃ ∈ [−λ ,λ ],
λ−1G(1) if x̃ ∈ [λ ,1],
λ−1G(−1) if x̃ ∈ [−1,−λ ].

Then
(
G̃(x̃)

)
x̃∈[−1,1] is a family of nonlinear maps from Xs to Xs′ for 0≤ s′ < s≤ 1 satisfying for 0≤ s′ <

s≤ 1, x̃ ∈ [−1,1] and U,V ∈ Xs with ‖U‖Xs ≤ D, ‖V‖Xs ≤ D

‖G̃(x̃)U‖Xs′ ≤
ε̃

s− s′
‖U‖Xs

‖G̃(x̃)U− G̃(x̃)V‖Xs′ ≤
ε̃

s− s′
‖U−V‖Xs

where ε̃ = ε/λ ∈ (0,1/4). We infer from Proposition 2.3 the existence of a solution Ũ of (2.19). A
simple change of variables shows that the function U defined for x ∈ [−1,1] by U(x) = Ũ(x̃) solves
(2.10).

Finally, assume that the continuity conditions (2.9) and (2.11) hold. We notice that x̃ 7→ G̃(x̃)Ũ(x̃)
is continuous from (−a∞(1− s),a∞(1− s)) to Xs′ for all 0 ≤ s′ < s < 1. We infer that Ũ is a classical
solution of the Cauchy problem

∂x̃Ũ = G̃(x̃)Ũ(x̃), Ũ(0) =U0

for x ∈ [−(1−δ ),1−δ ] = [−λ ,λ ], and that is satisfies

Ũ ∈
⋂

0≤s<1

C(−a∞(1− s),a∞(1− s),Xs).

Then the function U defined for x ∈ [−1,1] by U(x) = Ũ(x̃) solves

∂xU = G(x)U(x), U(0) =U0,

for x ∈ [−1,1], and it satisfies U ∈
⋂

0≤s<1C(−a∞

λ
(1− s), a∞

λ
(1− s),Xs) and

‖U(x)‖Xs
≤C1

(
1− λ |x|

a∞(1− s)

)−1∥∥U0∥∥
X1
, for 0≤ s < 1, |x|< a∞

λ
(1− s).

The proof of Theorem 2.2 is complete. �

2.3. Gevrey type functional spaces. We follow closely [9, 25].

2.4. Definitions. We define several spaces of Gevrey λ functions for λ > 1. For our application to the
heat equation, we shall take λ = 2, but for the moment we stay in the generality. Introduce

Γλ (k) = 2−5(k!)λ (1+ k)−2,

and let Γ denote the Gamma function of Euler. It is increasing on [2,+∞).
We also introduce a variant of those functions with a parameter a ∈R (a is not necessarily an integer):

Γλ ,a(k) = 2−5(Γ(k+1−a))λ (1+ k)−2, for k ∈ N s.t. k > |a|+1, (2.20)
Γλ ,a(k) = Γλ (k), for k ∈ N s.t. 0≤ k ≤ |a|+1. (2.21)
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Clearly, Γλ ,0 = Γλ . Note that for k > |a|+1, we have k+1−a≥ 2, so we are in an interval where Γ is
increasing. Thus we have for all k ∈ N

Γλ ,a(k) ≤ Γλ (k), if a≥ 0 (2.22)
Γλ (k) ≤ Γλ ,a(k), if a≤ 0. (2.23)

For any L > 0, we consider the space of functions u ∈C∞(K) (where K = [t1, t2] with −∞ < t1 < t2 < ∞)
such that

|u|L,a := sup

{ ∣∣u(k)(t)∣∣
L|k−a|Γλ ,a(k)

, t ∈ K,k ∈ N

}
< ∞.

Note that for a = 0, we recover the spaces defined earlier in [25], and |u|L,0 = |u|L.

Definition 1. Yamanaka [25] defined the norms

‖u‖L := max
{

26 ‖u‖L∞(K) ,2
3L−1 ∣∣u′∣∣L} ,

and similarly we define for a ∈ R

‖u‖L,a := max
{

26 ‖u‖L∞(K) ,2
3L−1 ∣∣u′∣∣L,a} .

We denote by Gλ
L (resp. Gλ

L,a) the (Banach) space of functions u ∈ C∞(K) such that ‖u‖L < ∞ (resp.
‖u‖L,a < ∞).

The space Gλ
L,a is supposed to “represent” the space of functions Gevrey λ with radius L−1 with a

derivatives. Roughly, we may think that u ∈ Gλ
L,a if Dau ∈ Gλ

L , even if it is not completely true if a /∈ N.
Note that, as a direct consequence of (2.22)-(2.23), we have the embeddings Gλ

L,a ⊂ Gλ
L if a ≥ 0,

Gλ
L ⊂ Gλ

L,a if a≤ 0, together with the inequalities

‖u‖L ≤max(La,L−a)‖u‖L,a if a≥ 0, (2.24)

‖u‖L,a ≤max(La,L−a)‖u‖L if a≤ 0. (2.25)

Furthermore, for any a ∈ R and 0 < L < L′, we have the embedding Gλ
L,a ⊂ Gλ

L′,a with

‖u‖L′,a ≤ ‖u‖L,a . (2.26)

The following result [25, Theorem 5.4] will be used several times in the sequel.

Lemma 2.5. (Algebra property) [25, Theorem 5.4]

‖uv‖L ≤ ‖u‖L ‖v‖L ∀u,v ∈ Gλ
L . (2.27)

2.5. Cost of derivation. The following result is a variant of Proposition 2.3 of Kawagishi-Yamanaka
[9], where the spaces we consider contain some non-integer “derivatives”.

Lemma 2.6 (Cost of derivatives for Gevrey spaces containing derivatives). Let λ > 0 and δ > 0. Let
q ∈ N and a,b ∈ R with d = q−a+b > 0. Then there exists some number C =C(λ ,δ ,a,b,q)> 0 such
that for all L > 0, all α > 1, and all u ∈ Gλ

L,a, we have∣∣∣u(q)∣∣∣
αL,b
≤

(
C(L−d +Ld)+(1+δ )αbLd

(
λd

e lnα

)λd
)
|u|L,a (2.28)
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and hence ∥∥∥u(q)
∥∥∥

αL,b
≤

(
C(L−d + 〈L〉C)+(1+δ )αbLd

(
λd

e lnα

)λd
)
‖u‖L,a . (2.29)

Proof. The main tool will be the asymptotic of the Gamma function Γ(x+d)
Γ(x) ∼ xd as x→ +∞, which

follows at once from Stirling’s formula (see [23])

lim
x→+∞

Γ(x+1)
(x/e)x

√
2πx

= 1.

In particular, for any δ > 0, there exists a number N = N(λ ,δ ,a,b,q) such that for all k ∈N with k≥ N,(
Γ(k+1+q−a)

Γ(k+1−b)

)λ

≤ (1+δ )kλd .

We can also assume that k ≥ N implies k+q > |a|+1, and k > |b|+1, so that Γλ ,a(k+q) and Γλ ,b(k)

are given by (2.20). Note that we always have (1+k)2

(1+k+q)2 ≤ 1 if k ∈ N, for q≥ 0.
Let k ∈ N. If k ≥ N, we have

|u(k+q)(t)|
(αL)k−bΓλ ,b(k)

≤
|u|L,a Lk+q−aΓλ ,a(k+q)

(αL)k−bΓλ ,b(k)

≤
|u|L,a Ld

αk−b

(
Γ(k+1+q−a)

Γ(k+1−b)

)λ

≤ (1+δ )
|u|L,a Ld

αk−b kλd

≤ (1+δ )αb |u|L,a Ld sup
t≥0

(α−ttλd)

≤ (1+δ )αb |u|L,a Ld
(

λd
e ln(α)

)λd

,

where we used the fact that supt≥0(α
−ttλd) =

(
λd

e ln(α)

)λd
, where α > 1 and λd > 0.

If k ≤ N, we still have

|u(k+q)(t)|
(αL)|k−b|Γλ ,b(k)

≤
|u|L,a L|k+q−a|−|k−b|

α |k−b|
Γλ ,a(k+q)

Γλ ,b(k)
·

Noticing that |k+q−a|−|k−b|= |k−b+d|−|k−b| ∈ [−d,d], α−|k−b| ≤ 1, Γλ ,a(k+q)
Γλ ,b(k)

≤C(λ ,δ ,a,b,q)
for 0≤ k ≤ N(λ ,δ ,a,b,q), we infer that

|u(k+q)(t)|
(αL)k−bΓλ ,b(k)

≤C(L−d +Ld)|u|L,a

and (2.28) follows.
Let us now prove (2.29). The estimate∥∥∥u(q)

∥∥∥
L∞(K)

≤ L|q−1−a|
Γλ ,a(q−1)

∣∣u′∣∣L,a ≤C(λ ,q,b,a)L|q−1−a|+1 ‖u‖L,a ≤C〈L〉C ‖u‖L,a
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is valid for any q≥ 1, and it is obvious for q = 0. On the other hand, we infer from (2.28) that∣∣∣u(q+1)
∣∣∣
αL,b
≤

(
C(L−d +Ld)+(1+δ )αbLd

(
λd

e lnα

)λd
)∣∣u′∣∣L,a

Using the definition of ‖ · ‖αL,b, we obtain at once (2.29).
�

2.6. Application to the semilinear heat equation. We aim to solve the system:

∂
2
x u = ∂tu− f (x,u,∂xu), x ∈ [−1,1], t ∈ [0,T ], (2.30)

u(0, t) = ū0(t), t ∈ [0,T ], (2.31)
∂xu(0, t) = ū1(t), t ∈ [0,T ]. (2.32)

This is equivalent to solve the first order system

∂xU = AU +F(x,U), (2.33)
U(0) = U0, (2.34)

with U = (u,∂xu), U0 = (ū0, ū1), A =

(
0 1
∂t 0

)
, and F(x,(u0,u1)) =

(
0

− f (x,u0,u1)

)
.

Let L > 0. We define the space XL := {U = (u0,u1) ∈ G2
L, 1

2
×G2

L}, with

‖U‖XL
= ‖(u0,u1)‖XL

= ‖u0‖L,1/2 +‖u1‖L ,

where the norms are those defined in Definition 1 with λ = 2. (Note that u0 is more regular than u1 of
one half derivative.) In particular, we have that

‖AU‖XL
= ‖u1‖L,1/2 +‖∂tu0‖L .

In the following result, L1 stands for the inverse of the radius of the initial datum.

Theorem 2.7. Pick any L1 < 1/4. Then there exists a number η > 0 such that for any U0 ∈XL1 with
‖U0‖XL1

≤ η , there exists a solution to (2.33)-(2.34) for x ∈ [−1,1] in C([−1,1],XL0) for some L0 > 0.

Proof of Theorem 2.7. In order to apply Theorem 2.2, we introduce a scale of Banach spaces (Xs)s∈[0,1]
as follows: for s ∈ [0,1] and U = (u0,u1), we set Xs = XL(s) and

‖U‖Xs
= e−τ(1−s) ‖(u0,u1)‖XL(s)

= e−τ(1−s)
(
‖u0‖L(s),1/2 + ‖u1‖L(s)

)
, (2.35)

where
L(s) = er(1−s)L1 (2.36)

and the parameters r > 0, τ > 0 will be chosen thereafter. Note that (2.7) is satisfied because of (2.26)
and the fact that L(s′)> L(s) for s′ < s. Actually, we have even that

‖U‖Xs′
≤ e−τ(s−s′) ‖U‖Xs

. (2.37)

Lemma 2.8 and Lemma 2.9 (see below) will allow us to select the parameters so that G = A+F satisfies
the assumptions of Theorem 2.2.
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Lemma 2.8. Let L1 < 1/4. There exist τ0 > 0 large enough and ε0 < 1/4 such that we have the estimates

‖AU‖Xs′
≤ ε0

s− s′
‖U‖Xs

∀U ∈ Xs,

for all τ ≥ τ0 and all s,s′ with 0≤ s′ < s≤ 1.

Proof. By assumption, we have L1/2
1 /2 < 1/4 and we can pick δ > 0 so that

(1+δ )
L1/2

1
2

<
1
4
· (2.38)

Applying Lemma 2.6 with λ = 2 and δ > 0 as in (2.38), and with q = 0, b = 1/2, a = 0 (respectively
q = 1, b = 0, a = 1/2), so that λd = 1 in both cases, we obtain the existence of some number C =Cδ > 0
such that

‖AU‖XαL
= ‖u1‖αL,1/2 +‖∂tu0‖αL

≤
(

C(L−d + 〈L〉C)+ 1+δ

e lnα
(αL)1/2

)(
‖u1‖L +‖u0‖L,1/2

)
≤

(
C(L−d + 〈L〉C)+ 1+δ

e lnα
(αL)1/2

)
‖U‖XL

(2.39)

uniformly for α > 1 and L > 0. So, (2.39) applied with L = L(s), α = L(s′)
L(s) = er(s−s′) > 1 becomes for

s′ < s (we also use L1 ≤C, for 0 < L1 < 1/4)

‖AU‖Xs′
≤ e−τ(s−s′)

(
C(L−1

1 + erC)+(1+δ )
er 1−s′

2 L1/2
1

er(s− s′)

)
‖U‖Xs

≤

(
Ce−τ(s−s′)(L−1

1 + erC)+(1+δ )
e

r
2 L1/2

1
er(s− s′)

)
‖U‖Xs

≤

(
e−1

τ(s− s′)
C(L−1

1 + erC)+(1+δ )
e

r
2 L1/2

1
er(s− s′)

)
‖U‖Xs

where we have used the fact that

e−τ(s−s′) =
τ(s− s′)e−τ(s−s′)

τ(s− s′)
≤ e−1

τ(s− s′)
(2.40)

for te−t ≤ e−1 for t ≥ 0. Minimizing the constant in the r.h.s. leads to the choice r = 2. (Note that the
initial space X1 = XL1 is independent on the choice of r.) We arrive to the estimate

‖AU‖Xs′
≤

(
Ce−1(L−1

1 + e2C)

τ
+(1+δ )

L1/2
1
2

)
1

s− s′
‖U‖Xs

·

By (2.38), we can then pick τ0 large enough so that

ε0 :=
Ce−1(L−1

1 + e2C)

τ0
+(1+δ )

L1/2
1
2

<
1
4
·

The proof of Lemma 2.8 is complete. �
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Lemma 2.9. Let f be as in (1.5)-(1.8), and let F(x,U) =

(
0

− f (x,u0,u1)

)
for x ∈ [−1,1] and U =

(u0,u1) ∈ L∞(K)2 with sup(‖u0‖L∞(K),‖u1‖L∞(K)) < 4. Let r = 2, L1 > 0, and ε > 0. Then there exists
τ0 > 0 (large enough) such that for τ ≥ τ0, there exists D > 0 (small enough) such that we have the
estimates

‖F(x,U)‖Xs′
≤ ε

s− s′
‖U‖Xs

(2.41)

‖F(x,U)−F(x,V )‖Xs′
≤ ε

s− s′
‖U−V‖Xs

(2.42)

for 0≤ s′ < s≤ 1, and U = (u0,u1) ∈ Xs,V = (v0,v1) ∈ Xs with

‖U‖Xs
≤ D, ‖V‖Xs

≤ D. (2.43)

Finally, for 0 ≤ s ≤ 1 and U = (u0,u1) ∈ Xs with ‖U‖Xs ≤ D, the map x ∈ [−1,1]→ F(x,U) ∈ Xs is
continuous.

Proof. Since (2.41) follows from (2.42), for F(x,0) = 0, it is sufficient to prove (2.42). Pick 0≤ s′ < s≤
1, D > 0 and U,V ∈ Xs satisfying (2.43). Then

‖F(x,U)−F(x,V )‖Xs′ = ‖−
(

0
f (x,U)− f (x,V )

)
‖Xs′

= e−τ(1−s′)‖ f (x,u0,u1)− f (x,v0,v1)‖L(s′)

≤ e−τ(1−s′)
∑

p+q>0
‖Ap,q(x)[u

p
0uq

1− vp
0vq

1]‖L(s′)

≤ e−τ(1−s′)
∑

p+q>0
|Ap,q(x)|

(
‖up

0 − vp
0‖L(s′)‖u

q
1‖L(s′)

+‖vp
0‖L(s′)‖u

q
1− vq

1‖L(s′)
)

where we used the triangle inequality and Lemma 2.5. Note that, by (2.24), we have for a constant
C =C(L1)≥ 1 and any 0≤ s′ < 1

‖u0‖L(s′)+‖u1‖L(s′) ≤C‖u0‖L(s′),1/2 +‖u1‖L(s′) ≤Ceτ(1−s′) ‖U‖Xs′
≤CDeτ , (2.44)

and similarly

‖v0‖L(s′)+‖v1‖L(s′) ≤CDeτ .

Since, by Lemma 2.5,

‖up
0 − vp

0‖L(s′) = ‖(u0− v0)(u
p−1
0 +up−2

0 v0 + · · ·+ vp−1
0 )‖L(s′)

≤ ‖u0− v0‖L(s′)

(
‖u0‖p−1

L(s′)+‖u0‖p−2
L(s′)‖v0‖L(s′)+ · · ·+‖v0‖p−1

L(s′)

)
≤ p(CDeτ)p−1‖u0− v0‖L(s′),
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we infer that

‖F(x,U)−F(x,V )‖Xs′ ≤ e−τ(1−s′)

(
∑

p+q>0
|Ap,q(x)|p(CDeτ)p+q−1‖u0− v0‖L(s′)

+ ∑
p+q>0

|Ap,q(x)|q(CDeτ)p+q−1‖u1− v1‖L(s′)

)
=: e−τ(1−s′)(S1 +S2). (2.45)

Let us estimate S1. Set M′ := M/(1−b−1
2 ). Since

|Ap,q(x)| ≤
M

bp
0bq

1
(1− |x|

b2
)−1 ≤ M′

bp
0bq

1
for |x| ≤ 1,

we have that

S1 ≤ ∑
p>0

M′

b0
p
(

CDeτ

b0

)p−1

∑
q≥0

(
CDeτ

b1

)q

‖u0− v0‖L(s′)

=
M′

b0
∑
p≥0

(p+1)
(

CDeτ

b0

)p

(1−CDeτ

b1
)−1‖u0− v0‖L(s′)

=
M′

b0
(1−CDeτ

b0
)−2(1−CDeτ

b1
)−1‖u0− v0‖L(s′)

≤ 8M′

b0
‖u0− v0‖L(s′)

≤ 2M′‖u0− v0‖L(s′)

provided that

D≤min(
b0e−τ

2C
,
b1e−τ

2C
)· (2.46)

Similarly, we can prove that
S2 ≤ 2M′‖u1− v1‖L(s′).

Therefore, using (2.37), (2.40) and (2.44), we infer that

‖F(x,U)−F(x,V )‖Xs′ ≤ 2M′e−τ(1−s′) (‖u0− v0‖L(s′)+‖u1− v1‖L(s′)
)

≤ 2M′e−τ(1−s′)
(

C‖u0− v0‖L(s′), 1
2
+‖u1− v1‖L(s′)

)
≤ 2CM′‖U−V‖Xs′

≤ 2CM′e−τ(s−s′)‖U−V‖Xs

≤ 2CM′

e
1

τ(s− s′)
‖U−V‖Xs ·

To complete the proof of (2.42), it is sufficient to pick τ ≥ τ0 with τ0 such that 2CM′/(eτ0) ≤ ε , and D
as in (2.46).
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For given 0 ≤ s ≤ 1 and U = (u0,u1) ∈ Xs with ‖U‖Xs ≤ D, let us prove that the map x ∈ [−1,1]→
F(x,U) ∈ Xs is continuous. Pick any x,x′ ∈ [−1,1]. From the mean value theorem, we have for r ∈ N
that |xr− x′r| ≤ r|x− x′| for r ∈ N, and hence

|Ap,q(x)−Ap,q(x′)| ≤ |x− x′|∑
r∈N

rM
bp

0bq
1br

2
=

M
bp

0bq
1b2

(1− 1
b2

)−2|x− x′|.

We infer that

‖F(x,U)−F(x′,U)‖Xs = e−τ(1−s)‖ f (x,u0,u1)− f (x′,u0,u1)‖L(s)

≤ e−τ(1−s)
∑

p+q>0
|Ap,q(x)−Ap,q(x′)|‖up

0uq
1‖L(s)

≤ e−τ(1−s)Mb−1
2 (1− 1

b2
)−2|x− x′| ∑

p+q>0

(‖u0‖L(s)

b0

)p(‖u1‖L(s)

b1

)q

,

the last series being convergent for ‖U‖Xs ≤ D. �

We are in a position to prove Theorem 2.1.
Proof of Theorem 2.1. Let f = f (x,y0,y1) be as in (1.5)-(1.8), −∞ < t1 < t2 < +∞ and R > 4. Pick
g0,g1 ∈ G2([t1, t2]) such that (2.4) holds. We will show that Theorem 2.7 can be applied provided that
the constant C in (2.4) is small enough. Pick L1 ∈ (1/R,1/4). Let η = η(L1)> 0 be as in Theorem 2.7.
Let U0 = (u0,u1) = (g0,g1). We have to show that

‖U0‖XL1
= ‖g0‖L1,

1
2
+‖g1‖L1 ≤ η

for C small enough. It is sufficient to have

‖g0‖L1,
1
2
≤ η

2
, (2.47)

‖g1‖L1 ≤
η

2
. (2.48)

Recall that

‖g0‖L1
1
2

= max

26‖g0‖L∞([t1,t2]),2
3L−1

1 sup
t∈[t1,t2],k∈N

|g(k+1)
0 (t)|

L|k−
1
2 |

1 Γ2, 1
2
(k)

 , (2.49)

‖g1‖L1 = max

(
26‖g1‖L∞([t1,t2]),2

3L−1
1 sup

t∈[t1,t2],k∈N

|g(k+1)
1 (t)|

Lk
12−5(k!)2(1+ k)−2

)
, (2.50)

where

Γ2, 1
2
(k) =

{
2−5
(
Γ(k+ 1

2)
)2
(1+ k)−2, if k > 3/2,

2−5(k!)2(1+ k)−2 if 0≤ k ≤ 3/2.

Then, if follows that (2.47) is satisfied provided that

‖g0‖L∞([t1,t2]) ≤ 2−7
η , (2.51)

‖g(k+1)
0 ‖L∞([t1,t2]) ≤ 2−4

ηL1+|k− 1
2 |

1 Γ2, 1
2
(k) ∀k ∈ N. (2.52)
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Since Γ(k+ 1
2)∼ Γ(k)k

1
2 ∼ (k−1)!k

1
2 as k→+∞, we have that

(
Γ(k+ 1

2)
)2 ∼ (k!)2/k. Thus, the r.h.s.

of (2.52) is equivalent to 2−9ηLk+ 1
2

1 (k!)2k−3 as k→ +∞. Using (2.4) and the fact that L1 > 1/R, we
have that (2.52) holds if C is small enough. The same is true for (2.51). Similarly, we see that (2.48) is
satisfied provided that

‖g1‖L∞([t1,t2]) ≤ 2−7
η , (2.53)

‖g(k+1)
1 ‖L∞([t1,t2]) ≤ 2−9

ηLk+1
1 (k!)2(k+1)−2 ∀k ∈ N. (2.54)

Again, (2.53) and (2.54) are satisfied if the constant C in (2.4) is small enough.
We infer from Theorem 2.7 the existence of a solution U = (y,∂xy) ∈ C([−1,1],Xs0) for some s0 ∈

(0,1) of (2.1)-(2.3). Let us check that y ∈C∞([−1,1]× [t1, t2]). To this end, we prove by induction on
n ∈ N the following statement

U ∈Cn([−1,1],Ck([t1, t2])2) ∀k ∈ N. (2.55)

The assertion (2.55) is true for n = 0, for Xs0 ⊂Ck([t1, t2])2 for all k ∈ N. Assume (2.55) true for some
n ∈ N. Since A is a continuous linear map from Xs to Xs′ for 0≤ s′ < s≤ 1, we have that

AU ∈Cn([−1,1],Xs)⊂Cn([−1,1],Ck([t1, t2])2) ∀s ∈ (0,s0), ∀k ∈ N.

On the other hand, as f is analytic and hence of class C∞, we infer from (2.55) that F(x,U) ∈Cn([−1,1],
Ck([t1, t2])2) for all k ∈ N. Since ∂xU = AU +F(x,U), we obtain that (2.55) is true with n replaced by
n+1. The proof of y ∈C∞([−1,1]× [t1, t2]) is complete. Finally, the proof of y ∈ G1,2([−1,1]× [t1, t2]),
which uses some estimates of the next section, is given in appendix, with eventually a stronger smallness
assumption on the initial data. �

3. CORRESPONDENCE BETWEEN THE SPACE DERIVATIVES AND THE TIME DERIVATIVES

We are concerned with the relationship between the time derivatives and the space derivatives of any
solution of a general semilinear heat equation

∂ty = ∂
2
x y+ f (x,y,∂xy), (3.1)

where f = f (x,y0,y1) is of class C∞ on R3.
When f = 0, then the jet (∂ n

x y(0,0))n≥0 is nothing but the reunion of the jets (∂ n
t y(0,0))n≥0 and

(∂ n
t ∂xy(0,0))n≥0, for

∂
n
t y = ∂

2n
x y, ∀n ∈ N, (3.2)

∂
n
t ∂xy = ∂

2n+1
x y, ∀n ∈ N. (3.3)

When f is no longer assumed to be 0, then the relations (3.2)-(3.3) do not hold anymore. Nevertheless,
there is still a one-to-one correspondence between the jet (∂ n

x y(0,0))n≥0 and the jets (∂ n
t y(0,0))n≥0 and

(∂ n
t ∂xy(0,0))n≥0.

Proposition 3.1. Let−∞ < t1 ≤ τ ≤ t2 <+∞. Assume that f ∈C∞(R3) and that y∈C∞([−1,1]× [t1, t2])
satisfies (3.1) on [−1,1]× [t1, t2]. Then the determination of the jet (∂ n

x y(0,τ))n≥0 is equivalent to the
determination of the jets (∂ n

t y(0,τ))n≥0 and (∂ n
t ∂xy(0,τ))n≥0.

Proof. The proof of Proposition 3.1 is a direct consequence of the following
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Lemma 3.2. Let f ∈C∞(R3) and n∈N∗. Then there exist two smooth functions Hn =Hn(x,y0,y1, ...,y2n−1)
and H̃n = H̃n(x,y0,y1, ...,y2n) such that any solution y ∈C∞([−1,1]× [t1, t2]) of (3.1) satisfies

∂
n
t y = ∂

2n
x y+Hn(x,y,∂xy, ...,∂ 2n−1

x y) for (x, t) ∈ [−1,1]× [t1, t2], (3.4)

∂
n
t ∂xy = ∂

2n+1
x y+ H̃n(x,y,∂xy, ...,∂ 2n

x y) for (x, t) ∈ [−1,1]× [t1, t2]. (3.5)

Proof of Lemma 3.2. Assume first that n = 1. Then (3.4) holds with H1(x,y0,y1) = f (x,y0,y1). Taking
the derivative with respect to x in (3.1) yields

∂x∂ty = ∂
3
x y+

∂ f
∂x

(x,y,∂xy)+
∂ f
∂y0

(x,y,∂xy)∂xy+
∂ f
∂y1

(x,y,∂xy)∂ 2
x y,

and hence (3.5) holds with H̃1(x,y0,y1,y2) =
∂ f
∂x (x,y0,y1)+

∂ f
∂y0

(x,y0,y1)y1 +
∂ f
∂y1

(x,y0,y1)y2.
Assume now that (3.4) and (3.5) are satisfied at rank n− 1, and let us prove that they are satisfied at

rank n. For (3.4), we notice that

∂
n
t y = ∂t(∂

n−1
t y)

= ∂t(∂
2n−2
x y+Hn−1(x,y,∂xy, ...,∂ 2n−3

x y))

= ∂
2n−2
x ∂ty+

2n−3

∑
k=0

∂Hn−1

∂yk
(x,y,∂xy, ...,∂ 2n−3

x y)∂t∂
k
x y

= ∂
2n−2
x (∂ 2

x y+ f (x,y,∂xy))+
2n−3

∑
k=0

∂Hn−1

∂yk
(x,y,∂xy, ...,∂ 2n−3

x y)∂ k
x (∂

2
x y+ f (x,y,∂xy)) (3.6)

=: ∂
2n
x y+Hn(x,y,∂xy, ...,∂ 2n−1

x y)

for some smooth function Hn = Hn(x,y0, ...,y2n−1). For (3.5), we notice that

∂
n
t ∂xy = ∂t(∂

n−1
t ∂xy)

= ∂t(∂
2n−1
x y+ H̃n−1(x,y,∂xy, ...,∂ 2n−2

x y))

= ∂
2n−1
x ∂ty+

2n−2

∑
k=0

∂ H̃n−1

∂yk
(x,y,∂xy, ...,∂ 2n−2

x y)∂t∂
k
x y

= ∂
2n−1
x (∂ 2

x y+ f (x,y,∂xy))+
2n−2

∑
k=0

∂ H̃n−1

∂yk
(x,y,∂xy, ...,∂ 2n−2

x y)∂ k
x (∂

2
x y+ f (x,y,∂xy))

=: ∂
2n+1
x y+ H̃n(x,y,∂xy, ...,∂ 2n

x y)

for some smooth function H̃n = H̃n(x,y0,y1, ...,y2n). �

Next, we relate the behaviour as n→ +∞ of the jets (∂ n
t y(0,τ))n≥0 and (∂ n

t ∂xy(0,τ))n≥0 to those of
the jet (∂ n

x y(0,τ))n≥0. To do that, we assume that in (3.1) the nonlinear term reads

f (x,y0,y1) = ∑
(p,q,r)∈N3

ap,q,r(y0)
p(y1)

qxr ∀(x,y0,y1) ∈ (−4,4)3, (3.7)

where the coefficients ap,q,r, (p,q,r) ∈ N3, satisfy (1.7)-(1.8).
The following result is a refined and quantified version of Proposition 3.1, in the sense that it gives a

domain and a codomain for the map which associates (by an algorithm) a jet (∂ n
x y(0,τ))n∈N to a pair of

jets (∂ n
t y(0,τ))n∈N and (∂x∂ n

t y(0,τ))n∈N. A C∞ smooth solution y of the semilinear heat equation (3.1) is



20 LAURENT AND ROSIER

assumed to exist in order to perform the computations, but its existence will be fully justified thereafter
(see below Proposition 3.6).

Proposition 3.3. Let−∞< t1≤ τ ≤ t2 <+∞ and f = f (x,y0,y1) be as in (1.5)-(1.6) with the coefficients
ap,q,r, (p,q,r) ∈ N3, satisfying (1.7)-(1.8). Pick any R̃ > 4 and any numbers R,R′ with 4 < R′ < R <

min(R̃,b2). Then there exists some number C̃ > 0 such that for any C ∈ (0,C̃], we can find a number
C′ = C′(C,R,R′) > 0 with limC→0+ C′(C,R,R′) = 0 such that for any function y ∈ C∞([−1,1]× [t1, t2])
satisfying (3.1) on [−1,1]× [t0, t1] and

y(x,τ) = y0(x) =
∞

∑
n=0

an
xn

n!
, ∀x ∈ [−1,1] (3.8)

for some y0 ∈RR̃,C, is such that

|∂ k
x ∂

n
t y(0,τ)| ≤C′

(2n+ k)!
RkR′2n , ∀k,n ∈ N. (3.9)

In particular, we have

|∂ n
t y(0,τ)| ≤ C′

(2n)!
R′2n , ∀n ∈ N, (3.10)

|∂x∂
n
t y(0,τ)| ≤ C′

(2n+1)!
RR′2n , ∀n ∈ N. (3.11)

Proof. We know from Proposition 3.1 that the jets (∂ n
t y(0,τ))n≥0 and (∂ n

t ∂xy(0,τ))n≥0 are completely
determined by the jet (∂ n

x y(0,τ))n≥0, that is by y0. A direct proof of estimates (3.10) and (3.11) (which
follow at once from (3.9)) seems hard to be derived, whereas a proof of (3.9) can be obtained by induction
on n. We shall need several lemmas.

Lemma 3.4. (see [10, Lemma A.1]) For all k,q ∈ N and a ∈ {0, ...,k+q}, we have

∑
j+ p = a
0≤ j ≤ k
0≤ p≤ q

(
k
j

) (
q
p

)
=

(
k+q

a

)
.

The following Lemma gives the algebra property for the mixed Gevrey spaces G1,2([−1,1]× [t1, t2]).
A slight modification of its proof actually yields Lemma 2.5, making the paper almost self-contained.

Lemma 3.5. Let (x0, t0) ∈ [−1,1]× [t1, t2], R,R′ ∈ (0,+∞), q ∈ N, µ ∈ (q+2,+∞), k0,n0 ∈ N, C1,C2 ∈
(0,+∞), and y1,y2 ∈C∞([−1,1]× [t1, t2]) be such that

|∂ k
x ∂

n
t yi(x0, t0)| ≤Ci

(2n+ k+q)!
RkR′2n(2n+ k+1)µ

∀i = 1,2, ∀k ∈ {0, ...,k0}, ∀n ∈ {0, ...,n0}. (3.12)

Then we have

|∂ k
x ∂

n
t (y1y2)(x0, t0)| ≤ Kq,µC1C2

(2n+ k+q)!
RkR′2n(2n+ k+1)µ

∀k ∈ {0, ...,k0}, ∀n ∈ {0, ...,n0}, (3.13)

where

Kq,µ := 2µ−q(1+q)2q
∑
j≥0

∑
i≥0

1
(2i+ j+1)µ−q < ∞.
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Proof of Lemma 3.5: Using (2n+ k+q)q ≤ (1+q)q (1+2n+ k)q, we obtain

(2n+ k+q)!≤ (2n+ k)!(2n+ k+q)q ≤ (1+q)q(2n+ k)!(1+2n+ k)q .

So, denoting µ̃ := µ−q > 2 and C̃i := (1+q)qCi, we have

|∂ k
x ∂

n
t yi(x0, t0)| ≤ C̃i

(2n+ k)!
RkR′2n(2n+ k+1)µ̃

∀i = 1,2, ∀k ∈ {0, ...,k0}, ∀n ∈ {0, ...,n0}. (3.14)

From Leibniz’ rule, we have that

|∂ k
x ∂

n
t (y1y2)(x0, t0)|

=

∣∣∣∣∣ ∑
0≤ j≤k

∑
0≤i≤n

(
k
j

) (
n
i

)
(∂ j

x ∂
i
t y1)(x0, t0)(∂ k− j

x ∂
n−i
t y2)(x0, t0)

∣∣∣∣∣
≤ ∑

0≤ j≤k
∑

0≤i≤n

(
k
j

) (
n
i

)
C̃1

(2i+ j)!
R jR′2i(2i+ j+1)µ̃

C̃2
(2(n− i)+ k− j)!

Rk− jR′2(n−i)(2(n− i)+ k− j+1)µ̃

=
C̃1C̃2

RkR′2n (2n+ k)! ∑
0≤ j≤k

∑
0≤i≤n

(
k
j

) (
n
i

) (
2n+ k
2i+ j

)−1

(2i+ j+1)µ̃(2(n− i)+ k− j+1)µ̃︸ ︷︷ ︸
I

·

We infer from Lemma 3.4 that(
k
j

) (
q
p

)
≤
(

k+q
j+ p

)
, for 0≤ j ≤ k, 0≤ p≤ q. (3.15)

This yields (
n
i

)
≤
(

n
i

)2

≤
(

2n
2i

)
,

and hence (using again (3.15))(
k
j

) (
n
i

)
≤
(

k
j

) (
2n
2i

)
≤
(

2n+ k
2i+ j

)
·

Finally, by convexity of x→ xµ̃ , we have that

∑
0≤ j≤k

∑
0≤i≤n

(2n+ k+1)µ̃

(2i+ j+1)µ̃(2(n− i)+ k− j+1)µ̃
≤ ∑

0≤ j≤k
∑

0≤i≤n

(
1

2i+ j+1
+

1
2(n− i)+ k− j+1

)µ̃

≤ 2µ̃−1
∑

0≤ j≤k
∑

0≤i≤n

(
1

(2i+ j+1)µ̃
+

1
(2(n− i)+ k− j+1)µ̃

)
≤ 2µ̃

∑
j≥0

∑
i≥0

1
(2i+ j+1)µ̃

< ∞,

where we used the fact that µ̃ = µ−q > 2.
It follows that

I ≤ 2µ̃

(
∑
j≥0

∑
i≥0

1
(2i+ j+1)µ̃

)
1

(2n+ k+1)µ̃
= 2µ−q

(
∑
j≥0

∑
i≥0

1
(2i+ j+1)µ−q

)
(2n+ k+1)q

(2n+ k+1)µ
,
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and hence the proof of Lemma 3.5 is complete once we have noticed that (2n + k)!(2n + k + 1)q ≤
(2n+ k+q)!. �

Let us go back to the proof of Proposition 3.3. Pick any number µ > 3. We shall prove by induction
on n ∈ N that

|∂ k
x ∂

n
t y(0,τ)| ≤Cn

(2n+ k)!
RkR′2n(2n+ k+1)µ

, ∀k ∈ N, (3.16)

where 0 <Cn ≤C′ <+∞. For n = 0, using the fact that R < R̃, we have that

|∂ k
x y(0,τ)|= |ak| ≤C

k!

R̃k
≤C

(
sup
p∈N

(
R

R̃
)p(p+1)µ

)
k!

Rk(k+1)µ
≤C0

k!
Rk(k+1)µ

provided that

C ≤ C̃ =

(
sup
p∈N

(
R

R̃
)p(p+1)µ

)−1

C0. (3.17)

Assume that (3.16) is satisfied at the rank n ∈N for some constant Cn > 0. Then, by (1.1), (1.6), we have
that

|∂ k
x ∂

n+1
t y(0,τ)| = |∂ k

x ∂
n
t
(
∂

2
x y+ ∑

p,q,r∈N
ap,q,ryp(∂xy)qxr)(0,τ)|

= |∂ k
x ∂

n
t
(
∂

2
x y+ ∑

p,q∈N
Ap,q(x)yp(∂xy)q)(0,τ)|

≤ |∂ n
t ∂

k+2
x y(0,τ)|+ ∑

p≥1
|∂ k

x ∂
n
t
(
Ap,0(x)yp)(0,τ)|

+ ∑
q≥1

∑
p≥0
|∂ k

x ∂
n
t
(
Ap,q(x)yp(∂xy)q)(0,τ)|

=: I1 + I2 + I3. (3.18)

(Note that the sum for I2 is over p≥ 1, for A0,0(x) = 0.)
Since R′ < R, we can pick some ε ∈ (0,1) such that

R′2 ≤ (1− ε)R2.

For I1, we have that

I1 ≤Cn
(2n+ k+2)!

Rk+2R′2n(2n+ k+3)µ
≤ (1− ε)Cn

(2n+ k+2)!
RkR′2n+2(2n+ k+3)µ

· (3.19)

Since Ap,q does not depend on t, we have that ∂ k
x ∂ n

t Ap,k = 0 for n≥ 1 and k ≥ 0. Next, for k ≥ 0, we
have that

|∂ k
x Ap,q(0)|= k! |ap,q,k| ≤

k!
bk

2

M
bp

0bq
1
≤ C k!

(k+1)µRkbp
0bq

1

for some constant C > 0 depending on R, b2, µ , for R < b2.
Note that, still by (3.16), the function ∂xy satisfies the estimate

|∂ k
x ∂

n
t (∂xy)(0,τ)| ≤ Cn

R
(2n+ k+1)!

RkR′2n(2n+ k+2)µ
, ∀k ∈ N.



EXACT CONTROLLABILITY OF SEMILINEAR HEAT EQUATIONS 23

Using µ−1 > 2, we infer from iterated applications of Lemma 3.5 that∣∣∂ k
x ∂

n
t
(
Ap,0yp)(0,τ)∣∣ ≤ CCp

n K p(2n+ k)!
RkR′2n(2n+ k+1)µbp

0
, (3.20)

∣∣∂ k
x ∂

n
t
(
Ap,qyp(∂xy)q)(0,τ)∣∣ ≤ CCp+q

n K p+q(2n+ k+1)!
RkR′2n(2n+ k+1)µbp

0bq
1Rq

∀q≥ 1, (3.21)

where we denote K := max(K0,µ ,K1,µ). We infer from (3.20)-(3.21) that

I2 ≤ ∑
p≥1

CCp
n K p(2n+ k)!

RkR′2n(2n+ k+1)µbp
0
, (3.22)

I3 ≤ ∑
q≥1

∑
p≥0

CCp+q
n K p+q(2n+ k+1)!

RkR′2n(2n+ k+1)µbp
0bq

1Rq
· (3.23)

Using (3.18)-(3.19) and (3.22)-(3.23), we see that the condition

|∂ k
x ∂

n+1
t y(0,τ)| ≤Cn+1

(2n+ k+2)!
RkR′2n+2(2n+ k+3)µ

, ∀k ∈ N,

is satisfied provided that

(1− ε)Cn + ∑
p≥1

CR′2

(2n+ k+1)(2n+ k+2)

(
2n+ k+3
2n+ k+1

)µ

(
CnK
b0

)p

+ ∑
q≥1

∑
p≥0

CR′2

(2n+ k+2)

(
2n+ k+3
2n+ k+1

)µ

(
CnK
b0

)p(
CnK
b1R

)q ≤Cn+1· (3.24)

Pick a number δ ∈ (0,1). Assume that

Cn ≤ δ ·min(
b0

K
,
b1R
K

), (3.25)

so that CnK/b0 ≤ δ and CnK/(b1R)≤ δ . Set

Cn+1 = λnCn := [(1− ε)+
K
b0

CR′2

(2n+1)(2n+2)
3µ

1−δ
+

K
b1R

CR′2

(2n+2)
3µ

(1−δ )2 ]Cn·

Then, with this choice of Cn+1, (3.24) holds provided that (3.25) is satisfied. Next, one can pick some
n0 ∈ N such that for n≥ n0, we have

λn ≤ 1.

This yields Cn+1 ≤ Cn for n ≥ n0, provided that (3.25) holds for n = n0. To ensure (3.25) for n =

0,1, ...,n0, it is sufficient to choose C0 small enough (or, equivalently, C̃ small enough) so that

max
(
C0,λ0C0,λ1λ0C0, ...,λn0−1 · · ·λ0C0

)
≤ δ ·min(

b0

K
,
b1R
K

)·

The proof by induction of (3.16) is achieved.
We can pick

C′(C,R,R′) := max
(
C0,λ0C0,λ1λ0C0, ...,λn0−1 · · ·λ0C0

)
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with C0 = C supp∈N(
R
R̃
)p(p+ 1)µ , so that C′(C,R,R′)→ 0 as C→ 0. The proof of Proposition 3.3 is

complete. �

Proposition 3.6. Let−∞< t1≤ τ ≤ t2 <+∞ and f = f (x,y0,y1) be as in (1.5)-(1.6) with the coefficients
ap,q,r, (p,q,r) ∈ N3, satisfying (1.7)-(1.8). Assume in addition that b2 > R̂ := 4e(2e)−1 ≈ 4.81. Let
R̃ > R̂. Then there exists some number C̃ > 0 such that for any C ∈ (0,C̃] and any numbers R,R′,L with
R̂ < R′ < R < min(R̃,b2) and 4ee−1

/R′2 < L < 1/4, there exists a number C′′ =C′′(C,R,R′,L)> 0 with
limC→0+ C′′(C,R,R′,L) = 0 such that for any y0 ∈RR̃,C, we can pick a function y ∈G1,2([−1,1]× [t1, t2])
satisfying (3.1) for (x, t) ∈ [−1,1]× [t1, t2] and

y(x,τ) = y0(x) =
∞

∑
n=0

an
xn

n!
, ∀x ∈ [−1,1], (3.26)

and such that for all t ∈ [t1, t2]

|∂ n
t y(0, t)| ≤C′′Ln(n!)2, (3.27)

|∂x∂
n
t y(0, t)| ≤C′′Ln(n!)2. (3.28)

Proof. Let R̂ := 4e(2e)−1
, R̃ > R̂ and R,R′ with R̂ < R′ < R < min(R̃,b2). Pick C̃,C as in Proposition 3.3,

and pick any y0 ∈RR̃,C. If a function y as in Proposition 3.6 does exists, then both sequences of numbers

dn := ∂
n
t y(0,τ), n ∈ N,

d̃n := ∂x∂
n
t y(0,τ), n ∈ N

can be computed inductively in terms of the coefficients an = ∂ n
x y0(0), n ∈ N, according to Propo-

sition 3.1. Furthermore, it follows from Proposition 3.3 (see (3.10)-(3.11)) that we have for some
C′ =C′(C,R,R′)> 0 and all n ∈ N

|dn| ≤ C′
(2n)!
R′2n ,

|d̃n| ≤ C′
(2n+1)!

RR′2n .

Note that both sequences (dn)n∈N and (d̃n)n∈N (as above) can be defined in terms of the coefficients
an’s, even if the existence of the function y is not yet established.

Let L ∈ (4ee−1

R′2 , 1
4), R′′ ∈ (

√
4ee−1

L ,R′) and M = M(R,R′,R′′)> 0 such that

|d̃n| ≤MC′
(2n)!
R′′2n , ∀n ∈ N.

The following lemma is a particular case of [17, Proposition 3.6] (with ap = [2p(2p−1)]−1 for p≥ 1).

Lemma 3.7. Let (dq)q≥0 be a sequence of real numbers such that

|dq| ≤CHq(2q)! ∀q≥ 0

for some H > 0 and C > 0. Then for all H̃ > ee−1
H there exists a function f ∈C∞(R) such that

f (q)(0) = dq ∀q≥ 0, (3.29)

| f (q)(t)| ≤ CH̃q(2q)! ∀q≥ 0, ∀t ∈ R. (3.30)
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Pick H = 1/R′′2 and H̃ = L/4 > ee−1
H. Then by Lemma 3.7, there exist two functions g0,g1 ∈

G2([−1,1]) such that

g(n)0 (0) = dn, n≥ 0, (3.31)

g(n)1 (0) = d̃n, n≥ 0, (3.32)

|g(n)0 (t)| ≤ C′H̃n(2n)!, n≥ 0, t ∈ [−1,1], (3.33)

|g(n)1 (t)| ≤ MC′H̃n(2n)!, n≥ 0, t ∈ [−1,1]. (3.34)

It follows at once from Stirling’ formula that (2n)! ≤Cs4n(n!)2 for some universal constant Cs > 0, so
that (with 4H̃ = L)

|g(n)0 (t)| ≤ C′Cs(4H̃)n(n!)2, n≥ 0, t ∈ [−1,1], (3.35)

|g(n)1 (t)| ≤ MC′Cs(4H̃)n(n!)2, n≥ 0, t ∈ [−1,1]. (3.36)

Note that 4H̃ = L < 1/4. If C is sufficiently small, then C′ is as small as desired, and it follows then from
Theorem 2.1 that we can pick a function y ∈ G1,2([−1,1]× [t1, t2]) satisfying (2.1)-(2.3). Using again
Proposition 3.1, we infer that ∂ k

x y(0,τ) = ak = ∂ k
x y0(0) for all k≥ 0, and hence (3.26) holds. The estimate

(3.27)-(3.28) follow from (2.2)-(2.3) and (3.35)-(3.36) with L = 4H̃ and C′′ = max(C′Cs,MC′Cs). The
proof of Proposition 3.6 is complete. �

4. PROOFS OF THE MAIN RESULTS.

Let us start with the proof of Theorem 1.1. Let R > R̂ = 4e(2e)−1
and let Ĉ be (for the moment) the

constant C̃ given by Proposition 3.6. Pick any y0,y1 ∈ RR,Ĉ. We infer from Proposition 3.6 applied
with [t1, t2] = [0,T ] and τ = 0 (resp. τ = T ) the existence of two functions ŷ, ỹ ∈ G1,2([−1,1]× [0,T ])
satisfying (2.1) and such that

ŷ(x,0) = y0(x) and ỹ(x,T ) = y1(x), ∀x ∈ [−1,1].

Let ρ ∈C∞(R) be such that

ρ(t) =

{
1 if t ≤ T

4 ,

0 if t ≥ 3T
4 ,

and ρ|[0,T ] ∈ G
3
2 ([0,T ]). Let

g0(t) = ρ(t)ŷ(0, t)+(1−ρ(t))ỹ(0, t), t ∈ [0,T ],
g1(t) = ρ(t)∂xŷ(0, t)+(1−ρ(t))∂xỹ(0, t), t ∈ [0,T ].

Then by [17, Lemma 3.7] g0,g1 ∈ G2([0,T ]) and using (3.27)-(3.28) and picking a smaller value of Ĉ
if necessary, we can assume that (2.4) is satisfied with R = 1/L. It follows then from Theorem 2.1 that
there exists a solution y ∈ G1,2([−1,1]× [0,T ]) of (2.1)-(2.3). The control inputs h−1 and h1 are defined
by using (1.2)-(1.3). Then y satisfies (1.1)-(1.4) together with y(x,T ) = y1(x) for x ∈ [−1,1]. Indeed,
since ρ(t) = 0 for t > 3T/4, we have

∂
n
t y(0,T ) = g(n)0 (T ) = ∂

n
t ỹ(0,T ), ∀n ∈ N,

∂x∂
n
t y(0,T ) = g(n)1 (T ) = ∂x∂

n
t ỹ(0,T ), ∀n ∈ N.
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It follows then from Proposition 3.1 that ∂ n
x y(0,T ) = ∂ n

x ỹ(0,T ) = ∂ n
x y1(0) for all n ∈ N, and hence

y(.,T ) = y1. The proof of (1.4) is similar. The proof of Theorem 1.1 is achieved. �

Let us now proceed to the proof of Corollary 1.2. Pick any solution y = y(x, t) for x ∈ [−1,1] and
t ∈ [t1, t2] of (3.1), and set y0(x) = y(x,τ) where τ ∈ [t1, t2]. Assume that y0(−x) =−y0(x) for x∈ [−1,1].
The following claims are needed.

CLAIM 1. For all n ≥ 0, there exists a smooth function Ĥn such that we have ∂ n
x [∂

2
x y+ f (x,y,∂xy)] =

Ĥn(x,y,∂xy, ...,∂ n+2
x y), where

Ĥn(−x,−y0,y1,−y2, ...,(−1)n+1yn+2) = (−1)n+1Ĥn(x,y0,y1, ...,yn+2).

The proof is by induction on n≥ 0. Claim 1 is obvious for n= 0 (take Ĥ0(x,y0,y1,y2) = y2+ f (x,y0,y1)),
and if it is true for some n ∈ N, then

∂
n+1
x [∂ 2

x y+ f (x,y,∂xy)] = ∂x∂
n
x [∂

2
x y+ f (x,y,∂xy)]

= ∂x[Ĥn(x,y,∂xy, ...,∂ n+2
x y)]

= ∂xĤn(x,y,∂xy, ...,∂ n+2
x y)+

n+2

∑
k=0

∂yk Ĥn(x,y,∂xy, ...,∂ n+2
x y)∂ k+1

x y

=: Ĥn+1(x,y,∂xy, ...,∂ n+2
x y,∂ n+3

x y).

Then it can be seen that

Ĥn+1(−x,−y0,y1,−y2, ...,(−1)n+1yn+2,(−1)n+2yn+3) = (−1)n+2Ĥn+1(x,y0,y1, ...,yn+3).

Our second claim is concerned with the function Hn in Lemma 3.2.

CLAIM 2. For all n≥ 1 we have Hn(−x,−y0,y1, ....,(−1)2n−1y2n−1) =−Hn(x,y0,y1, ...,y2n−1).
We prove Claim 2 by induction on n≥ 1. For n = 1, the result is obvious, for H1(x,y0,y1) = f (x,y0,y1).
Assume the result true at rank n−1≥ 1. Then we infer from (3.4) and (3.6) that

Hn(x,y,∂xy, ...,∂ 2n−1
x y) = ∂

2n−2
x [∂ 2

x y+ f (x,y,∂xy)]−∂
2n
x y

+
2n−3

∑
k=0

∂Hn−1

∂yk
(x,y,∂xy, ...,∂ 2n−3

x y)∂ k
x (∂

2
x y+ f (x,y,∂xy))

= Ĥ2n−2(x,y,∂xy, ...,∂ 2n
x y)−∂

2n
x y

+
2n−3

∑
k=0

∂Hn−1

∂yk
(x,y,∂xy, ...,∂ 2n−3

x y)Ĥk(x,y,∂xy, ...,∂ k+2
x y).

Using Claim 1 and the induction hypothesis, one readily sees that

Hn(−x,−y0,y1, ....,(−1)2n−1y2n−1) =−Hn(x,y0,y1, ...,y2n−1).

Claim 2 is proved.

CLAIM 3. ∂ n
t y(0,τ) = 0 ∀n ∈ N.
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Note that the result is true for n = 0, for y(0,τ) = y0(0) = 0. By Claim 2, we have

∂
n
t y(0,τ) = ∂

2n
x y(0,τ)+Hn(0,y(0,τ),∂xy(0,τ), ...,∂ 2n−1

x y(0,τ))

= ∂
2n
x y0(0)+Hn(0,y0(0),∂xy0(0), ...,∂ 2n−1

x y0(0)).

It is clear that the function ∂ 2n
x y0 is odd, and it follows from Claim 2 that the function

x→ Hn(x,y0(x),∂xy0(x), ...,∂ 2n−1
x y0(x))

is odd as well. It follows that ∂ n
t y(0,τ) = 0. The proof of Claim 3 is achieved.

Let us go back to the proof of Corollary 1.2. Let us show that ŷ(0, t) = ỹ(0, t) = 0 for all t ∈ [0,T ]. Let
us consider ŷ(0, t) only, the property for ỹ(0, t) being similar. The function ŷ is given by Proposition 3.6.
But in the proof of Proposition 3.6, as dn = ∂tyn(0,τ) = 0 for all n ∈ N, it is sufficient to pick g0(t) = 0
for all t ∈ [0,T ], so that ŷ(0, t) = 0 for t ∈ [0,T ]. Finally, the function y= y(x, t) for (x, t)∈ [−1,1]× [0,T ]
given by Theorem 1.1 yields by restriction to [0,1]× [0,T ] the solution of the control problem (1.10)-
(1.13). �

APPENDIX: GEVREY REGULARITY OF THE SOLUTION OF (2.1)-(2.3) PROVIDED IN THEOREM 2.1

Assume that f satisfies (1.5)-(1.8). Let us show that y ∈ G1,2([−1,1]× [t1, t2]). Pick any numbers
R1,R2 such that 4/e < R1 < R2, and let us prove that there exists some constant M > 0 such that (2.5)
holds. To this end, picking any µ > 3, we prove by induction on l ∈ N that

|∂ k
x ∂

n
t y(x, t)| ≤ Cl

(2n+ k)!
Rk

1R2n
2 (2n+ k+1)µ

∀(x, t) ∈ [−1,1]× [t1, t2], ∀n ∈ N, (4.1)

for l ∈ N and k ∈ {2l,2l +1}, with supl∈NCl < ∞. Let us start with l = 0. Then (4.1) reads

|∂ n
t y(x, t)| ≤ C0

(2n)!
R2n

2 (2n+1)µ
, (4.2)

|∂x∂
n
t y(x, t)| ≤ C0

(2n+1)!
R1R2n

2 (2n+2)µ
(4.3)

for (x, t) ∈ [−1,1]× [t1, t2] and n ∈ N.
We already know that y ∈C∞([−1,1]× [t1, t2]) and that (y,∂xy) ∈C([−1,1],Xs0) for some s0 ∈ (0,1),

i.e. (y,∂xy) ∈ C([−1,1],XL0) with L0 = L(s0) = e2(1−s0)L1 ≤ e2L1 < (e/2)2. Thus we have for some
constant C > 0 and for all n ∈ N and all (x, t) ∈ [−1,1]× [t1, t2],

|∂ n+1
t y(x, t)| ≤ C L|n−

1
2 |+1

0 Γ(n+
1
2
)2(1+n)−2,

|∂x∂
n+1
t y(x, t)| ≤ C Ln+1

0 (n!)2(1+n)−2.

Using the estimate Γ(n+ 1
2) ∼ Γ(n+ 1)(n+ 1

2)
− 1

2 and the estimate (n!)2 ∼
√

πn(2n)!/22n that follows
from Stirling formula, we infer the existence of a universal constant C0 > 0 such that (4.2)-(4.3) hold for
some constants R1,R2 with 4/e < R1 < R2 <

√
4/L0.
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Assume now that (4.1) is true for all k ∈ {0,1, ...,2l+1} for some l ∈ N. Let us pick k ∈ {2l,2l +1},
and let us check that (4.1) is true for k+2 ∈ {2l +2,2l +3}. Then

|∂ k+2
x ∂

n
t y(x, t)| = |∂ k

x ∂
n
t ∂

2
x y|

= |∂ k
x ∂

n
t (∂ty− f (x,y,∂xy)|

≤ |∂ k
x ∂

n+1
t y|+ ∑

p≥1
|∂ k

x ∂
n
t (Ap,0(x)yp)|+ ∑

q≥1
∑
p≥0
|∂ k

x ∂
n
t (Ap,q(x)yp(∂xy)q)|

=: I1 + I2 + I3.

Then

I1 ≤Cl
(2n+2+ k)!

Rk
1R2n+2

2 (2n+ k+3)µ
=Cl

(
R1

R2

)2 (2n+2+ k)!
Rk+2

1 R2n
2 (2n+ k+3)µ

·

On the other hand, we have as in the proof of Proposition 3.3 that for some positive constant K = K(µ)

|∂ k
x ∂

n
t (Ap,0(x)yp)| ≤

CCp
l K p(2n+ k)!

Rk
1R2n

2 (2n+ k+1)µbp
0
,

|∂ k
x ∂

n
t (Ap,q(x)yp(∂xy)q)| ≤

CCp+q
l K p+q(2n+ k+1)!

Rk
1R2n

2 (2n+ k+1)µbp
0bq

1Rq
1
∀q≥ 1.

This yields

I2 + I3 ≤ ∑
p≥1

CCp
l K p(2n+ k)!

Rk
1R2n

2 (2n+ k+1)µbp
0
+ ∑

q≥1
∑
p≥0

CCp+q
l K p+q(2n+ k+1)!

Rk
1R2n

2 (2n+ k+1)µbp
0bq

1Rq
1
·

The desired estimate

|∂ k+2
x ∂

n
t y(x, t)| ≤Cl+1

(2n+ k+2)!
Rk+2

1 R2n
2 (2n+ k+3)µ

(4.4)

is satisfied provided that(
R1

R2

)2

Cl +CR2
1 ∑

p≥1

1
(2n+ k+1)(2n+ k+2)

(
2n+ k+3
2n+ k+1

)µ(ClK
b0

)p

+CR2
1 ∑

q≥1
∑
p≥0

1
2n+ k+2

(
2n+ k+3
2n+ k+1

)µ(ClK
b0

)p( ClK
b1R1

)q

≤Cl+1· (4.5)

We assume that for some number δ ∈ (0,1),

Cl ≤ δ ·min(
b0

K
,
b1R1

K
). (4.6)

We set

Cl+1 := λlCl := [

(
R1

R2

)2

+
K
b0

CR2
1

(2l +1)(2l +2)
3µ

1−δ
+

K
b1

CR1

2l +2
3µ

(1−δ )2 ]Cl.

With this choice, (4.5) and (4.4) are satisfied. Since R1 < R2, there exist some number l0 ∈ N such that
λl ≤ 1 (and hence Cl+1 ≤Cl) for l ≥ l0. For (4.6) to be satisfied for all l ≥ 0, it remains then to choose
C0 sufficiently small so that

max(C0,λ0C0,λ1λ0C0, ....,λl0−1 · · ·λ0C0)≤ δ ·min(
b0

K
,
b1R1

K
)·
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