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ABSTRACT. In this article, we prove a local controllability result for a general class of 1D

partial

differential equations on the interval (0,1). The PDEs we consider take the form

Ny = CudXy + f(2,y,0uy, ..., 02 'y) where 1 < N < M, (i € C*, and f is some linear or
nonlinear term of lower order. In this context, we prove a local controllability result between
states that are analytic functions. If some boundary conditions are prescribed, a similar local
controllability result holds between analytic functions satisfying some compatibility conditions
that are natural for the existence of smooth solutions of the considered PDE. The proof is per-
formed by studying a nonlinear Cauchy problem in the spatial variable with data in some spaces
of Gevrey functions and by investigating the relationship between the jet of space derivatives and
the jet of time derivatives. We give various examples of applications, including the (good and
bad) Boussinesq equation, the Ginzburg-Landau equation, the Kuramoto-Sivashinsky equation
and the Korteweg-de Vries equation.
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1. INTRODUCTION
For M, N € N* := N\ {0} fixed with M > N and y a function defined on [0,1] x [0, 7], with

value in R, we consider the abstract dynamical system
Ny =Py+ f(z,y,00y,...08 " ty), z€l0,1], te[0,T], (1.1)
BY*(0,t) =0, te[0,T7],
Y!(@,0) = Yo(z), = €[0,1],

with
Yx(x7t) = (y(x7t)7a$y<x7t)7 "’8.’57\471y(x7 t))’ (1'4)
Yi(z,t) = (y(x,t), Oy(x, t), ...,8,fv_1y(m,t)), (1.5)
M
Pi=> (o, (1.6)
j=0

where (; € R for 0 < j < M and (yy # 0, Yy € C([0,1])Y, B € R"™*M is a fixed real matrix
of size v X M, and v € N is the number of boundary conditions that we require to be equal to
zero. (If v = 0, it indicates that there is no boundary condition at = 0.) Finally, we assume
f e C®(RM+1R) and f is analytic with respect to all its arguments in a neighborhood of Ogar-1.
More precisely, we assume that

f(x,O,...,O) :0, Vo € (—4,4)’ (17)
and
fag) = > ania’ = 3 g’y (1.8)
(pyr)ENM+1 (F,r)ENM+1

with g = (y()vyla"’?yM—l)? (.’Z,g) € (_474)M+17 and ﬁ = (p07”'7pM—1) € NM where the
coefficients aj, are such that

Ca — M
Ll 2
lag,| < I Vr e N, Vpe NV, (1.9)
for some constants
Cy >0, b>4, and by > 4. (1.10)

Note that ag, = 0 for all » € N by (1.7)). For p'c NM | we define

Az(zx) == Zaﬁy,ﬂaf’", |z| < bo.
reN



EXACT CONTROLLABILITY OF ANISOTROPIC 1D PDE 3

We infer from and (| . ) that

f(x,y) = > A= > Ayl (1.11)
7 eNM 7eNM
|5l >0 5] > 0
C, 1
| ( )’ = bm |z|’ |:L'| < b2- (1.12)
ba

Among the many physically relevant instances of (1.1)) satisfying (1.7])-(1.10]), we can mention
(1) the Korteweg-de Vries (KdV) equation

Oy = O3y + Ouy + yduy;
(2) the “good” (=) or “bad” (4) Boussinesq equation
0fy = +0py + Oy — 02 (y°);
(3) the Kuramoto-Sivashinsky (KS) equation
ey + Ogy + Oy + ydsy = 0.

With a few modifications in the framework, we can also treat

(4) the complex Ginzburg-Landau (GL) equation
Oy = e y+e|ylly where 6,9 €R.

The exact controllability result has to be stated in a space of analytic functions (see [25] for the
linear heat equation). For given R > 1 and C' > 0, we denote by N/ r,c and Rp ¢ the sets

n!
Nro = {(an)n>0 e CVlay,| < Cpr ¥ > 0} cch, (1.13)

Rrc = { :[-1,1] = C: F(an)n>0 € Nr,c with z(z Zan E Ve e [-1 ]} (1.14)

Let us denote by H(2) the space of holomorphic functions in Q, and let us introduce the Hardy
space Hg = H(B(0,R)) N L>(B(0, R)), which is a Banach space for the norm || - ||z (B(0,r))
(see [33]). Let
Brc:={z:[-1,1] = C; 3f € HE, [ fllzB0,r) < Cs fi[-1,1 = 2}-
Observe that
Brc C Rr,c C B,,,C(l_%)fl forl<r< Rand C > 0.
For the proof, see below Lemma,

We say that a function h € C*°([t1,t2]) is Gevrey of order s > 0 on [t1,ts], and we write
h € G*([t1,t2]), if there exist some positive constants C, R such that

1\s
0Ph(t)] < C(};z . Vte[ty,ta], Vp €N,
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Similarly, we say that a function y € C°([z1, x2] X [t1,t2]) is Gevrey of order sy in x and s9 in t,
with s1, 89 > 0, and we write y € G*2%2([z1, x2] X [t1,t2]), if there exist some positive constants
C, R1, Ry such that

(p1!)°* (p2!)*2
RIRE

The suitable time Gevrey regularity in our situation is

|oPr o2y (z,t)| < C V(z,t) € [z1,22] X [t1, 2], Y(p1,p2) € N2 (1.15)

M
Ai=— > 1.
N

Before giving our results, we need to define a set of compatibility conditions. The initial data
need to belong to a specific set to ensure the existence of smooth solutions issuing from these
initial data. Indeed, the equation imposes some relations between the time derivatives of the
solutions and the space derivatives of the initial data. Namely, we have the following property
whose proof is constructive and mainly consists in taking derivatives in the PDE.

Lemma 1.1. For any | € N, there exist a number m = m(l) € N and a smooth application
Jp: [=1,1] x (RM)™O+1 5 RM gych that for any solution y € C®°([—1,1] x [t1,t2]) of 9Ny =
Py + f(xay7awy7 -~-78£471y), we have

AY® = Jy(x, Y, 0,YE, ..., 0mY"))  on [—1,1] X [t1, ta]. (1.16)

Definition 1. Let J;, I € N, be the vector functions defined in Lemma [I.1, We define the
following compatibility set

c:{necmmuDM BJi(z, Yo, 8, Y, ..., 9D Yy)

—0, WEN}. (1.17)

=0
The compatibility set C plays an important role in the exact controllability of system —.
Since the PDE (|1.1]) is time-invariant, we can check that the condition is the same at any
time. In particular
e for any smooth solution y of (L.1)-(L.2)), we have that Y*(t) € C for any t € [0,T]. (See
below Lemma [4.4] )
e if y is a smooth solution to such that Y*(t) € C for any t € [0,T], then y satisfies
the boundary condition (L.2). (See below Lemma [4.5])
If we want to consider the boundary controllability of the PDE ({1.1)) subject to the boundary
conditions , it is therefore very natural to consider initial and final data in the space C. We
will derive a controllability result by considering small amplitude analytic functions in C.
The main result in this paper is the following local exact controllability result.

Theorem 1.2. Let f = f(z,¥) be as in — with b,by > R = 4MeP)™" Let R > R
and T > 0. Then there exists some number C > 0 such that for all Yy,Y; € (RR,C‘)N ne,
there ezists a smooth solution y of (L.1)-(1.3)) defined for all (z,t) € [0,1] x [0, T] and satisfying
Yi(z,T) = Y1(x) for all z € [0,1]. Furthermore, we have y € GY*([0,1] x [0,T)).

We stress that Theorem can be applied to any PDE with less derivatives in time than
in space, even if the corresponding initial boundary value problem is not well-posed. For
instance, the backward heat equation 0,y = —Ogy and the bad Boussinesq equation ng =
Oy + 0%y — 02(y?) are concerned.



EXACT CONTROLLABILITY OF ANISOTROPIC 1D PDE 5

It is difficult in general to describe explicitly C (see Section for the KdV equation). However,
the set C can be precisely described in the following cases:
e If B =0 (i.e. no boundary conditions at = = 0), then C = C°°([0,1])"V (i.e. all smooth
initial data are allowed)
e If f =0 (linear PDE with constant coefficients), then the compatibility set reads

C= {Yg = (Y0, Y15+ > Ul -y YN—1) € C(]0,1])" such that BPjYOI’l(O) =0,
VjeN,Vl:O,...,N—l}

when we denoted Yox’l(:n) = (y(x),...,0M =1y (x)) as in (T.4). We refer to Proposition
for a precise statement and for the proof.

e if M € 2N and P = 2?4:/()2 C2ja§] (i.e. P contains only even derivatives), some parity
arguments can be used under some symmetry assumptions about the non-linearity, as it
is shown in the following proposition.

Proposition 1.3. Assume that M € 2N and P = Zjﬂi/oz ng(?%j.

(1) If the boundary conditions BY*(0,t) = 0 reduce to 93y(0,t) = 0 for 2j < M — 1, and if
for all z € [-1,1] and all (yo, ..., ynr) € (—4,4)MF1 we have
f(_xv —Yo,-- - (_I)H—lyia <o 7yM—1) = _f('ray()v s 7yM—1) (118)
then

C={Yo=(o,y1, - yn-1) € C([0,1)Y;  9y(0)=0 VjeN, vi=0,..N -1}

(2) If the boundary conditions BY*(0,t) = 0 reduce to Ogjﬂy((),t) =0for2j+1<M-1,
and if for all x € [—1,1] and all (yo, ..., ynr) € (—4,4)M+1 we have

f=z,90, -, (=D)'yi, ..., —ynm—1) = f(2, 90, -, Yrr—1) (1.19)
then

C={Yo= (Yo, y1, - yn—1) € C=([0,1]); 0¥y (0)=0, VjeN,VI=0,..,N—1}.

Note that in the last two cases, the intersection of C with the set of analytic functions is a
set of functions that admit odd (respectively even) extensions. Note also that the “good” and
“bad” Boussinesq equations satisfy only (1.19]), while the Ginzburg-Landau equation satisfies

both (L.18) and (L.19).

Remark 1. (1) The constant R = 4MePa™ s probably not optimal, but we aimed to
provide an explicit (reasonable) constant. For the linear heat equation, it is known that
the optimal constant is R := 1 with a diamond-shaped domain of analyticity (see [4, 13,
14]).

(2) If f is linear in the variables ¥ = (yo,...,ynm—1), then the PDE (1.1)) is linear and the
smallness assumption on the amplitudeA of the initial and final data can be removed, as
long as Y°, Y € (R, 5)NNC for some C € (0, +00). In particular, for f(z,§) =V (z)yo,
Theorem applies for any equation of the form ONy = Py+V (z)y where V is analytic
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in a sufficiently large ball. The compatibility set C may depend on V. Note however that
both conditions and (1.19) are satisfied if V' is even (i.e. V(z) = V(—z) for
all z € [-1,1]). Theorem plies for instance for the linear heat equation Oy =
02y + V (x)y without any smallness assumption about the potential V (x), giving that the
reachable space from zero contains functions that are analytic in some sufficiently large
ball. See [§] for a more precise result about the reachable space, but under a smallness
assumption about the potential.

Note also that the most relevant term of P is actually the higher order term CM@]CV[,
since linear lower order terms can be put either in P or in f(z,y,0zy, ...,0M 1y). Yet,
we have chosen to keep this form because C is easily determined for a linear PDE with
constant coefficients.

(3) The definition of C seems to depend on some choice of the functions Jlk. Howewver, the
proof of Lemmal[l.1]is constructive and therefore it provides an algorithm to define these
functions. Moreover, it is possible (see Lemma below) to prove that if two functions
Jlk satisfy the property for all solution y of , then they coincide in the product
of [<1,1] and some small ball B(0,¢) of (RN)™D+ which is the domain where we are
going to use it. In any case, the previous property implies that the functions Jl]’C are
unique in the class of analytic functions.

(4) The paper has been written for a quite general PDE. However, it might certainly be
possible to consider more general PDEs, containing for instance time derivatives in the
lower order terms, or in the nonlinearity, or some time-dependent coefficients. We
did not consider these cases because it would render the proof more technical and more

difficult to read.

The paper is organized as follows. In Section [2, we apply our main results to the Korteweg de-
Vries equation, the Boussinesq equation, the Ginzbourg-Landau equation, and the Kuramoto-
Sivashinsky equation. Section [3]is concerned with the existence and uniqueness results for the
Cauchy problem in the z-variable (Theorem [3.1)). The relationship between the jet of space
derivatives and the jet of time derivatives at some point (jet analysis) for a solution of is
studied in Section 4} In particular, we show that the nonlinear equation ([I.1]) can be (locally)
solved forward and backward if the initial data Yy can be extended as an analytic function in
some ball of C (Proposition . Finally, the proofs of Theorem and Proposition are
displayed in Section

2. EXAMPLES

In this section, we list a few examples of equations coming from physical models for which our
general result applies. The list is of course not exhaustive. Also, we limited ourselves to some
models that contain a regularizing effect coming from a parabolic behavior or from smoothing
boundary conditions. It is not that Theorem is limited to this kind of problems, but for
conservative equations (like nonlinear Schrodinger equations, KAV with some specific boundary
conditions as in [3I], [3] among other works), it is quite likely (and very often it has already
been proved) that the controllability can be obtained in much lower regularity. Notice that even
in this context, our result can be interesting if we are looking for a very regular control since
the control we build is in some Gevrey class.
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2.1. The Korteweg-de Vries equation. In this section, we are concerned with the control-
lability of the Korteweg-de Vries (KdV) equation:

Oy = By + 0y + 90y, x€[0,1], tel0,T], (2.1)
y(1,t) = h(t), te][0,T], (2.2)

y(0,t) =0, tel0,T], (2.3)

0.y(0,t) =0, tel0,T], (2.4)
y(z,0)=1"(z), xe€l0,1], (2.5)

which adapts to our abstract setting (L.I)-(L.3) with N = 1, M = 3 (hence A = 3), P =
03 + 0, and f(z,y,0.y,0%y) = yOzy. Thus Y* = y and Y* = (y,0.y,0%y). Note that the
change of variables © — 1 — x transforms into the classical form of the KdV equation
Oy + Oy + 0y + ydy = 0, and (2.2)-(2.4) into the boundary conditions y(0,¢) = h(t) and
y(1,t) = Oxy(1,t) = 0.

It is well-known [10, BI] that system — is null controllable, and also controllable to
the trajectories. Due to the smoothing effect, an exact controllability cannot hold in L?(0,1).
The reachable space for the linearized KdV equation dyy = 02y + 0,y supplemented with the
boundary condlmons was described in [22]

By Theorem |1 for any T > 0 and any R > R = 12¢B9)7" , there is some number C' > 0
such that for any y°,7° € Rpe NC, there exists a solution y € G'3([0,1] x [0,T]) of (2.1)-

[2.5) satisfying y(z,T) = 3°(z) for all x € [0,1]. Let us now describe more precisely the set
C defined in (L.17). Denote J; = (Ji1,J12,J13). Recall that C is given by the conditions
BJ(x, yo,aggyg,....,a;n(l)yo)’ .= 0 for all I > 0, where B = < é (1) 8 ) The following
Lemma provides a more precise version of Lemma [1.1| adapted to KdV.

Lemma 2.1. For anyl € N, m(l) = 31 + 2 and there exists a smooth map H; : R®*~1 = R such
that

Jii = yu+ Hi(yo,y1, -, ¥31-2), (2.6)
312
3H
Ji2 = Y341+ 2{: 0 (Y0, Y1, - Y31-2)Yit1, (2.7)
=0
31—2 31—2
aH 0%H,
Jiz = ysie2+ j{: Yisoo Ysi0)Yita, + (40, Y15 s Ysi—2)Yj+1¥it1- (2.8)
Oy =0 0y, 0y;

Proof. Clearly Jo1 = yo, Jo2 = y1, Jo3 = y2, so that m(0) = 2 and Hy = 0. From ({2.1)), we
infer that

OOy = Oy + 0oy + Yy + (Osy)*,
0%y = Oy + 0oy + yody + 30,y92y.
Therefore m(1) = 5 with
Jii=ys+ v +voyr, Ji2=va+ye+vove +yi, Jiz=ys+ Y3+ voys + 3yiye.
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Thus Hi(yo,y1) = y1 + Yoy1. Assume now that m(l) = 3l + 2 and that (2.6])-(2.8) hold. Then

8£+1y = 8t<]l,1($7yaa$y7 "'782l+2y)
= 0,(0%y + Hy(y, 0wy, ..., 02 %y))
3l—-2

OH -
= 09y + ) Ty,l(y, 0y, -, 03 2y)0,04y.
i=0 7

Since
2 i+1 .
i ST N i+ 1\ gk iti—k
k=0
we obtain

L 31
ot — Bt 3041 - 35+1 k. o3l+1—k
iy = Py [0y + 5 Z Oyyds ' hy

8-2 L it
+ z O 02O 0 ) ( ) a’;;;a;*l’“y)) (29)
It follows that Jiy11 = Y3143 + Hiy1(Y0, Y1, -, Y3141) With
| 31
3l+1
Hip o= ysipr+ 5 Z < ) YkY3l+1—k

31— 2 1 i+1 i1
+Z 3/07?/17- s Y3-2) (Yivs + Yir1 + 5 Z( k )ykyz’+1—k)-

Thus (2.6) holds at the step [ + 1. Taking the derivative in z in (2.9) gives (2.7) and (2.8) at
the rank [ + 1. Finally m(l + 1) = 3l + 5. O

Thus C is the set of the functions yg € C*°([0, 1]) such that J;; = J;o =0 for all [ > 0, i.e.
y(0) = 9,y(0) =0,

03y(0) = —H(y, 0y, ..,00 2y)| , V€N,
31—2
0H _ ; .
Ry (0) = — <Z T;(y,axy, O 2y)a;,+1y> ., VEN
i=0 7 -
Writing yo(z) =Y .7, an%, we obtain the following conditions for the coefficients a,:
ap=a; =0, (2.10)
ag = —Hi(ag, a1, ..., a31-2), VI €N, (2.11)
31—2
OH
ag4] = — Z 87%(0[0, [ ()431_2)0@_;,_1, vl € N*. (2.12)

i=0 v



EXACT CONTROLLABILITY OF ANISOTROPIC 1D PDE 9

We conclude that
RpeNC = {z :[=1,1] = C: F(ap)n>o0 € NR,C' such that (2.10))-(2.12]) hold and

z(x) = Zan%, Vo e [-1, 1]} .
n=0

Remark 2. The condition

n!
Rn
has to be satisfied for all n € N. 1t is likely (but still to be proved) that if is satisfied
for the subsequence (asi12)i>0, eventually for a small constant C, it is also satisfied for the
whole sequence (o )n>0 (the ‘two other subsequences (a31)1>0 and (az141)i>0 being defined due to

(2.10)-(2.12) ). If it is indeed the case, then the coefficients asir2 (I € N) can be chosen “freely”
provided that they satisfy (2.13)), and hence the set R, »NC looks like a nonlinear submanifold.

la,| < C (2.13)

Theorem 2.2. Let R > R := 12¢B97" and T > 0. Then there exists some number C' > 0
such that for all functions y°, 3° € Ry o NC, there exist functions y € G3((0,1] x [0,T]) and

h € G3([0,T)) satisfying .1)-[R.5) together with y(z,T) = 3°(x) for all x € [0,1].

2.2. Boussinesq equation. We consider the issue of the exact controllability of two systems
involving the (good or bad) Boussinesq equation.

2.2.1. Neumann boundary conditions. We first consider the system

Ry =0y +0%y—0%y?), x€l0,1], telo0,T],
9:y(0,t) =0, t € 10,77,
axy(la t) - ’U(t), t € [O7T]a
23y(0,t) =0, t €[0,77, (2.14)
PBy(1,t) = w(t), t€0,7),
y(2,0) =y°x), z € [0,1],
L yt(,0) :yl(w)’ z € [0,1]

If the sign in + is +, the first equation in is called the bad Boussinesq equation which
is known to be severely ill-posed, even for the linear part. It would therefore be difficult to
obtain any controllability result with the standard methods. We shall obtain the following exact
controllability result.

Theorem 2.3. Let R > R := 16e29™" and T > 0. Then there exists some number C > 0
such that for all pairs of functions (y°,y*), (7%, 9*) € (R &)? which are even with respect to 0,
there exist functions y € G42([0,1] x [0,T]) and v,w € G*([0,T)) satisfying (2.14) together with
y(z,T) = y°(x) and yi(x,T) = y*(z) for all z € [0, 1].

Proof of Theorem [2.3. We apply Theorem together with Proposition with A = 4/2 =
2. Note that the control inputs v,w are just taken as traces of the constructed solution y €
G2([0,1] x [0,T]). The regularity of v, w then follows from (T.15]).
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We need to check that the non-linearity satisfies the right assumption. Since 92(y*) = 2 (y02y + (9:y)?),
the non-linearity reads f(z,yo,y1,y2,y3) = —2(voy2 + y3). As

F(=2,90, —y1, 92, —y3) = —2(voy2 + (=v1)*) = (2,90, Y1, Y2, Y3),

we see that condition in Prop051t10nls fulfilled. Finally, we notice that for any function
h € Rp.eé h is even if and only if 0, J+1h( 0) =0 for any j € N. O

2.2.2. Dirichlet boundary conditions. If we keep the non-linearity f(x,y, 9.y, 02y, 02y) = —02(y?),
then

F(=2,—Y0, y1, Y2, ¥3) = —2(¥oy2 + y1) = F(2, Y0, Y1, Y2, Y3),

so that condition ([1.18)) in Proposition is not fulfilled. Theorem may be applied, but the
determination of the compatibility set C is not obvious.

We consider instead a different non-linearity, namely f(z,vy, 0.y, 0%y, d3y) = —0.(y?). More
precisely, we consider the system
( O}y =+0y+0%y—0,(y?), =x€l0,1], tel0,T),
y(0,t) =0, te 0,7,
y(Lt) - ’U(t), te [O,T],
02y(0,t) =0, t€[0,7T), (2.15)
02y(1,t) = w(t), t €0,7T),
y(@,0) = y°(), ze0,1],
yt(xvo) :y1($)7 LS [07 1]

Theorem 2.4. Let R > R := 169" and T > 0. Then there exists some number C' > 0
such that for all pairs of functions (y°,y%), (¥°,7%) € (RRC)2 which are odd with respect to 0,

there exist functions y € G2([0,1] x [0,T]) and v,w € GQ([O T)) satisfying (2.15) together with
y(@.T) = () and (2, T) = §(2) for all z € [0,1].

Proof of Theorem [2.4, The proof is the same as for Theorem Since 9,(y?) = 2y0d,y, the
non-linearity reads f(x,yo,y1,y2,y3) = —2yoy1. From
(=2, =Y0,y1, —¥2,y3) = 290y1 = — f(, Y0, Y1, Y2, ¥3),

we infer that condition (1.18]) in Proposition is fulfilled. As a function h € R » is odd if
and only if 8% h(0) = 0 for any j € N, the conclusion follows at once. O

2.3. The complex Ginzburg-Landau equation. We are concerned with the controllability
of the complex Ginzburg-Landau equation with parameters 6, ¢ € R. We begin with the control
problem with Dirichlet boundary conditions:

By =Ryt doyly, xel0,1], te0T),
y(O,t) =0, te [O,T],
y(L1) = (1), t € [0,7], (2.16)
y(x,()) = yO(x) WS [07 1]
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Theorem 2.5. Let R > R := 8¢29™" and T > 0. Then there exists some number C' > 0
such that for all functions vy°, y° € Rp o which are odd with respect to 0, there exist y €

G12(0,1] x [0,T)) and v € G2([0,T)) satisfying ([2.16) together with y(z,T) = 3°(x) for all
x € [0,1].

The control problem with Neumann boundary conditions reads

By =2yt deyPy, ze0,1], teloT),
y(07 t) - 07 t E [07 T]’
Qey(1,1) = v(t), te (0,7, (2.17)
y(z,0) = yo(:v) x € 10,1]

Theorem 2.6. Let R > R := 8297 and T > 0. Then there exists some number C' > 0
such that for all functions y°, y° € Rp & which are even with respect to 0, there exist y €
G12(0,1] x [0,T)) and v € G2([0,T)) satisfying [2.17) together with y(z,T) = 3°(x) for all
x € [0,1].

The proof follows the previous cases closely, except that they are complex-valued functions
and the nonlinearity |y|?y = 3?7 cannot be written as a sum (finite or infinite) of powers of
the variable y. We describe in Section [7] the modifications that must be performed to get the
expected result.

Remark 3. It might seem problematic to use the nonlinearity f(z) = |z|>z which is not holo-
morphic. The solution we construct satisfies y(-,t) € RR,C‘? which means that it is real ana-
lytic on [—1,1] for any t € [0,T], in the sense that it agrees with its Taylor expansion at 0,
which is enough for the proof we are doing. Indeed, as noticed in Lemma 0.1, it implies that
it has a holomorphic extension z — y(z,t) for z € Bc(0, R) for some R > 0. The application
r € [-1,1] = |y(z,t)>y(x,t) is also real analytic and also has a holomorphic extension. Yet,
this extension does not coincide with |y(z,t)|*y(z,t). In particular, the solution can be extended
to Be(0, R) x [0,T] but it is not clear what equation it satisfies on this set. We only know that
the solution satisfies the Ginzburg-Landau equation on [—1,1] x [0,T].

2.4. The Kuramoto-Sivashinsky equation. We investigate the controllability of the Kuramoto-
Sivashinsky (KS) equation with boundary conditions of Dirichlet type:

oy = _a;ly - 3§y — YOy, z€0,1], tel0,T],
y(0,t) =0, t € 0,77,
y(1,t) =o(t), t € 0,7,
2y(0,t) =0, t €0, (2.18)
2y(Lt) = w(b), tefo.7],
y(x,0) =y'(x), z € [0,1].

Theorem 2.7. Let R > R = 16¢“9)™" and T > 0. Then there exists some number C > 0
such that for all functions y°, 3° € Ry ¢ which are odd with respect to 0, there exist functions
y € GY4([0,1] x [0,T]) and v,w € G*([0,T)) satisfying [2.18)) together with y(z,T) = y°(z) for
all z € [0, 1].
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Proof of Theorem[2.7, For A\ = 4/1 = 4, and the non-linearity reads as f(z,yo,v1,%2,93) =
—yoy1. It satisfies

F(=2, =yo, Y1, —y2,y3) = yoyr = —f (@, Y0, Y1, Y2, 3),
which is condition (|1.19)) in Proposition O

The null controllability for the Kuramoto-Sivashinsky equation has been already studied in [II
2, 12}, 18], for different combinations of boundary data, and in the cases where boundary setting
agrees with the setting of , our results are consistent with the known results. However, the
critical set of parameters of diffusion appears only in cases when only one control is considered,
which is not the case in this paper.

2.5. The case of a linear PDE with constant coefficients.

Proposition 2.8. Assume f =0 (linear PDE with constant coefficients). Then
C= {YO = (Yo, Y1, - yn—1) € C([0,1)Y;  (BP*Y®)(0) =0, Yk eN, VI =0,...,N — 1}

where we have denoted Y := (y;,...,0M~1y;) as in (1.4) .

Proof. Using Euclidian division, we are led to compute the application Jyj; defined in Lemma
forany ke Nand [ =0,...,N — 1.

We infer from that ON*Holy = P*9ldly for any k € N, [ = 0,..,N —1 and i € N. In
particular, GtNkHYx = PkOlY® for any k € N, I = 0,..., N — 1, we can define a linear map
Inigr : (RN)EHDM _ RM guch that

JNk-l—l(Yb(O)? e 7a:gk+1)M_1Yb(0)) = (Pkyla Pkaxylv SRR Pkai\/[_lyl)(o)v

for any Yo = (y0,¥1, .-, yn—1) € C®([0,1])"V (denoting yo = y, y; = Olyo for 1 <1 < N —1).
Moreover, for a solution of the equation with initial datum Yj, we have

(PYy, Po,y, ..., PPoY ~1y,)(0) = P*Y™(0). (2.19)

The previous computation gives 9 * ™Y *(0) = Jyp1(Yo(0), - - ,8§k+1)M71§{)(0)). Therefore,
the application Jyi+; by satisfies the property for all solutions. Then, using the
uniqueness of the operators J; (up to adding unnecessary variables) proved in Lemma we
conclude that it is the expected application.

In particular, BJnk+1(Y0(0),- - ,8g(ck+1)M_1Y0(0)) = 0 is equivalent to BP*Y*!(0) = 0 for any
keNand!l=0,...,N —1. O

3. CAUCHY PROBLEM IN THE SPACE VARIABLE

3.1. Statement of the global wellposedness result. Let f = f(x,y0,91, - ,ym—1) be as
in (1.7)-(1.10). We are concerned with the wellposedness of the Cauchy problem:

{ 815\[3/ = Py+ f(:c,y,...,@é\/[_ly), WS [_151]7 t e [tl,tQ],
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for some given functions ko, ..., ky—1 € GM([t1,12]). We denote Ko = (kq, ..., kar—1). Note that
the initial conditions of (3.1]) can be written as Y*(0,t) = Ko(t).

The goal of this section is to prove the following result.

Theorem 3.1. Let P be as in and f = f(z,9) be as in (L7)-(L.10). Let —co < t1 <tz <
+o00 and R > (4N)*, where \ = M/N. Then there exists some numbers C>0,Q>0, Ri,Ry

with 4Me~YM < Ry < Ry satisfying that for all Ko = (ko, ..., ky—1) € G)‘<[t1,t2])M with

(n) [l Ao
|k, () < C R (), i=0,1,..., M —1, n>0, t € [t1,ta], (3.2)
there exists a solution y € G ([—1,1] x [t1,t2]) of (B.1)) satisfying,
(p1 + Ap2
Mﬁ%@@JMSQlﬁmyjKlmm (0,6) € L1 % 1,82, (propa) €N2 (33)

The proof of Theorem will be given after that some preliminary results are established. We
use the notation x! = I'(z + 1) even if = is not an integer.

Remark 4. It is sufficient to prove Theoremfor the unidimensional system , i.e Con-
sidering |Cyr| = 1 and [t1,ts] = [0,t2]. Indeed, the equation 0Ny = Py + f(z,y,...,0M~1y)
is invariant by translation in time, so that we can assume that [t1,ts] = [0,12]. On the other
hand, if |Ca| € (0,+00) \ {1}, we can use the following scaling argument. Set Car = Cr /|l
P .= |Car| 7P and f |Ca| 7Y f. Note that P and f satisfy the expected assumptions with
ICu| = 1. For Ky satisfying (3.2 (B3-2) on [0,t2], define Ko(t) := Ko(|Car|"YNt). Then Ky satisfies
B-2) with |Car| = 1, that is |%§n) ()] < C’% on [0,|Car|V/Nty]. This allows to define a solution
y(x,t) of Jor x € [1,1] and t € [0, |Car|"YNto] associated with P, f and Ko. Then the
function
y(o,t) =G, 10| ¥1), v e[-L1], t€[0.t]
is a solution of associated with P, f and K.
3.2. Abstract existence theorem. We consider a family of Banach spaces (Xs)qe[o,1] satisfy-
ing for 0 < s’ <s<1,
X C Xy, (3.4)
1, < 11, (3.5)

that is, the embedding Xy C X for s’ < s.
We are concerned with an abstract Cauchy problem:

0, U(x) =T(z)U(x), —1<zx<1,
Uo)=0°

where U € X; and (T(a:)) is a family of nonlinear operators with possible loss of
derivatives.
The following result, taken from [20, Theorem 2.2], is a global wellposedness result. It extends

the abstract result in [28| 29] which gives only local solutions.

z€[—1,1]
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Theorem 3.2. Let ¢ € (0,1/4), D >0 and a family (T(z))ye(—1,1] of nonlinear maps from X
to Xy for 0 < s’ < s <1 satisfying
€
M@0y, < 510, (36)
€

IT@)U =T@)Vl]x, < U=V, (3.7)

s—s
for0 <8 <s <1, ze[-11] and UV € X; with |U|y, < D, [|[V|x, < D. Then there
exists a number 0 < n < D such that for any U° € X1 with HUOHX1 <n, there exists a solution
U e C([-1,1], Xs,) for some sy € (0,1) of the integral equation

Ulz) = U9 + /0 U (3.8)

Moreover, we have the estimate

U@y, <€ (1-
where a € (0,1), aso € (a, 1) and Cy > 0 are some constants. In particular, we have

2 \! 1 N
agéO_{_l) HU0HX17 for OSSSSO:i(l_T% ‘£U| Sl

oo
If, in addition, we assume that

for all Uy € X with ||U||x, < D, the map 7 € [-1,1] — T(7)Up € Xy is continuous, (3.9)

alx| -1 a
aoo(l—s)> HUOHXI, for 0<s <1, ]a:\<j’°(1_3)7

nwm&ga@—

then U is the classical solution of

{ 0, U(x) = T)U(x), —-1<z<l1,

U(0) oo (3.10)

Note that we slightly changed the order of the quantifiers for D to the original statement in [20,
Theorem 2.2]. The result is a direct consequence of [20, Proposition 2.3.] where the quantifiers
are written this way.

3.3. Gevrey type functional spaces. We define several A Gevrey spaces for A > 1 (see
[16, [35]) and we follow closely the ideas developed in [20] for the heat equation. We shall take
A= M/N, but for the moment we stay in the generality.

We introduce a variant of the Gamma function of Euler with a parameter a € R given by

279 T(k+1—-a)1+k)72 keN, k>|a+1,
ra(k) = (3.11)
Da(k), keEN, 0<k<|al+1
with
Da(k) = 275(RN)M 1 + k)72, (3.12)

and I" being the usual Gamma function of Euler which is increasing on [2, +00).



EXACT CONTROLLABILITY OF ANISOTROPIC 1D PDE 15
Clearly, I'y o = I'y. Note that for £ > |a| 4+ 1, we have k+1—a > 2 and k+ 1 > 2, so we are in
an interval where I is increasing. Thus we have for all £k € N

Tha(k) <Ta(k), ifa>0, (3.13)

Ta(k) < Taa(k), ifa<O0. (3.14)

For any L > 0, we consider the intermediate space of functions in C*°(K) (where K = [t1, 9]
with —oo < t1 < t3 < 00) such that

’u(k) (t)|
‘U|L’a = te?(L,lI?EN L‘k_“‘PA,a(k)

Note that for a = 0, we recover the spaces defined earlier in [35], and |u|; , = |u|,.

< oQ.

Definition 2. We consider the norm defined in [35] by Yamanaka

Jull, = max {25 ull o e 2°L 7 ] }

and similarly, we define for a € R

el 2= max {2 ] o iy 2°L7 o], }
For L > 0 and 0 < a1 < as, we have
lull .0 < C(Lyar, a2, Ml[ull Vi € G g, (3.15)

Indeed, for £k > ag + 1, we have k+1—a; > k+ 1 — as > 2 where I is increasing so that
T(k+1—az) <T(k+1—a1), and therefore LIF=o2IT) . (k) < Lo~ plk=alr, | (k). We can
obtain a similar inequality for k < as + 1 with different constant which gives then (3.15]).

We define the Banach spaces Gg ., and G% as
Gf’a = {u € C*(K) suchthat [ul,, < oo} (3.16)
and
G} :={u € C®(K) suchthat [ul; < oo}. (3.17)

The space Gg , can be seen as the space of functions Gevrey A with radius L~! with a derivatives.
Roughly, we could think that u € G27 o i D% € G%, even if it is not completely true if a ¢ N.
Note that, as a direct consequence of (3.13])-(3.14]), we have the embeddings G%,a CG}ifa>0
and Gé C Gi’a if a < 0, together with the inequalities

[ull, < max(L? L™%) [lull, ,, if a >0, (3.18)

HuHL’a < max(L* L™) ||lul|,, if a <O. (3.19)
Furthermore, for any a € R and 0 < L < L/, we have the embedding Gﬁ’a c Gy, . With

ullr o < llullgq - (3.20)

The following result [36, Theorem 5.4] will be used several times in the sequel.
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Lemma 3.3. (Algebra property) For L >0
luvll, < llully, loll,  Vu,v0 € G (3.21)

The following result [20, Lemma 2.6] is a variant of |16, Proposition 2.3] with spaces containing
non-integer “derivatives”.

Lemma 3.4 (Cost of derivatives for Gevrey spaces containing derivatives). Let A > 0 and
0 >0. Let ¢ € N and a,b € R withd = q—a+b > 0. Then there exists some number
C =C(\d,a,b,q) >0 such that for all L >0, « > 1 and u € G%}a, we have

\d Ad
and hence
d C brd Ad A
Hu(q)HaLb < (C(L_ +(L)")+ (1 +6)a’L <elna> ) lullza- (3.23)

where we denote (x) := /1 + x2 for x € R.

3.4. Application to the semi-linear PDE. We write our system in the equivalent form

{6yu = Cﬁ (ngu — Z;;\/ial ]8{%@6 - f(x,u,@xu, "'7ay_1u)) » T E [71’ 1]’ te [tl,tz], (324)

U*(0,t) = Ko(t), t € [t1,12],

recalling U”(z,t) = (u(z,t), Opu(w,t), ..., 08 tu(z,t)) and Ko := (ko(t), ..., kn—1(t)). [Cul =1
will be considered in this section, for more detailed see Remark [4]

We write (3.24) as a first-order system

0,U = AU+ F(z,U), (3.25)
U) = Ko (3.26)

with U = U® = (u, Ogu, - - ,0M 1),

0 1 0 0
0 0 1 0
A = . . . e . ’ (3'27)
0 0 0 1
GrON —G) —GrfG - —Grlu—2 —Cf -
and
0
F(z,u) = ,
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where the current vector @ := (ug,uy,...,up—1) will contain the derivatives. We decompose A
as
A = Ao+ Agr
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
= : A B : : : :
0 o o0 ... 1 0 0 0 .. 0
oY 0 - 00 GG —GrG o GG Gy
Let L > 0, we define the space
X, = {U = (Uo,ul, .. ~7UM—1) S Gz\/,Mgl X ... X Gz% X Gi} (3.28)
with the norm
M-1
1T, = (a0, wny ooy ung—)ll e, = lluollp o+ 4 Junr—all, = > lujll g
j=0

where the norms are those defined in Definition [2| with A = M/N. Note that wug is more regular
than uj of ”1/\ derivative”. In particular, using that |(ys| = 1, we have that

M-1
N
AUl y, = Z ||“J||L$ + Hat UOHL‘
j=1
In the following result, L; stands for the inverse of the radius R of the initial datum.

Theorem 3.5. Pick any L1 with 0 < L < ﬁ. Then there exists a number n > 0 such that
for any Ky € X1, with ||K0||XL1 < n, there ezists a solution to (3.24))in C([—1,1], XL,) for some

Ly > 0.

Proof. In order to apply Theorem we introduce a scale of Banach spaces (Xs)gep,1) as
follows, for s € [0, 1], we set

U]y, = e 7079 U, —forUeX,:= Xy (3.29)
L(s) = eU=9)L,, (3.30)
where
r=1/N
and 7 > 0 will be chosen thereafter. Note that (3.5)) is satisfied from (3.20)) and the fact that
L(s") > L(s) for s’ < s. Additionally, we have that

1Ullx, <e ™= U]y, (3.31)

The use of Lemmas and will allow us to select the parameters such that T =
A + F satisfies the assumptions of Theorem Then, we only need to notice that ||Kol|x, =
HKOHXL1 < D for n = D small. O
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Remark 5. [t is interesting to notice that for Theorem we use the analytic reqularity of
f in the wvariables ug,...,upr—1, but only the continuity of f in x. The analyticity of f in
T,uQ, ..., Up—1 will be used to prove the additional regularity of the solution in the variable x.
Also, as noticed in Section [ concerning the Ginzburg-Landau equation, the same result holds
for a polynomial function of ug,ug...,up—1,Uni—1- The crucial part for the existence is the
composition of Gevrey functions.

Lemma 3.6. Let L) < ﬁ. There exist 7o > 0 (large enough) and €y < 1/4 such that we
have the estimates
AUy, < 5 WUlx,. WU€ X,
forall T > 1y (as in ) and all s,s" with 0 < s’ <s<1.
Proof. By assumption, N L}/ A /4. Pick § > 0 small enough such that
(14 6)NLY/* < 1/4, (3.32)

applying Lemma to the M — 1-first terms of AgU (namely uq,...,upr—1) for A = M/N and
taking ¢ = 0, b = =52 and a = %, so that d = + > 0, we obtain the existence of some
number C = Cs > 0 such that for j =1,.... M — 1

1+ m-
i a’x 1Ll/’\> lujll, m—j—1, fora>1 and L >0.
elna T

For the last term of AU (namely ¢;;'0/Nug) with A = M/N and & > 0, (3.32) is satisfied, and

considering now g = N, b=0, a = %, sod= % > (), we obtain the existence of some number

C = (s > 0 such that

_1 1+0
10N o), < <C(L X + (L)) + elnaLl//\) luoll 2121 -

sl s < (O 40 +

It gives after summation

_1 1+ mM-—1
AU, < (ow w+@%ﬁ+ax<v”)ww&, (3.33)

eln o

uniformly for & > 1 and L > 0.

Therefore, from equation (3.29)), (3.30)), (3.31)) and considering the estimate (3.33) with L = L(s),

o= LL((‘Z)) =¢"(5=5) > 1 and s’ < s. Hence, for 0 < s’ < s < 1,
M_IT' s—g’ 1—s 1/)\
—7(s—s’ -5 r C e A ( )6 L
4ol < e )(C@ﬁ4%eh>)+ﬂ+® | I,

IN

, 1 Ll//\
(C’e_T(S_S WL 49+ (1 + 5)6TN18,)> U]l x,

er(s —

6_1 1 o €TNL1/)\
—C(Ly* +¢€" 1+0)—— 34
T O ) 0 ST I, (3:34)
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where we have used 0 < s — s’ <1,0< Ly < 1/4 and
N,—71(s—s -1
oo _ Tl e et (3.35)
T(s—8) T(s— ")

since te~* < ¢! for t > 0. Minimizing the constant in the second term of the right hand side of
(3.34]) leads to the choice r = 1/N. (Note that the initial space X; = X7, is independent of the
choice of r.) We arrive at the estimate

1/ 1
A+ ONL | =5 U,

_1
Ce YLy * + eC/N) n
T

|4y, <

1
“1(L] X 4eC/
By (3.32)), selecting 7y large enough so that gy := Ce I(LlT; +e27) +(1+ 6)NL1//\ < 1/4. This

completes the proof of Lemma [3.6] O

Lemma 3.7. Lete >0, r = % and Ly > 0. There exists 1o > 0 such that we have the estimates

3

|Ullx, VU e€ X,

lARUllx, <

s—s'
for all > 19 and all s,s" with 0 < s’ < s < 1.

Proof. Using (3.18)), we first get that there exists C' > 0 (depending on all the previous constants
Ly, M,...) such that for L € [Ly,e"L1], (|[Cm| = 1),

M-1 M-1 M-1
IARU |, = ISl || D2 Gugl| < D0 IGusll, <€ lujll p,2rmg=1 = Cl[Ullx, - (3.36)
§=0 §=0 §=0

L

Applying the previous estimate to L = L(s’) and using (3.29) and (3.35]), we obtain
IARU ||, = o~ T(1=5) HARUHXL(S/) <
~1
—7(1-5") _ —7(s=¢') e
CeT U, ,, = Ce D U, < Co s W,

It gives the result for 7y large enough. O

, 0
Lemma 3.8. Let f be as in (L.7)-(L.10), and let F(z,U) = < (2w, s tung 1) > for
€ [-1,1] and U = (ug,u1,...,up—1) € L®(K)M with sup;—o  av—1(lluill e (x)) < 4. Let
r=1/N, L1 >0, and € > 0. Then there exists 1o > 0 (large enough) such that for any ™ > 19,
there exists D > 0 (small enough) such that we have the estimates

e
1F(z,U)lx, < Ul x, » (3.37)

s— s
€

1F(z,U) = F(x,V)llx, < U =V, (3.38)

s—¢s
for0< s <s<1, and U = (ug,u1,...,up—1) € Xs, V= (v, v1,...,00-1) € X5 with
Ullx, <D, [[Vlx, <D. (3.39)
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Furthermore, for 0 < s <1 and U € X, with ||U||x, < D, the map x € [-1,1] — F(z,U) € X,
18 continuous.

Proof. The assumption (1.7]) gives F'(x,0) = 0 and therefore (3.37) follows from (3.38). Thus it
is sufficient to prove (3.38). Pick 0 < s’ <s <1, D >0 and U,V € X; satisfying (3.39)). Then,

the definition (1.11)) of f gives

|F(.U) - Fa V)lx, = H— ( 0~ V) )'X

e T f (2, U) = fla, V) e
M-1

M-1
e TN N A@) T« = 1T o Ul
j=0

|p1>0 j=0

IN

IN

M-1
e 0N @) Y I = o o T (el + ill)
=0

|p1>0 i#j
where we used the triangle ine/guali/‘gy, Lemma |3.3] and an iteration argument. Note that, by
(3-18), we have for a constant C'= C(L1, M) >1and any 0 < s’ < 1
M—1 M—1
; uill oy < C g lill gy, pa=im1 < Cer U], < CDe", (3.40)

and similarly Zf\io_l ||Ui||L(s/) < CDe". Using again Lemma for j =0,...,M —1, we obtain

j j i—1 i—2 1
H“?J - U? oy = Iy = Uj)(u? + ufj v+ vfj Mz
i—1 —2 1
< g = vl (HUJ'H%(S/) + H“j”%(s/)HUjHL(s’) ot ijHIZ](S,))
< PJ(CDeT)pj_lﬂuj — 5l z(s1)-

It follows that

M—1
1F(z,U) = F(a,V)|lx, < 2703 A52)] > pjlluy — vjllpg)(CDe™) P!
§=0

p]>0
M-1
< C(LL, NMU~Vx, Y [Axx)] Y pj(CDem)P—
|p]>0 j=0
= C(L,,N,M)|U-V|x,5. (3.41)

where we have used (3.18)). Let us estimate the term

M-1

Si= 3 1450 3 py(CDen)P Y,

|p1>0 j=0
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set O := C,/(1 —by'). Estimate (I.12) becomes

1 !
|A17(£U) < Ca < Ca

e - < e <
libwl_lbi'ib'ﬁl, for|ac]71,
2

so that we have

cl
S < ZbHWCDe ‘7311<ZZ—R (CDe™)

71>0 R=1|p|=R
Using the fact that 3 ;_p1 < C(R+ 1)M_1 and that for 0 < p < 1,

R+M _ 14 M-1
77: 1_ A
DR+ (R M) - oo §j i, = PO

for some P € R[X]. We obtain

= cper\"
< / M—1 €
S < C(Ca,b,M)RE_l(R—f- 1) R( 2 >

IN

~ R
CDe™

!

c(c bMRE_ R+M)< . )

—M-1
< C(C",b,M) < CDer ) < C(Cq, b, M),

provided that
be™T

= 28I )
Therefore, using , and , we infer that implies
||F(:L’, U) - F(x’V)HXS/ < C(C&,b, M, N7L1)”U - VHXS/
< C(CLb,M,N,L)e ™= U - V||x,
C(Cl,b,M,N, L) 1
e T(s—¢)

(3.42)

IN

U= Vlx.-

/
C(CLbMNLY)
€T0 -

To complete the proof of (3.38)), it is sufficient to pick 7 > 75 with 7y such that

and D as in (3.42).
For given 0 < s < 1 and U = (up,u1,....,up—1) € Xs with ||[U||x, < D, let us prove that the

map z € [—1,1] = F(z,U) € X, is continuous. Pick any z,z’ € [—1,1]. From the mean value
theorem, we have for r € N such that |z® — 2/f| < R|z — 2| with R € N,

1 —2
4s) — Apta) < o =1 32 i = g (1) el
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We infer that

HF(%‘, U) - F(x,v U)HXs = 677’(178)”]0('%7'“07 T 7UM—1) - f(.%'/, ug, - 7“M—1)HL(5)
< > |Ap(e) — Ap(a)|uful -y g
[p1>0
~ |1
o2y g )
—(1-— r—x
- b b plo] ’
2 2 151>0
due to Lemma and (3.40), the last series being convergent when (3.42)) is fulfilled. This
proves the continuity of the map = € [-1,1] — F(z,U) € X,. d

We are in a position to prove Theorem [3.1]

Proof of Theorem [3-1. By Remark [4, we can assume [(y| = 1. Let f = f(z, %) be as in (L.7)-
(LI0), —00 < t1 <tz < +oo and R > (4N)*. Pick ko, k1, ,kn—1 € G*([t1,¢2]) such that
holds. We will show that Theorem can be applied provided that C is small enough. Pick
Li € (1/R,1/(4N)*). Let n = n(L1) > 0 be as in Theorem [3.5 Let Ko = (ko k1, ,knr—1).
We have to show that

M-1
[ Kollx,, = Z ||kiHLL% <,
=0

for C' small enough. Thanks to (3.15)) and up to a change of n(L1) by a smaller constant, it is
sufficient to have for any ¢ =0, -+ ,M — 1,

n
Hki”LL% < 5 (3.43)
Recall that
6 371 | (@)
HfHLl,% = max | 2 Hf”L"O([t1,t2])72 Ll sup In— 1| ) (344)
t€ftrtalneN 77X T, %m)
where
-5 M—1\\* -2 M—1
T, aia(n) = 2 5(F(1§+1—T)) (1+n)—=, }f”>T+j’
’ 2- (n') (1+Tl)_, 1f0§n§T+1
Then, if follows that (3.43)) is satisfied provided that
kil ooty < 277, (3.45)
1 -~ 1_,’_‘ _ZVI—1|
e e ey < 27LT N Ty i (n), Vn e N, (3.46)

Since I'(n+1-21) ~ F(”*‘l)/n% ~ n'/n# as n — 400, we have that (F(n—i—l——M/\_l))’\ ~

nt1-M=1

(nh)A/nM=1. Thus, the r.h.s. of (3.46)) is equivalent to 2~nL; M ()M (MHD as 5 oo,
Using (3.2) and Ly > 1/R, we have that (3.46) holds if C' is small enough. The same is true for
B.45).
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We infer from Theorem [3.5|the existence of a solution U = (y, 9.y, - - - ,0M~1y) € C([~1,1], X,)
(for some sg € (0,1)) of (3.24). Let us check that y € C*°([—1,1] X [t1,t2]). To this end, we
prove by induction on n € N the following statement

U e C™([~1,1],C*([t1,ta))M), VE €N, (3.47)

The assertion (3.47)) is true for n = 0, since X, C C*([t1,t2])™ for all k € N. Assume that
(3.47) is true for some n € N. Since A is a continuous linear map from C*+V([t1,25])™ into
C*([t1,t2])M for all k € N, we have that

AU € C™([-1,1], CF([t1, t2])™), VEkeN.

On the other hand, as f is analytic and hence of class C°°, we infer from that F(z,U) €
C™([-1,1], C*([t1,ta])M) for all k € N. Since 9,U = AU + F(x,U), we obtain that is
true with n replaced by n + 1. Therefore, y € C*°([—1,1] x [t1,t2]). Finally, the proof that
y € GY[~1,1] x [t1,ts]), is given in Appendix which uses some estimates of the next
section, with eventually a stronger smallness assumption on the initial data. O

4. CORRESPONDENCE BETWEEN THE SPACE DERIVATIVES AND THE TIME DERIVATIVES

We would like to know the relationship between the time derivatives and the space derivatives
of any solution of a general nonlinear equation given by

0y =Py + f(z,Y") (4.1)
where f = f(z,Y?") is of class C* on RM+1,

When f =0 and Py = My, then it is easy to see that

Nty — gpMapiy® Vi e {0,..,N —1}, Vn e N. (4.2)
It follows that for any (zo,%p) the determination of the jet (07'Y™*(zo,%0))n>0 is equivalent
to the determination of the jet (02Y(20,t0))n>0- In the general case (f = f(z,Y?) and
Py = ijvio (j0%y), the relation (4.2) may not be true. Nevertheless, there is still a one-to-

one correspondence between the jet (97'Y®(xg, to))n>0 and the jet (02Y(z0,0))n>0-
Introduce some notations. For given —co < t; < 7 <ty < 400, we set

S = {yeC®(-1,1] x [t1,t2]) : y satisfies on [—1,1] x [t1,t2]}, (4.3)
Tt = {OPY 0, 7))ns0: Y = (y, 0.y, ..., 00 1y), ye St (RM)N, (4.4)
T* = {@YH0,7))nz0: Y= (4,0, 0} 1y), ye S (RV)N, (4.5)

The set J¢ (resp. J%), which stands for the set of sequences of time derivatives (resp. space
derivatives) at (0,7) of Y* (resp. Y) for smooth solutions y of (&.1)), is a subset of (RM)N (resp.
(RM)N) that we will not determine explicitly.

Proposition 4.1. Let —oco < t1 < 7 < tg < +oo and assume that f € COO(RMH). Then
there exists a map A : (RN — (RMN whose restriction (still denoted by A) A : J* — J*
is a bijection such that for any y € C°([—1,1] x [t1,t2]) satisfying on [—1,1] x [t1,ta],
we have (0pY*(0,7))n>0 = A ((02Y(0,7))n>0), where Y* = (y,0uy,...,0M 1y) and Y =

(y7 aty7 ceey 81:/]\[713/)
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Proof. Proposition is a consequence of Lemma (see below) which, roughly speaking,
consists in taking sufficiently many derivatives in (4.1]). O

Notation 4.1. The space (RIT1)PTL will be denoted E,,. The current vector in E,, will be
denoted Y, , € E,, when a confusion may occur, but very often merely Y to make notations
easier.

Fory € C°([—1,1]x[t1,t2]) and p,q € N, we denote the vector Yy () = (Y}, 0.Y), ..., 007} e
Epq with Y (x,t) = (y(z,t), 0py(x,t), ..., 0fy(x,t)) as it was defined in (L5). Most of the time,

. . . . x,t
when only one function y is concerned, we will write Yy .

Lemma 4.2. Let f € C®RM*+) and I,k € N with | = Nn + j for some 0 < j < N and
n € N. Then there exists a smooth function Hlk R X Epnpyk—1,N—1 — R such that any solution

y € C(0,1] x [t1,15]) of (1) safisfies
Ojdky = Projoky + H (x, Yy o1 n-1) (4.6)
where we have used the Notations[4.1]

We introduce first some definitions, notations, and lemmas that will be needed for the proof of
Lemma[4:2] To apply Leibniz formula for  in a formal way, we have to see how the derivations
0, and 0, operate in E, ,. This leads us to define the following operators.

Notation 4.2. There is a linear operator D, from Ej, 4,41 to E,4 such that we can write

Yy = Et(Yfll) for any smooth function.

Similarly, we define the operator Dy from Epi14 to E,q by the shift ]_~)x(YO,Yl, oY) =
(Y1,...,Yp11) s0 that for any y € C([—1,1] x [t1,t2]), Yoy being as in Notation we have
D.Y5 vy = 0Yiin o (4.7)

Note that ﬁt can also be seen as a shift, but after a proper identification between E, , and E, .

The operator D, depends of course on p and g but, since the definition is similar for each p, g,
it should not lead to any confusion.

Notation 4.3. For Y = (Y°,...,Y' ..., Y¥) € B y_1, we denote
I(Y):= (YO, ... (-1)Y%. .. (=1)FYh).

Strictly speaking, the operator I depends on k, but since it takes the same form on each space,
we will keep the same notation. The interest of this operator is that fory € C*°([—1, 1] x [t1, t2])

andY = ka}e_l(y) as in Notation we have
I(Y(y)) =Y(y-)(—=), (4.8)
where y_ is the reflected function y_(t,z) := y(t, —x).
We notice that
DY) = I(DyY), (4.9)
D,I(Y) = —I(D,Y). (4.10)
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Lemma 4.3. Let p,qg € N and let M : R x E, , — R be a smooth function. Then there exist
two smooth functions My : [=1,1] X Ep g1 — R and My : [-1,1] X Epyq1,4 — R such that for

any y € C®([=1,1] x [t1,t2]) (not necessarily solution of [E1))), Yy being as in Notation
we have

615M(x7Y;-7$7;1t) = Mt(x7y;;z7¢}t+1)a (411)
0 M (z,Y,5l) = My (2, Y, ). (4.12)

Moreover, if we assume that for some w,o € {—=1,1}, M(—z,wI(Y)) = oM (x,Y), then we
have

Mi(—z,wI(Y)) = o My(z,Y), (4.13)
My(—z,wl(Y)) = —oMy(z,Y). (4.14)
Proof. By the chain rule, we have
0
(o, v3) = VM 3 (e ). (4.15)
’ ’ Y.

Using the operator l~)t introduced in Notation we can define M; as
0
Dt(szqH)

For Y, ;11 = (Yo, Y1,....,Y,) € E, 441, we have denoted Y, , the vector in E, , obtained by se-
lecting the ¢ + 1 first components of each vector Y; for 0 < i < p. With this definition, (4.11]) is
true for any smooth function y.

M(z,Ypq41) == VM(x,Y, ) - < > , Yee[-1,1], VY, 411 € Epgt1- (4.16)

Similarly, we define the function M, by
1
Dac(Yerl,q)

and it can be seen that (4.12)) is true for any smooth function y.
To prove (4.13)), we take the derivative w.r.t. Y in the relation M(—z,wI(Y)) = cM(z,Y) to
obtain for any Z € E, 4,

VM (—z,wI(Y))- < wI(EZ) ) — OVM(z,Y)- ( ) > .

Let Ypq41 € Epgr1. Taking Y = Y,, and Z = Dy(Yp441) and noticing that I(Dy(Yp4i1)) =
Du(I(¥yg:1)) by (£9), we obtain

My (2, Ypt1,4) == VM (2,Ypq) - ( > ;o Voe =11, VYpi14 € Epprg,  (417)

0 0
VM(—z,wl(Y, . ~ = oVM(z,Y,q) | = ,
( Yra)) ( @Di(1(Yp,g+1)) ) (5 ¥p.) < Dy(Yp,g+1) >
which is exactly (4.13]). The proof of (4.14) is similar and is omitted. O

Proof of Lemma[{.3. We will actually prove the slightly stronger result that for £ € N and
l=Nn+jforsome0 < j < Nandn € N, each Hlk is actually a function of x and Y € Epppqr—1,5
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so that (4.6) is satisfied with Hlk(a;, Y]\”}’:LJrk_l ~_1) replaced by Hlk(:c, Y]@’;rk_l j).

The case n =0, 0 < j < N is trivial since we can take Hlk =0.

For some technical reasons, we will also need to deal with the case n = 1. Letting fo(z, Y] ;) ==
f(x, Y 1), we apply the operator 9] in ([4.1]) for 0 < j < N to get

0y = Poly + 0] f(x. Y3 1) (4.18)
We want to define functions f; so that for any y € C°°([—1, 1] x [t1,t2]), we have
Fila, Vit ) =0 fo(x, Yyt o) for 0 < j < N. (4.19)
Using Notation [4.2] we can define f; iteratively by
0
oY1) = Vi V) ( pon ). (4.20)

so that by Lemma (4.19) is true for any y € C*°([—1,1] x [t1,t2]). Now that the f; are
defined, we see that any solution y of (4.1)) satisfies (4.18)) and also

0y =Poly+ fi(=, Yy, ). (4.21)

In particular, defining HR,H := fj, we see that the case k = 0, l = N 4 j with 0 < j < N is
treated.

Applying 8’; in (4.21]) and using Lemma E we can find some smooth functions H ]’% » such that

0} oy = PoJoky + Hfj(x, Vi) (4.22)
The H ]’ﬁ, +; are defined by the iteration formula
HY . (2, )= VHE (2,7 Dol = ! (4.23)
N+j\& IM—1+k,5) - N+j\* M—-1+4+k—1j D (YM Lk ) 9 .
z - 5]

this is the case n = 1 of the Lemma.

Now, we construct the functions H% +; by induction on n. Assume that the (4.6) is satisfied
for some n € N*, for all [ = Nn + j with 0 < j < N and all k € N. Applying the operator 9;¥
in (4.6]) yields

o Noky = ProjokoNy + o) Hf (x, Yipn 1) (4.24)
Using equation (4.1), we obtain

ANoky = Prooky + Prokol f(a Vi) + OV HE (e, Y Ly ). (4.25)

So, we are led to prove that the last two terms P”@’;Ggf(x, Y& )+ ONHf(x, Y&Z+k71j) can
be written as HJ, (z, Y]\:’jjzn )tk j). Concerning the first one, due to (4.19) we can write

ProkO] f(2, Vi _y) = P ok fi(a, Vit ). (4.26)
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Since P"0F is a differential operator of order Mn + k in z, we see by successive applications

of Lemmal4.3|that the previous term can be written as a smooth function of x and Y]@E’n ko1

By iterative applications of Lemma the second term O} Hf(z, Yj\gflfl k1 j) can be written
as F(x,YA"Z’ZJrkfl j+N) for some smooth function F. But thanks to the case n = 1, namely

(4.22), for each 0 < p < Mn +k — 1, a{t”jagy can be written as Jﬁﬂ(az,Y]@’ip,j) for some

smooth function Jﬁ, e In particular, Yj\fj’ can be written as a smooth function of =

nt+k—1,N+j
and YJ\Z’:MnJFk_Lj. It follows that 0¥ Hf (z, YZ\?:L—&—k—l,j) = F(x, YJ\J}Z+k—1,j+N) can be written as
a smooth function of x and Yﬁén )tk Going back to (4.25)) and summing up the expression
of the last two terms as functions of = and Y]\”%n ) tko1,> We can write
N(n+1)+i gk, _ +1 47 gk k it
0, oy = P"oloy + Hy(1y45( YA”;(”H)MAJ) (4.27)
for some smooth function H J]i,(n )4 This is the expected result at step n + 1. O

We present a few consequences of Lemma [4.2)

Notation 4.4. Let k € N and | = Nn + j for some 0 < j < N and n € N. Noticing that
Pno]0ky can be expressed as a linear combination of variables in Yj\gfffwrk N_1, We can define a

smooth function Jlk : [=1,1] X Eppyk,n—1 — R such that
T @, Yy pn 1) = 0t0ky = P ol ofy + HE (2, Yy 1 1) (4.28)
for any solution y of . We define also the vector-valued functions
Jp o [=1,1] X Erpgn—1,8-1 — RY,
with Jy = (J, J}, ..., JM7h).

These definitions will mainly be used at z = 0 and t = 0. Since the knowledge of the initial
datum Yy and all its x-derivatives are sufficient to know Y]ff[fz YEN-1 for t = 0, J; has to be
thought as the function that, from a sufficient amount of z-derivatives of the initial datum,
provides (0/Y*)(0,0), that is the [ time derivative of the boundary data. More precisely, if y is
a solution of , we have for any ¢,z

OY™ = Ji(x, Yy s ar1n—1)- (4.29)

In particular, this definition of J; provides a proof for Lemma [I.1] with the appropriate choice
of m(l)=Mn+ M —1ifl = Nn+ j for some 0 < j < N and n € N.

The two following Lemmas are almost tautological with the definitions, but they are important

to justify the relevance of the set C.

Lemma 4.4. Assume that y is a smooth solution of (1.1)-(1.3). Then Y'(.,t) € C for all
t€[0,T].
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Proof. From (L.2), we have BY?(0,t) = 0 for all ¢ € [0,7]. Applying the operator 9} in
that equation yields BAY*(0,t) = 0 for all ¢ € [0,7]. Writing [ = Nn + j, with 0 <
j < N, n € N, and using the fundamental property of the function J;, we obtain
BJy(z,Y!,0,Y!, ...,oMr+M=1yt) _o. It means that Y?(.,t) € C for all t € [0,T]. O

Lemma 4.5. Let y be a smooth solution to 0Ny = Py + f(x,y,0.y,...,0M1y) such that
Y*(0,t) € C for some t € [0,T]. Then Y* satisfies the boundary condition BY*(0,t) = 0.

Proof. We have Y*(0,t) € C, which implies, with the choice | = 0

BJy(z, Y, 0,Y?, ... oMrtM=lyty o —q.
Using property at time ¢t and with = 0 and [ = n = 0, one obtains BY*(0,t) =0. O
The following Lemma is needed to prove Proposition [1.3

Lemma 4.6. Assume that M is even and that

M/2
P=Y" (07 (4.30)
§=0
(1) If (L.18)) holds, then for all I,k € N we have
Hf (—z,—1(Y)) = (=) Hf (2,Y), Vee[-1,1], VY € Exmir1.n-1, (4.31)
JF(—z, —I(Y)) = (1) Jf (2,Y), Vae€[-1,1], VY € Exnikn-1- (4.32)
(2) If (L.19) holds, then for all I,k € N we have
Hf (2, [(Y)) = (-1)"H[(2,Y), Yz [-1,1], VY € Eppnik 181, (4.33)
JF (=2, I(Y)) = (=D)*Jf(z,Y), Vee[-1,1], VY € Exnirn-_1- (4.34)

Proof. To treat both cases simultaneously, we define @ as w = —1 (resp w = 1) if ([1.18]) holds
(resp. (1.19) holds). Therefore, we want to prove

Hf (—z,wI(Y)) = w(-1)FH}(x,Y) VY € Eppir_1n-1, (4.35)
JF(—z,wI(Y)) = w(-1)*Jf(x,Y) VY € Expirn_1- (4.36)
We still denote [ = Nn + j, where n € N and 0 < j < N. We first prove (4.35)) by induction on
n. If n = 0, then ([@.35) is obvious since HF = 0.
Assume that n = 1 so that [ = N + j. Assume first that kK = 0. We claim that
fj(*l‘,wI(YM,Lj)) = wfj(l’,YM,Lj), VYMfl’j S EM*l,j' (4.37)

We proceed by induction. For j = 0, fo = f, so it follows from assumption (1.18) or ([1.19)
thanks to the choice of w. If (4.37) is true for j — 1, taking derivatives with respect to Y, we
also have, for any Z € Ey_1 1,

=V ha(n el Wg0)- iy ) ==Vt (5 ). @)
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By (4.9), (4.20) and (4.38), we have

fil=z,@l(Yn-15)) = V(=2 @wl(Yar-15-1)) - ( f)t(w[(ng_u)) )

= wVfja(-z,ml(Yy-1;5-1)) ( I(Et(lgM_u)) )

0
= wVfj(r,Yy-1-1)- ( 5t(YM—1 i) )

= wfj(® Yrm-14)-
Assume now that (4.35) is true for 0 < j < N and at step k — 1, i.e.
Hy L (—a, @l (Yaroapk-1) = @(= D) HL (2, Yook )-

Taking derivatives with respect to x and Y, it gives for any Z € Ep—144-1,5,

_ -1 _ _ 1
VAL @) () ) = =D e Yo (g )

Combined with (4.23]) and (4.10)), this gives

_ 1
H]’%+j(_x7WI(YM71+k,]’)) = VH]lierlj(_xaw[(YMflJrkfl,j)) ’ < ﬁz(wj(YM—l—&-kj)) )

1

= V0 (orp ) )

1
_ ko k-1 N[
= SV @) (B )
= w(—l)kHJkVJrj(ﬂC’YM—lJrk,j)'
Thus (4.35) is proved for n = 1. Assume that (4.35) is true for [ = Nn+ j, with 0 < j < N and

n € N*  and for k € N. Let us prove that (4.35) is also true for [+ N and k. From (4.25))-(4.26)),
we have that

k x,t n nk x,t N 11k x,t
Hp n(z, YM(n+1)+k—1,j) = P"0; fj(x, YMij) + 0, H[ (x, YM(n+1)+k—1,j)' (4.39)

By Lemma (430) and (4:37), we infer that the first term POk f;(z, Yj\xjt_l,j) can be written

as G(x, YAIJ’(nHHkiU) where G satisfies G(—z,wI(Y)) = (—1)*@wG(z,Y).

The second term O} Hf(:c,YAQZ,Z +k-14), by an application of Lemma can be written as
F(Yj\flz Sh—1N4+ j) for a smooth function F' that satisfies the same parity property as H lk, that is
F(—2,@wI(Y)) = w(-1)FF(z,Y).

But the case n = 1 (see (4.22)) gives that, for each 0 < p < Mn + k — 1, 8§V+j8£y can be
written as J]]f,+j(Yj\:’}’ipj) for some smooth function Jﬁ,ﬂ- that satisfies J]Iz,+j(—x,wl(Y)) =

. R . )
@w(=1)P Iy, ;(#,Y). In particular, Yyy, .\ )y ; can be written as K (2, Yy, pp, 1y y) (the
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components of K are the Jy ;(2,Y)). Therefore, the symmetry properties of JY ,j imply
K(—z,wI(Y)) = wl(K(z,Y)). In particular, we can write

o, Hf (=, YJ\%M 1) = Fla, szmtwk Ljn) = Flz, K(z, YJ\ZiMnJrk 1.N—1))-
Summarizing the symmetry properties of K and F', we obtain

F(—z,K(—z,@l(Y))) = F(—z,wI(K(z,Y)) = w(-1)*F(z, K (z,Y)).
This is the expected result, and it completes the proof of .

To prove (4.36)), we use and - Thus it remains to establish the symmetry property
for the term P"d]0ky for any smooth function y. This follows at once from (4.8]) and (4.30) -

Next, we relate the behaviors as n — +o00 of the jets (07Y*(0,7))n>0 and (97Y*(0,7))n>0-
To do that, we assume that in (4.1)) the nonlinear term reads

f('xayO?yl’ ~--7?JM—1) = Z agp, 'rygoyfl . yﬁ/][W 11337‘ V(m,yo, "'anyl) € (—474)M+1’
(ﬁ,T)ENJ\/’[+1

where the coefficients az,, (p,r) € N¥T1 satisfy (L.9)-(L.10).
For 2 € (—1,400), we denote #! = I'(z+1), where I'(z) = [;° t*~'e 'dt is the Gamma function.

(4.40)

Then (z + 1)! = (x + 1)(2!) for x > —1. We also set ( z > = #lx), fory >ax > 0.
Proposition 4.7. Let —o00 < t; < 7 <ty < 400 and f = f(2,y0,y1,-...ym—1) be as in (L.7)-
with the coefficients ag,, (p,r) € e NM+1 satz’sfying (1.9)-(1.10). Assume that |Cu| = 1.
Let R>4, RR ecRwithi<R <R< mln(R by), and pn > M + 1. Then there exists some
number C' > 0 such that for any C € (0,C], one can find a number C' = C'(C,R, R, 1) > 0
with limg_,g+ C'(C, R, R', 1) = 0 such that

(1) for any function y € C°([—1,1] x [t1,t2]) satisfying (4.1]) on [—1,1] x [t1,t2] and

Yi(x,7) = Yo(z) = ZA’CH’ Vo € [~1,1] (4.41)

ﬁc)Nf we have

for some Yp € (R
(M + k)

k an < /
10:07y(0, )| < € RFRA (M + k + 1)1

Vk,n e N; (4.42)

(2) there exists an application
A% (Akkz0 € Wr )Y = (dh)mpere € R

such that if there exists a solutiony of ([@.1) on [=1,1]x[t1, to] with Y (z,7) = 37150 Ak%,
then 0P y(0,7) = d~ for all (n,k) € N? (without knowing a priori the evistence of such
solution). Moreover, we have

(A + k)!

k < !
dn] < © RERA™(An + k + 1)»

Vk,n € N. (4.43)
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(3) The application A satisfies the following property: Assume y is a smooth solution of
(4.1)) such that there exists <dﬁ)(n,k)6N2 = A ((Ag)k>0) for some (Ag)i>0 € (Np )Y so
that 00y (0,7) = dt for k =0,...,M —1 and n € N. Then 0%0py(0,7) = d~ for all
(n, k) € N2

We shall need several lemmas and give the proof of Proposition later.

Lemma 4.8. (see [17, Lemma A.1]) For all k,q € N and a € {0, ...,k + ¢}, we have

= (5)G)-()

b
J
P

cow
INIA +
INIA I
Q =0

Lemma 4.9. For all A € [1,4+00) and all k,j,n,i € N with k > j and n > i, we have
k n k+ An
(D))

Proof of Lemma[{.9 Recall the relatlonshlp (see e.g. [32]) between the Gamma function I' and
the Beta function B defined by B(z,y) = f t*=1(1 — t)¥='dt for Re x > 0 and Re y > 0:

L(2)I(y)
Blz,y) = 4.45
() = e, (4.5
In particular, we have for z,y € [0, 4+00)

(x—|—y>_ F(a:+y+1)
T S D(z+ DI(y+1)

-1

Fz+y+1) 1 ( /1 >
= I B+ ly+ 1) = ety 1) [ £ —t)Vdt

oy Bl Lyt )7 = () [ ey

Taking © = j 4+ i, y = k — j + A(n — 1), this yields
~1
E+an ) _ (1 e k—j4+A(n—i)
(k+An+1)<j+M>_</ot (1—1) i) . (4.46)

As the right-hand side of (4.46)) is a non-decreasing function of A, we infer that for A > 1

k+n k+ A\n
b (B ) swomen (B30,

Therefore, using Lemma [4.8]
EY(n )< (Frn ) htantl fkadn )y (kdAn
J t )\ 1+t )T k+n+1 j+X )~ J+ A

The following result gives the algebra property for the mixed Gevrey spaces G ([—1, 1] x [t1, ta]).

O
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Lemma 4.10. Let —oo < t1 < tg9 < 00, (xo,t0> S [—1,1] X [tl,tg], R,RI S (0,+OO), q €N,
A€ [1,+OO), n e (q+2,+oo), ko,ng €N, C1,Cy € (0, -l-OO), and y1,ys € COO([—I,I] X [tl,tg])
be such that

(An+k+q)!
RFRM(An 4 k + 1)+

0507 yi (20, t0)| < C; Vi=1,2, Vke€{0,...ko}, Vn€{0,...,no}.

(4.47)
Then we have

(A +k+q)!
RERA(An + k + 1)»

10507 (y1y2) (w0, t0)| < Ky uCrCo Vk € {0,....ko}, Vn € {0,..., no},

(4.48)
where
1
Kop =2 (14 ¢)%7> ) ( < oo.

== Ni+ 7+ 1)pa

Proof of Lemmal[{.10; Using (An + k + ¢)? < (1 + )7 (1 4+ An + k)7, we obtain

(An+k+q)! = An+k)! H(/\n—i-k:—i-j) < (An+k)!(An+k+q)? < (1+@)(An+k)! (1 + M+ k)%,
=1

<

So, denoting i := 4 — q > 2 and 5, := (14 q)?C;, we have

~ An + k)!
O OMyi(x0,t0)| < Ci ( R
102 0¢"yi(z0,t0)| < RFR™(An + k + 1)B

Vi=1,2, Vke¢ {0, ...,k‘o}, Vn € {0, ...,no}.

(4.49)
We infer from the Leibniz rule that

10507 (y192) (w0, to)|

=12 2 (’j ) <?><6z;az‘y1><xo,to><a’;—jafZ‘m)(xo,to)

0<j<k 0<i<n
D <k><n> Cr(Ni + 5)! Co(A(n — i) + k — j)!
05tk 05i%n J i ) RIR™(Ni+j+ 1)A RE=IRMNn=)(\(n — i) + k —j + 1)~

a8 )Gl

= N4+ DFOn— i) +k—j+ 17

IN

I

We infer from Lemma that

(Y () () =
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Finally, by the convexity of z — z¥ on [0, 4+-00), we have that
Ni+j+ DA —i)+k—j+ 1)~

0<j<k0<i<n
Z Z : 1 ﬁ =
Ni+j+1 AXn—i)+k—j+1

0<j<k 0<i<n

~ 1 1
DD ((/\z‘+j+1)/7+()\(n—z‘)+k~—j+1)/7>S

0<j<k0<i<n
~ 1
S 3) SIS B
== (N +j+1)H

where we used the fact that g =p —q > 2.
It follows that

_ 1 1
I < 20\ _ _
= JZ;;(AHJJA)# (An + k + 2)F
_ 1 (M + & + 2)4
oH=a ) ’
S5 i) ek

and hence the proof of Lemma is complete once we have noticed that (An+k)!(An+k+2)? <
2(An +k +q)!. (We used the fact that (z +2) < 2[[f_,(z +j) for all z > 0, ¢ € N*.) O

Remark 6. Lemma@ can also be written as the existence of an application w : RFo+1)x(mo+1) 5
Rko+D)x(no+1) y Rko+D)x(n0+1) gyeh, that, if for some dy,dy € RFo+D)x(ot) gnd two smooth
functions y1, yo satisfying OFOMy;(xo,t0) = dfm , 1 = 1,2 for all k € {0,...,ko}, for all
n € {0,...,n0}, then 0%0F (y1y2)(x0,t0) = (W(dl,dg))z. The definition of w(di,ds) is given
inside of the proof by the Leibniz formula. The Lemma gives then that the estimates

(A +k+q)!

dr .
e RER(An + k + 1)#

< C;

Vi=1,2, Vke{0,...k}, Yne{0,..n} (4.50)

imply

(An+k+q)!
RERAn(An + k + 1)+

~\ k
(W(d, d)) ‘ < Ky 010y Vk € {0, ... ko}, Vn € {0,..,no}.  (4.51)

This equivalent way of writing the same result is consistent with the second part of Proposition
27

We are now ready to complete the proof of Proposition [£.7]

Proof of Proposition[{.7. We will prove the first part of the proposition. The construction of
the application A in the second part of the proposition will appear along the proof.
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Pick any number p > M + 1. We shall prove by induction on n € N that
(An + k)!

"RERAY(\n 4k + 1)H

where 0 < C), < Cpy1 < €' < +00. The value of the constant C” will appear along the proof.
ko

Assume first that n = 0. Recall that Y'(z,7) = Yo(z) = Y50, Ar%y with [[Ag]le < C%.

Denote Ay, = (Ag, ...,Aév_l). Using the fact that R < R, we have that for 0 <n < N — 1,

k! D (An +k)!

= RFR™™(An + k + 1)#

1%ary(0,7)| < Cp

Vk €N, (4.52)

0507 y(0.7)| = |A}| < C=

where

kEN,0<n<N-1 R (An + k)!

11 follows that (4.52) holds for 0 < n < N — 1 for some constants Cy, ...,Cn_1 < CD.
Assume now that (4.52)) is true up to the rank n — 1 for some n > N. Let us show that (4.52))
is also true at the rank n for some constant C,, > 0. Then, by (1.1)) and (L.11]), we have that

k!
D := ( sup (E)kR”\"(An +Ek+ 1)“‘> < 0.

okory(0, 7y = orar N Z@ Iy(0,7) + > RPN (Ap(x)y?* (Dpy)™ -+ (02 1y)P=1) (0, 7)
Jj=0 p#0
Let us estimate I; first. For 0 < j < M, we have that
(A(n — N) +k+j)!
RkHIRA=N)(X(n — N) + k47 + 1)~
(M +k+j— M)
REHIRAN=M(Xn + k + j — M + 1)#

GOMTTar Ny (0, 7)) < |G|Cn-n

< [GlCn-n

where we have used AN = M. It follows that

ni< e R M+A§:1 1G|Cnn RM An+k+1 2
L An+k+j—M+1)---(M+k) B \M+k+j—M+1
9 (An+k)!
RERA(An + k + 1)»
R M M-1 K‘C—N R'M
< |C,_ JIn — (M + 1D*
s |C N( ) +Z An+j—M+1)---An g M+
()\n-i-k).

(4.54)

X .
RERAn(An + k + 1)#

where we have used k,j > 0 and A\n + k > M so that % < M + 1. Let us estimate
I,. Since A; does not depend on ¢, we have that 059" Az = 0 for m > 1 and k > 0. Next, for
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k > 0, we have that
C k! < g k!
- blﬂbk = blol (k+ 1)HRE’

|05 A5(0)] = K! |ag

for some constant C' > 0 depending on R, bo, i, since R < bs.
Note that, still by the iteration assumption (4.52)) at step n — 1, for 0 < j < M — 1 the function

%y satisfies the estimate
k am ( aj (Am +k + j)!
=07 () (0.1 < G REHI R m(Am + k + § + 1)~
Cm (Mm+k+M-1)!
~ RI RFRA™(Am+k+1)»
Let g= M — 1. Since u > M + 1 = ¢ + 2, it follows from iterated applications of Lemma [4.10
that

Vk eN, Vm € {0,...,n—1}.

L0y (A (D) - (22 )= (0,7)|

1

_(KCon\7 M- N) kM1 M
<C 4.55
- ( b ) RERA=N)(X(n — N) + k + 1)~ H (4.55)

]:O
where K = K, ,, > 0. If, for some number 6 € (0,1), we have

bRI
< .
Cn-n 50<]I211\I} 1 K’ (4.56)
then
KC_y\P"S 1 KCp_y . Y MK
< 1—-46 e+ (146 < ————ChH_N.
Z( b > H (RI)Pi = b ( oA ) )_6(1—5)M N
P70 J=0
(We considered the subcases (1) pp > 1 and p1 = ... = ppr—1 = 0; (2) po > 0, p1 > 1 and
pr=...=py-1=0;(3) po >0,p1 >0,ps >1and p3 =...=py—1 =0 etc.). Gathering the
previous estimates and noticing that AN = M, it follows that
_ (An+k—1)! MK
L < C Ch_
Bl = RFRA=M (X — M + k+ 1) b(1 — 5)M "N
CMKR™M M4k+1 (An + k)!
< X Ch—n (4.57)
b(1—0)MAn+k) \An—M+k+1 RERM(An + k + 1)+
CMKR™M (An + k)!
— (M +1)* n_N* 4.
— b1 =86)MIn (M+1)7) > RERM(An + k + 1)#0 N (4.58)

where we have used again % < M+ 1. We set C,, := max(A,, 1)Cp,— N, where

RA\M A 1451 RM .. CMER™ "
|CM|< ) +Z Cnt =M1 o m M gy, (D7
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A M
Then (4.52)) holds. Since (%) < 1 and |Cp| = 1, it is clear that [A\,| < 1 for n > 1, say for

n > ng > N. This yields C,, < C,,_y for all n > ng > N, provided that holds for n < ny.
To ensure for n < ng, it is sufficient to choose C' small enough (or, equivalently, C small
enough). The proof by induction of is achieved. The proof of the first part of Proposition
is complete. For the second part of Proposition [4.7] we follow the proof of the first part and
define the coefficients d* by induction on n.

Forn =0,...,N—1and k € N, if we denote 4j, = (A9, A}, ..., Aév_l), then we have 0597y (0, 7) =
A} for any solution satisfying (4.41). So we are led to define dt .= AL

For n > N, following the proof of the previous estimates, we obtain using the notations intro-
duced in (4.53) and Leibniz’ rule

M
L= ¢ostorNy(o,7) (4.59)
7=0

p#A0  ki+-tkyi1=k nit+-4npyp1=n—N

(0807 (A7) D=0 () D207 (Duy)P* - D520 (M LyPor-1 ) (0, 7) (4.60)

with, for 0 <¢ < M — 1,

ki T ; .
9 o Oy (0,7) = Y >
liteHlp, =kito mi+-+mp,=n;i2
|

ki : 14 ! iam lp:+i ~myp,
T OO (0, ) 0Ty 0 ). (46)
: pic el Pit

We define some I and I by replacing in (4.59)) ort 8f_N y(0,7) by dﬁﬂv, and in (4.61))
ﬁijﬂﬁtmjy(()m) by diﬂ;l, where m; < n; o <n— N. For instance, I; writes

M
N "
n=> ¢ty
=0

and I, is defined similarly. We see that
de = :f1 + I~2

is uniquely defined in terms of the d! ’s for m < n — N, [ € N. Thus the sequence (d¥) n,k)EN?
can be defined by induction on n and the same estimates as before allow us to obtain , see
also Remark [6l

For the third part of Proposition we prove by iteration on k that 9%d7y(0,7) = d~ for all
n € N. By assumption, the result is true for all K =0,...,M — 1. We assume that the result is
true until the rank & + M — 1 and we prove it at rank k 4+ M. Let n > N. We know that we
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have

akary (o, r) cha’fﬂa” Ny(0,7) + I, (4.62)
7=0
where I, is defined by ([4.60) and ([4.61). The d* have been defined by iteration on n by the

formula
Z Gd 4+ I (4.63)

where I, has been obtained by replacing 8j o y(0,7) by dﬁfljﬂ in the formula of Is. Since it
only involves some terms with 0 < < M — 1 and 0<1l; <k, wehavelj +i<k+ M —1 for

these terms and the iteration property gives 8;,? 8t Ty(0,7) = d%ﬂ In particular, I = L. So,

(4.63]) can be written as

M-—1
CndH =k — 3 G —

Again, for 0 < j < M — 1, the iteration assumption gives dﬁtj = 8§+j8;‘_Ny(O,T) and df =
okory(0,7). So, we obtain

M-1
Cudi TN = 0507 y(0,7) = > ok Ny (0,7) — L.
7=0

After comparison with (4.62)) and since (3 # 0, we obtain df:% = oM Ot"*N y(0,7). Since
n > N is arbitrary, it gives the result at step k + M. O

Remark 7. We note that even if we do not know a priori whether Yy will give rise to a solution,
the algorithm is still well-defined. Our proof will show a posteriori that any initial data Yo which
is analytic (with an appropriate radius) and small enough will produce a solution making this
detail not so relevant. But this fact is not obvious at this moment of the proof.

Note that at that moment, both Proposition and Proposition [4.7] seem to give two relations
between the space derivatives of Yy and the time derivatives of an eventual solution. If there
exists a solution y starting from Y{ at time ¢t = 0, that relation should be unique (but this claim
is not proved yet).

The following result will show the existence of a solution. It will allow us clarifying the relation
between the d,,  and the functions J¥ in Corollary There is likely a direct way to prove
this relation, but it might be quite computational. The difference between Lemma and
Proposition is only the order in which we apply time and space derivatives to the equation.

Proposition 4.11 (Existence of solution without boundary condition). Let —oco < t; < 7 <

to < +o0 and f = f(x,y0,y1,--»ym—1) be as in (1.7)-(1.8)) with the coefficients ag,, (p,r) €
NM+Lsatisfying (1.9)-(1.10). Assume in addition that by > R:=4NXe®9 ™" Let R > R. Then
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there exists some number C' > 0 such that for any g € (0, 5] and any numbers RLNwith R <
Ry < min(R, by) there exists a number C" = C"(C, R, Ry) > 0 with limg_,g+ C"(C, R, R) =0

such that for any Yy € (REC)N7 we can pick a function y € GYN[~1,1] x [t1,ta]) satisfying
" fOT’ (l’,t) € [_171] X [tl,tg] and
> k
x
Yi(z,7) = Yy() :ZA’“E’ Ve e [-1,1], (4.64)
k=0
and such that for all t € [t1, o]
ni
D 1/M
107Y (0, )l < C"(n1)* (’%’) ’ (465)
L

with D = e,

Proof. We assume first that |(y7] = 1, dealing with the general case at the end of the proof.
Note that the scaling in time affects only (4.65)).

Let R := 4N)\e~()‘e)71, we will need some intermediate radii R, R/, R” with R< R, <R' <
R’ < R < min(R, bs). Pick C,C as in Proposition and pick any Yy € (R
y as in Proposition does exists, then both sequences of numbers

d* = 0roky(0,7), neN, keN
can be computed inductively in terms of the coefficients 4, = 9%Y;(0), k € N, according to
Proposition H that is (d¥)(, penz = A®(Ag)ren. Note that the sequence (dF), pyene can
be defined in terms of the coefficients Ag’s, even if the existence of the solution y is not yet

established, according to Proposition (2). Furthermore, it follows from Proposition that
we have for some constant ¢’ = C'(C, R, R") > 0,

. (An + k)!
dal < C

Since R” € (R, R'), there exists some constant P = P(R, R', R") > 0 such that we have also

. C)N. If a function

VneN, Vke{o,...,M—1}

An)!
|d§\§C’P<§%H)))\n, VneN, Vke{0,...,M—1}.

The following lemma is a consequence of [25, Proposition 3.6]. The proof that |25, Proposition
3.6] implies Lemma will be done later.

Lemma 4.12. Let A > 1. Let (dg)q>0 be a sequence of real numbers such that
|dg| < CH%(Aq)! Vg >0

for some H > 0 and C > 0. Then for all H > e ' H there exists a function f € C°(R) such
that

f90) = dy Yg=0, (4.66)
f(q) |

If 9O < CHI\g)! VYq>0, VteR. (4.67)
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Pick H := 1/(R")* and Hy := ¢ /(Ry)*. Since R < Ry < R", we have ¢ 'H < Hj <
1/(4NX)*. Then by Lemma there exist M functions hg, h1,...,har—1 € G*([t1,ts]) such
that for k=0,...,M — 1,

W) = d, n>0 (4.68)
M) < C'PHP(M), n >0, t€ [t,t]. (4.69)

It follows at once from Stirling’s formula that (An)! < C,AM(n!)* for some universal constant
Cs >0, so that for k=0,...,M —1,

RO < CPCMHL) (), n >0, L€ [t 1a], (4.70)

Note that MHj < 1/(4N)*. So, if C is sufficiently small, then C’ is as small as desired,
and it follows then from Theorem [3.1| that we can pick a function y € G'A([~1,1] x [t1,t2])
satisfying with k; := h; for 0 < ¢ < M — 1. In particular, for all n € N and k& =
0,...,M — 1, we have 9/dky(0,7) = h](cn)(T) = dF. Using the third Ttem of Proposition
we infer that 07'0%y(0,7) = df for n € N and k € N. Moreover, we can check in
the proof of Proposition (case 0 < n < N — 1) that if (dﬁ)(n,k)ew = A(Ag)ken, then
di = A7 for k € Nand 0 < n < N — 1. In particular, 920%y(0,7) = A? = 9%y5(0) for
ke Nand 0 < n < N —1, where Yy = (yg,yé,....,yév_l), and hence holds. Since
YZ*(0,t) = (ho(t),...,ham—1(t)) by construction, the estimate (4.65) follow from with

A
C" := C'PC, and M Hy, = (Ae()‘e)il/RL> . The proof of Proposition |4.11|is complete for the
case |(y] = 1.

In the general case, assuming 7 = 0 without loss of generality, we proceed as in Remark [4] and
define P = |Car) 1P and f= |Car| 1 f for which the result is proved for any interval in time. We
have therefore a solution § of ONF = |Car| " P+ [Car| L f (, Y*) on [=1,1] x [|Car| =1, |Car| 2]
with Y*(z,0) = Yy(z). Moreover, i satisfies with |Car| = 1. Now, we define y(z,t) :=
y(x, |Car|YNt) which is a solution of 0Ny = Py + f(x,Y®) on [—1,1] x [t1,t] with Y(z,0) =
Yo(x). By scaling, Y* satisfies

N D nA
07y (0,0)] < [l |(0FY) (0, 1car M) < car ™Y O i) (RL) Ry

g

Proof of Lemma[].13 We want to apply [25, Proposition 3.6] (stated below in Proposition [4.13))

with the choice ap = 1 and k becoming k—1 so that M, = (Ag)! ar, = % =T'(\)"'B\(k—

D4+ 1,0 =T\t fol AE=1)(1 — )*~1dt for k > 1. All the terms being positive, we obtain for
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Zak _ F()\)_l /01(1 _t))\—l(zt)\(k—l))dt

k>p k>p
1 t}\p 1
= F()\)_l/ (1 —t)k—ll it < F()\)_l/ (1 — ) 2t Pat
0 - 0
Ap ! A1 Ap—1 A
= P gl <
e UL S P st

where we have used twice t* < t for t € [0,1] and A > 1, and performed an integration by
parts. In particular, the three conditions of Proposition |4.13|are fulfilled with A := ﬁ +1 and
M, = (Ag)!. This completes the proof of Lemma O

For the convenience of the reader, we state the following proposition that we used before to
construct the suitable Gevrey functions.

Proposition 4.13 (Proposition 3.6 of [25]). Pick any sequence (aq)qen satisfying
el=qy>a1>ay>--->0
® > g ar < +0oo
® Pap + Fpop @ < Apap, Vp =1,
for some constant A € (0,+00). Let My := (ag---ay)~! for ¢ > 0. Then for any sequence of
real numbers (dg)q>0 such that

\d| < CHIM,, VYgq>0

for some H > 0 and C' > 0, and for any H > eeilH, there exists a function f € C°(R) such
that

F@0)=d; Vg>0,
|fD(z)| < CHIM, Yq>0,VzeR.
Corollary 4.14. Let Yy satisfying the assumptions of Proposition and let (dﬁ)(n,k)eNQ be the
sequence introduced in Proposition (2). Then we have the relationship
dyy = (0, Ag, Av, oo, Apgrn ) (4.72)

where the J¥ are the functions defined in (4.28)).
Moreover, if Yy € C and if we set Dy, := (dY,d}, ..., d™=1), then BD,, =0 for all n € N.

n»='n?

Proof. Let y be a solution given by Proposition Then (4.72)) holds since both sides of the
equality agree with 970%y(0, ), according to (#.28) for the right-hand side and to Proposition
(2) for the left-hand side. Moreover if Yy € C, then BD,, = BJ,, = 0 by (|1.17)). O

Proposition 4.15 (Existence of solution with boundary condition). Consider the same assump-

N
tions and constants as in Proposition |4.11. Then, for any YO € (RRC NC, we can find a

solution of ([[I)-(T:2) for (x,t) € [~1,T] X [t1, t2] satisfying [I64) and (LG3).
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Proof. The proof is similar to those of Proposition The modifications to ensure the bound-
ary conditions are the following.

The sequence (D,,)n>0 defined in Corollary satisfies BD,, = 0 for all n € N. We can
then proceed as in the proof of Proposition replacing Lemma by Lemma m (see
below). The advantage of using Lemma[4.16]is that the condition BHy(t) = 0 is satisfied by the
function Hy = (hg, ..., har—1) € G ([t1,t2])™ it provides. Then, using Theorem again with
that boundary condition Hy, the equation gives Y*(0,t) = Hoy(t), so that the boundary
condition BY*(0,t) = 0 is satisfied, as expected. This gives a solution of the system —.
The conditions and are fulfilled for the same reasons as in Proposition O

Lemma 4.16. Let (Dy),>0 be a sequence in CM such that
[Dglloc < CHI(Ag)! Vg =0,
BD, = 0 V¢g>0

for some H > 0 and C > 0. Then for all H > ee_lH, there exists a function F € C®(R)M such
that

F90) = D, Vg>0, (4.73)
IFD) e < CHI(Ag)! Vgq>0, VteR, (4.74)
BFY() = 0 VYg>0, VteR. (4.75)

Proof. Let e; € CM i =1,---  dim(ker(B)), be the vectors of a basis of ker(B). In particular, we
can write Dy = . Dy ;e;. By assumption, the real sequence (Dy;)qen satisfies the assumptions

of Lemma so that there are some functions f; € C*°(R) satisfying fi(q) (0) = Dy, and

|fi(q)(t)| < CHY(\g)! for all ¢ > 0, t € R. The function F = 3, fie; satisfies the requested
properties. O

We also infer from the existence of solutions given by Proposition the following uniqueness
result for the functions Jlk.

Lemma 4.17. Let | € N. Then there exists some number € > 0 such that if two applications

R [—1,1] x (RV)™D+1 5 RM satisfy (1.16)) for any smooth solution y of (A1), then they
coincide on [—1,1] x B(0,¢). In particular, if both functions are analytic, then they are equal.

Proof. Since (|1.16)) is assumed to be satisfied, it is sufficient to prove that for any
(w0, Yo, Y1, -+, Yio@)) € [—1,1] x B(0, €), there exists one solution of y € C*°([~1,1] x [t1, t2]) so-
lution of @) with (Yo, Yi,- -+, Yiey) = (Y1, 8, Y (0, 7), oo, 85 Y (w9, 7))). Thanks to Propo-
sition|4.11] it suffices to find Y° € (R o) so that (Y(z), - -- ,BZL(Z)YO(:EO)) = (Yo, Y1, , Vi)

This is simple analytic interpolation if ¢ is chosen small enough with respect to R, C. 0

5. PROOFS OF THEOREM AND PROPOSITION [[3]

Proof of Theorem[T1.3 Let R > R := 4N Ae@®) ™" and let C be the constant given by Proposition

411 Let YO, Y € (R, 5) NC. We infer from Proposition applied with [t1,t2] = [0, 7]
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] < I : ) tlle eXiStence Of tWO |uIlCl'OnS g7y S G ,)\([ 17 ]‘} X [U71 }) Satis y.l g
" ‘-' alld. Such lllat

Let p € C*°(R) be such that
1 oift< T,
(t) =
P 3T
1

0 ift>

Y
A+1
2

([0,77). (Note that (A+1)/2 > 1.) Let
Ko(t) = p(t)Y®(0,t) + (1 — p(t))Y®(0,t), te[0,T].

Then Ko € G*([0,T])™ by [25, Lemma 3.7], and assuming Y, Y! € (R, 5)V NC with 0 < C <
5, C small enough, we can assume that (3.2) is satisfied. It follows then from Theorem that
there exists a solution y € GV ([—1,1] x [0,T]) of (3.1). Then y satisfies (T.1)-(1.2) together
with Y(z,T) = Y!(z) for x € [-1,1].

Indeed, since p(t) = 0 for t > 37'/4, we have

ayT(0,T) = K\"(T) = opy®(0,T), VneN,

It follows then from Proposition that 97Y*(0,T) = 9*Y*(0,T) = 7Y (0) for all n € N, and
hence Y*(.,T) = Y'!. We can prove in the same way that Y(.,0) = Y. The proof of Theorem
2] is achieved. O

and P\[O,T] S G

Let us now proceed to the proof of Proposition [I.3] describing the compatibility set in cases
where parity arguments can be used.

Proof of Proposition [I.3 We first consider the Dirichlet case. We will give the modifications of
the proof for the Neumann case after. ‘

Consider first the Dirichlet case when BY*(0,t) = 0 reduces to 027y(0,t) = 0 for 2j < M — 1.
It means that, following the definition and denoting Jli the ith component of the vector
J, € RM | we have

C= {Yo e C([0,1)";  JP(0,Y0,02Y0, . O WY¥p)am0 =0, VO<2j <M -1,V € N}

So, we need to show C = C. , where
C = {Yo= o,y yn—1) € C=([0,1])V; 0¥y (0)=0, VjeN, VI =0,..,N -1}
= {YeC™(0,1)"; 9YY(0) =0,Vj € N}.
We first prove that ccc.
The set C is the set of smooth functions that admit a smooth odd extension to [—1,1]. We still

denote Yy € C*°([—1,1])"V this extension. We use the notation (Yy)¢ for the vector (Yp)¥ =
(Yo, 0, Y, ..., 0FYy) € Ej n—1. A vectorial variant of property (4.8) is then

I(Yo)i) () = (Yo, )i (=) (5.1)
where Yy _ is the reflected application Yy _(x) = Yy(—z).
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The derivatives at zero are not modified, so we need to prove that Jl2j(0, (Yo)fn(l))xzo = ( for
this extension. Using Lemma and property ([5.1))

T (=2, = (Yo, )iy (—2) = I (—2, ~L(Yo) i) (@) = (D)L (@, (V)i (2). (5.2)

But since Y} is odd, Yy - = —Y; and (YO,*)fn(l) = —(Yo)ﬁl(l), which gives

T (=2, = (Yo, )im@)) (=2))) = Jf (=2, (Yo) 5y (—))-

In particular, thanks to (5.2)), the function z ij (, (Yo)fn(l) (x)) is odd and Jl2j(0, (Yb)fn(l) 0)) =
0.

Next we prove that C C C. Let Yy € C. We prove by induction on k the following equivalent
fact: I((Yo)7) = —(Yo)j, at = = 0.

For £ < M — 1, we notice from the proof of Lemma that for 0 <[ < N, we have Hlk =0
so that for Yy = (yo,v1,...,ynv—1), we have Jlk(a:,Yo,...,(')i“Yg) = 0ky,. So the assumption
Jlk(x,Yo, oo, 08Y))p—0 = 0 for k even, k < M — 1 implies 0¥y, = 0 for k even, k < M — 1.

Now, assume that I((Yp)3,_;) = —(Y0)5,_; at = 0 for some k£ € N with 2k —1 > M —1. Write
2k = Mn + i with 0 <14 < M (necessarily even) and pick any | = Nn + j, where j is arbitrary
with 0 < j < N.

By (4.31), since i is even, we have H;(0,—I(Y)) = —H/(0,Y) for all Y. We have by the
inductive hypothesis 1((Y0)3/n4i—1) = —(Y0)3nri_1 at & = 0, so that H}(0, (Y0)3,,4:-1(0)) =
—H} (0, (Y0)37p4i—1(0)), and hence H;(0, (Y0)7,45—1(0)) = 0. Now, using the definition (4.28)
of J; and the assumption Yy € C which gives J;(x, (Y0)3,,4;)z=0 = 0 (since i is even), we obtain
P"0Ly; = 0 if we denote Yy = (yo,...,yn—1). By the structure of P, this gives the result at

step 2k = Mn + ¢ since 0 < j < N is arbitrary. This implies that the result is also true at step
2k + 1.

For the Neumann case, we modify the proof as follows. '
This time, we are in the case when BY?(0,t) = 0 reduces to 82 " 'y(0,¢) = 0 for 2j +1 < M —1,
and using ((1.17)), we have

c= {Yo e C=([0,1)Y;  J¥H0, Y0, 0uY0, ... " DYp)ag =0, VO<2j+1< M -1V € N} .

So, we have to show that C = C with
C = {Yo= o,y -yn-1) € C®([0,1)Y; 9¥Hy0)=0, VjeN, Vi=0,..,N—1}
= {YoeC™(0,1)Y; 97%'Yy(0) = 0,Vj € N}.
We first prove that C C C. In this case, the set C is the set of smooth functions that admit a

smooth even extension to [—1,1]. So we need to prove that Jl2j+1(0, Yo, 0:Y0, ..., a;”(”YO)QC:O =0
for this extension. Using the second part of Lemma and property (5.1)

I (=2, (Yo, )i (=) = JF (=2, I((Y0)m) (@) = (=1)F I (@, (Yo gy (). (5.3)
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But since Yj is even, Yy - = ¥j and (Y(),_)fﬁ@(l) = (Yb)fn(l), which gives this time
Jlk(—% (Y(],_)il(l)(—x)) = Jlk(_xa (Yo)fn(l)(—iﬁ))'
In particular, thanks to (5.3]), the function x — Jl2j+1(x, (Yo)fn(l)(:z:)) is odd and
J12j+1(07 (%)fn(z) (0)) =o0.

In order to prove that C C C, we prove by induction on k that for all k € N, I(Yo)7) = (Yo)i at
z=0.

For k < M — 1, we still have H, lk = 0 and the same arguments as in the Dirichlet case gives
Oky; = 0 for k odd in the range we consider.

Assume that I((Y0)3,) = (Y0)3, at © = 0 for some k € N with 2k > M —1. Write 2k+1 = Mn+i
with 0 < i < M (necessarily odd), and pick | = Nn + j where j is arbitrary with 0 < j < N.

By (4.33)), since i is odd, we have H;(0,I(Y)) = —H}(0,Y) for all Y. But we have from
the inductive hypothesis I((Y())?V[n.-s—i—l) = (Y0)kinsi1 at @ = 0, so that H} (0, (Y0)5nti 1) =
—H} (0, (Y0)3spsi—1), and hence H; (0, (Yo)3sp45_1) = 0. Now, using the definition (4.28) of J;
and the assumption J}(z, (Y0)%,,;)e=0 = 0 (since i is odd), we obtain P"dLy; = 0 if ¥ =
(Y0, ---,yn—1)- Since 0 < j < N is arbitrary, this gives the result at step 2k + 1 and also at step
2k + 2. U

APPENDIX
6. A LEMMA OF COMPLEX ANALYSIS

Lemma 6.1. Consider

BR,C = {Z : [—1, 1] —C; df € HEO, ”f”Loo(B(O,R)) <C, f‘[—l . = Z} .

Then, for any 1 <r < R and C >0

BR,C C RRQ C Br7c(1_%)—1.

Proof. For given z € Brc, if f denotes its analytic extension to B(0, R), writing f(§) =
Yomto an% for || < R, we have by Cauchy’s formula that for any n € N and any r < R:

n! f(&)
— d
211 /§|:7" €n+1 6
and hence |a,| < ”fHLoo(B((LR))RLEL by letting r — R™. On the other hand, if z € Rp ¢ is given
by z(&) = f(&) == >.,2, an% for ¢ € [-1,1] and 1 < r < R, then for |£| < r we have that
[FE < CEnio(f) =CU—F)7! < oo

n n!
o] = £ (0)] = < TTLHJCHLOO(B(O,R)ﬁ

g
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6.1. Gevrey regularity of the solution of . provided in Theorem |3.1 -. Assume that
f satisfies (1.7 , still under the assumptlon |Car| = 1. Let us show that y € GUA([—1,1] x
[t1,t2]). Let LO = L(so) = et ‘L < ( )X where so € [0,1] and L; are given in the proof of

Theorem |3.1L Then, we can pick some numbers R;, Ro such that 4M < R1 < Ry < 4. Let
eM L)\

us prove that there exists some constant () > 0 such that . ) holds. To this end, plckmg any
u > M + 1, we prove by induction on k € N that

(An + k)!
RERY™(An + k + 1)»

kopy(a, 0l < G V(2,t) € [-1,1] x [t1, 5], Yn €N, (6.1)

with supyen Cr < 00, the sequence C, being nondecreasing. Let us start with k£ € {0,..., M —1}.
We already know that y € C*°([—1,1] x [t1,t2]) and that U = (y, 0y, ..., 0M 1) € C([~1,1], X,)
for some sp € (0,1), the space. XSO belng defined in (3.29)); that is, U € C([-1,1], Xr,) with

Lo = L(sp) = erl=s0) [, = ¢ - L1 < eNL1 Thus, we have for some constant C' > 0 and for
all n € N and all (x,t) € [=1,1] X [t1,t2]

M—-1-Fk

M-1—-k

)N

ko tiy(e,t)] < COLy > Tn+1-

<
oF oy (a,t)] < C,
oy ot y(a, 1)) < CLE(n)M(1+n) 72,
for0<k<M-1,n< }%’—Fl.

We readily infer from Stirling’s formula I'(z +1) ~ (£)*v/27z that I'(x+a) ~ I'(z)z® as © — oo,
for any a € R, and that (n!)* ~ (QWH)%)\_%(ATL)!/)\)‘”. It follows that for some constant C' > 0

_M-1-k _M-1-k ()\ )' _ 11— A—1
0507 y(z, )] < CLgLy > [l(n+1)"" > Pn+1)7<CLy e (1) (M=1=k)p, 72
for 0 < k < M — 1. Thus there are some positive constants Cj, 0 < k < M — 1, such that (6.1)
1
holds, provided that Ry < A/Lg .

Assume now that (6.1)) is true for k € {0, ..., + M — 1} for some | € N. Let us show that (6.1)
is true for k = [ + M; that is, for all n > 0 and all (z,t) € [—1,1] X [t1, t2]

(An+1+ M)!

I Many(z, )| < C ,
vyl b)) < HMREM pan(n + 1+ M + 1)k
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for some constant Cj; s > 0. Since |[(as| = 1, using (3.1), we have that

oE Moyl = 10L07 (Cudy))
M-1
= |oLop(oy Gy — f(x,y, 05y, ..., 0N Ly)|
7=0
M-1
< (AL TNyl + 10507 (D Gody)| + 1080 f (. y, Ouy, -, Oy
7=0
= L1 +1L+ 1.

Then using directly the iteration assumption and AN = M, we have

I <

(An + AN +1)! _ (Rl>M (An +1+ M)! ‘
"RIRY™ N (A + AN + 1+ 1) Ry)  REMRY(An+ 1+ M+ 1)m

On the other hand, we have that

=

Ip;

IN

Gl 105+ 07yl

= <
I_%

(An+ 1+ 5)!
RPRY (An+1+j+1)p

IN

| | I+j

.
||

M—-1

ZK’ R An 41+ M+ 1\*
T A+ 14+ (n+l+ M)\ dn+i+j+1
Jj=

(An 41+ M)!

XM pox '

RAMRA (An + 1+ M + 1)»

IA
/\

Finally, as in the proof of Proposition (see estimate (4.55)) iterating Lemma [4.10]), we have
that for some positive constant C'

I3 < ai(?f Z Aﬁypo (8xy)p1 . (ag]yfly)pM—l
p#0
M-1

el RlRM(An+z+ ) P L (R

Note that Ry > 1. If, for some constant 6 € (0,1), we have

CZ‘HVIT—IK <, (6.2)
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this yields

I3 6oC

IN

(An+1+ M —1)! 1 \M
RYRY™M(An + 1+ 1)» (1 —5)

- SCRM </\n+l+M+1>“ (An 41+ M)!

— (An41l4+M)(1-0)M An+1+1 REMPRI(An 41+ M 4 1)»
It follows that

(An+1+ M)!
RAEMPBA (A + 1+ M + 1)1’

05 Mopy(z,t)| < Crom (6.3)

with
M
Ciyn := max (C'l+M 15 Cz 2)
M-—1 RM_j

+ [§
7=0

1 An+14+ M+ 1\*
”J Mn4l+j+1) - QAn+i+M) \ An+i+j+1
N SCRM An 414+ M+ 1\*
()\n+l+M)(1—5)M An+1+1

Then, using the fact that Ry < Ra, i ,1,..,0+ M — 1, then C”TMK <94
provided that [ is large enough, say [ > lo It is then sufficient to impose that

0b

K

and this is the case provided that the constant C' in is small enough.

maX(Co, ceey Clo+M—1) <

7. ON THE COMPLEX GINZBURG-LANDAU EQUATION
Theorem 7.1. Theorem[3.1] holds true for the complex Ginzburg-Landau equation.

Proof. The fact that the equation is complex-valued does not change the proof. The only slight
difference is for Lemma [3.8| where the nonlinearity contains some conjugate. The proof is even
simpler since the sum is ﬁmte. We give a simpler proof for the convenience of the reader. In that

case, M =2, N =1and A\ = 2. If U = (ug,u1) € L*®(K)?, and F(x,U) = ( ei‘P|(z)L 120 >
- 0l“uo

then

0
F ,U - F ’V ro=
1F(, U) = F(z,V)llx, H( |uo|*uo — [vo|*vo )Hx

e 0 Jug[Pug — Jvo[*voll sy
e~ "1 (ug — vo) (uo + vo)uo + v3 (W5 — Tp) I

IN

= g — voll ey (w0l ) + ol )



48 C. LAURENT, I. RIVAS, AND L. ROSIER

We used the algebra property of Lemma [3.3] and the fact that the norm is invariant by conju-
gation. Using (3.18]) and (3.31)), we get, for a constant C' depending on Li, M and N,

||u0||L(S/) < CHuOHL(s’),# <C HUHXL(S/) = CeT(l—s) HUHXS/ < CeTe—T(S—S )HUHXs'
The same estimate is true for ug — vy, and therefore we obtain

|F(z,U) = F(z,V)|x, <
, CBe—1¢37
CemC N U~ Vi, (101G, +IVIR,) € S n DIV = Vi,

s s s T(S — s ) s
where we have used (3.35). For fixed 7, it can be made arbitrarily small when D is chosen
small enough. The proof finishes the same way for the existence of the solution. Concerning
the estimates given in Section the only difference concerns the term I3 that becomes I3 =
|e? 0L 07 (y27)|. In this part of the proof the induction argument (6.1) is valid for k € {0, ...,1 +
M — 1} for some | € N. The derivatives of 7 have the same bounds as those of y in (6.1]), namely

(2n+k)!
"RFR2"(2n + k + 1)
We can apply similarly Lemma twice to get

(2n+1)!
RIRI(2n + 1 + 1)~

0k opg(x, )| <

V(l’,t) € [—1,1] X [tl,tQ], Vn € N. (71)

2n+1+2)!
RI2RZM(2n 41+ 2 + 1)K

I3 = < Bi42C

! 2. 23
0L} (y*7)| < K2C
L1y . K2C?R? (2n+14+2+1)" K2C?R? . .
with Bj49 = sup,en (2n+l+1)~(l2n5rl+2) GRS (l+1)(lz+§) 3#. The rest of the estimate being

the same, we can make the §;;9 arbitrarily small in a similar way. This completes the inductive
step. Il

Proposition 7.2. Proposition[{.7] holds true for the complex Ginzburg-Landau equation.

Proof. The reconstruction is exactly the same working in C instead of R. The modifications of
the estimates of the nonlinear term are done in the same way as in Theorem noticing that
7 satisfies the same estimates as y. O

Proof of Theorem [2.5 and[2.6. This is the same as before with A = 2/1 = 2. It only remains
to check the condition about the non-linearity. We have f(x,y0,y1) = €“°|yo|?yo. It satisfies
f(=z,—yo,y1) = —“|yo|*v0 = —f(x,90,y1) which is condition for system (2.16), and
f(=z,90, —y1) = €*|yo|*vo = f(x,y0,y1) which is condition for system ([2.17). O
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