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Abstract. In this article, we prove a local controllability result for a general class of 1D
partial differential equations on the interval (0, 1). The PDEs we consider take the form
∂Nt y = ζM∂

M
x y + f(x, y, ∂xy, ..., ∂

M−1
x y) where 1 ≤ N < M , ζM ∈ C∗, and f is some linear or

nonlinear term of lower order. In this context, we prove a local controllability result between
states that are analytic functions. If some boundary conditions are prescribed, a similar local
controllability result holds between analytic functions satisfying some compatibility conditions
that are natural for the existence of smooth solutions of the considered PDE. The proof is per-
formed by studying a nonlinear Cauchy problem in the spatial variable with data in some spaces
of Gevrey functions and by investigating the relationship between the jet of space derivatives and
the jet of time derivatives. We give various examples of applications, including the (good and
bad) Boussinesq equation, the Ginzburg-Landau equation, the Kuramoto-Sivashinsky equation
and the Korteweg-de Vries equation.
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1. Introduction

For M , N ∈ N∗ := N \ {0} fixed with M > N and y a function defined on [0, 1] × [0, T ], with
value in R, we consider the abstract dynamical system

∂Nt y = P y + f(x, y, ∂xy, ..., ∂
M−1
x y), x ∈ [0, 1], t ∈ [0, T ], (1.1)

BY x(0, t) = 0, t ∈ [0, T ], (1.2)

Y t(x, 0) = Y0(x), x ∈ [0, 1], (1.3)

with

Y x(x, t) := (y(x, t), ∂xy(x, t), ..., ∂M−1x y(x, t)), (1.4)

Y t(x, t) := (y(x, t), ∂ty(x, t), ..., ∂N−1t y(x, t)), (1.5)

P :=

M∑
j=0

ζj∂
j
x, (1.6)

where ζj ∈ R for 0 ≤ j ≤ M and ζM 6= 0, Y0 ∈ C∞([0, 1])N , B ∈ Rv×M is a fixed real matrix
of size v ×M , and v ∈ N is the number of boundary conditions that we require to be equal to
zero. (If v = 0, it indicates that there is no boundary condition at x = 0.) Finally, we assume

f ∈ C∞(RM+1;R) and f is analytic with respect to all its arguments in a neighborhood of ~0RM+1 .
More precisely, we assume that

f(x, 0, . . . , 0) = 0, ∀x ∈ (−4, 4), (1.7)

and

f(x, ~y) :=
∑

(~p,r)∈NM+1

a~p,r~y
~pxr =

∑
(~p,r)∈NM+1

a~p,ry
p0
0 y

p1
1 . . . y

pM−1

M−1 x
r (1.8)

with ~y = (y0, y1, ..., yM−1), (x, ~y) ∈ (−4, 4)M+1, and ~p = (p0, . . . , pM−1) ∈ NM where the
coefficients a~p,r are such that

|a~p,r| ≤
Ca

b|~p|br2
, ∀r ∈ N, ∀~p ∈ NM , (1.9)

for some constants

Ca > 0, b > 4, and b2 > 4. (1.10)

Note that a~0,r = 0 for all r ∈ N by (1.7). For ~p ∈ NM , we define

A~p(x) :=
∑
r∈N

a~p,rx
r, |x| < b2.
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We infer from (1.8) and (1.9) that

f(x, ~y) =
∑

~p ∈ NM

|~p| > 0

A~p(x)~y~p =
∑

~p ∈ NM

|~p| > 0

A~p(x)yp00 y
p1
1 . . . y

pM−1

M−1 , (1.11)

|A~p(x)| ≤ Ca

b|~p|
1

1− |x|b2
, |x| < b2. (1.12)

Among the many physically relevant instances of (1.1) satisfying (1.7)-(1.10), we can mention

(1) the Korteweg-de Vries (KdV) equation

∂ty = ∂3x y + ∂xy + y∂xy;

(2) the “good” (−) or “bad” (+) Boussinesq equation

∂2t y = ±∂4xy + ∂2xy − ∂2x(y2);

(3) the Kuramoto-Sivashinsky (KS) equation

∂ty + ∂4xy + ∂2xy + y∂xy = 0.

With a few modifications in the framework, we can also treat

(4) the complex Ginzburg-Landau (GL) equation

∂ty = eiθ∂2x y + eiϕ|y|2y where θ, ϕ ∈ R.

The exact controllability result has to be stated in a space of analytic functions (see [25] for the
linear heat equation). For given R > 1 and C > 0, we denote by NR,C and RR,C the sets

NR,C :=

{
(αn)n≥0 ∈ CN; |αn| ≤ C

n!

Rn
, ∀n ≥ 0

}
⊂ CN, (1.13)

RR,C :=

{
z : [−1, 1]→ C : ∃(αn)n≥0 ∈ NR,C with z(x) =

∞∑
n=0

αn
xn

n!
, ∀x ∈ [−1, 1]

}
. (1.14)

Let us denote by H(Ω) the space of holomorphic functions in Ω, and let us introduce the Hardy
space H∞R := H(B(0, R)) ∩ L∞(B(0, R)), which is a Banach space for the norm ‖ · ‖L∞(B(0,R))

(see [33]). Let

BR,C := {z : [−1, 1]→ C; ∃f ∈ H∞R , ‖f‖L∞(B(0,R)) ≤ C, f| [−1,1] = z}.
Observe that

BR,C ⊂ RR,C ⊂ Br,C(1− r
R
)−1 for 1 < r < R and C > 0.

For the proof, see below Lemma 6.1.

We say that a function h ∈ C∞([t1, t2]) is Gevrey of order s ≥ 0 on [t1, t2], and we write
h ∈ Gs([t1, t2]), if there exist some positive constants C,R such that

|∂pt h(t)| ≤ C (p!)s

Rp
, ∀t ∈ [t1, t2], ∀p ∈ N.
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Similarly, we say that a function y ∈ C∞([x1, x2]× [t1, t2]) is Gevrey of order s1 in x and s2 in t,
with s1, s2 ≥ 0, and we write y ∈ Gs1,s2([x1, x2]× [t1, t2]), if there exist some positive constants
C,R1, R2 such that

|∂p1x ∂
p2
t y(x, t)| ≤ C (p1!)

s1(p2!)
s2

Rp11 R
p2
2

, ∀(x, t) ∈ [x1, x2]× [t1, t2], ∀(p1, p2) ∈ N2. (1.15)

The suitable time Gevrey regularity in our situation is

λ :=
M

N
> 1.

Before giving our results, we need to define a set of compatibility conditions. The initial data
need to belong to a specific set to ensure the existence of smooth solutions issuing from these
initial data. Indeed, the equation imposes some relations between the time derivatives of the
solutions and the space derivatives of the initial data. Namely, we have the following property
whose proof is constructive and mainly consists in taking derivatives in the PDE.

Lemma 1.1. For any l ∈ N, there exist a number m = m(l) ∈ N and a smooth application

Jl : [−1, 1] × (RN )m(l)+1 → RM such that for any solution y ∈ C∞([−1, 1] × [t1, t2]) of ∂Nt y =
P y + f(x, y, ∂xy, ..., ∂

M−1
x y), we have

∂ltY
x = Jl(x, Y

t, ∂xY
t, ..., ∂mx Y

t)) on [−1, 1]× [t1, t2]. (1.16)

Definition 1. Let Jl, l ∈ N, be the vector functions defined in Lemma 1.1. We define the
following compatibility set

C :=
{
Y0 ∈ C∞([0, 1])N ; BJl(x, Y0, ∂xY0, ..., ∂

m(l)
x Y0)

∣∣∣
x=0

= 0, ∀l ∈ N
}
. (1.17)

The compatibility set C plays an important role in the exact controllability of system (1.1)-(1.3).
Since the PDE (1.1) is time-invariant, we can check that the condition (1.17) is the same at any
time. In particular

• for any smooth solution y of (1.1)-(1.2), we have that Y x(t) ∈ C for any t ∈ [0, T ]. (See
below Lemma 4.4.)
• if y is a smooth solution to (1.1) such that Y x(t) ∈ C for any t ∈ [0, T ], then y satisfies

the boundary condition (1.2). (See below Lemma 4.5.)

If we want to consider the boundary controllability of the PDE (1.1) subject to the boundary
conditions (1.2), it is therefore very natural to consider initial and final data in the space C. We
will derive a controllability result by considering small amplitude analytic functions in C.
The main result in this paper is the following local exact controllability result.

Theorem 1.2. Let f = f(x, ~y) be as in (1.7)-(1.10) with b, b2 > R̂ := 4Me(λe)
−1

Let R > R̂

and T > 0. Then there exists some number Ĉ > 0 such that for all Y0, Y1 ∈ (RR,Ĉ)N ∩ C,

there exists a smooth solution y of (1.1)-(1.3) defined for all (x, t) ∈ [0, 1]× [0, T ] and satisfying
Y t(x, T ) = Y1(x) for all x ∈ [0, 1]. Furthermore, we have y ∈ G1,λ([0, 1]× [0, T ]).

We stress that Theorem 1.2 can be applied to any PDE with less derivatives in time than
in space, even if the corresponding initial boundary value problem is not well-posed. For
instance, the backward heat equation ∂ty = −∂2xy and the bad Boussinesq equation ∂2t y =
∂4xy + ∂2xy − ∂2x(y2) are concerned.
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It is difficult in general to describe explicitly C (see Section 2.1 for the KdV equation). However,
the set C can be precisely described in the following cases:

• If B = 0 (i.e. no boundary conditions at x = 0), then C = C∞([0, 1])N (i.e. all smooth
initial data are allowed)
• If f = 0 (linear PDE with constant coefficients), then the compatibility set reads

C =
{
Y0 = (y0, y1, . . . , yl, . . . , yN−1) ∈ C∞([0, 1])N such thatBP jY x,l

0 (0) = 0,

∀j ∈ N, ∀l = 0, . . . , N − 1
}

when we denoted Y x,l
0 (x) := (yl(x), . . . , ∂M−1x yl(x)) as in (1.4). We refer to Proposition

2.8 for a precise statement and for the proof.

• if M ∈ 2N and P =
∑M/2

j=0 ζ2j∂
2j
x (i.e. P contains only even derivatives), some parity

arguments can be used under some symmetry assumptions about the non-linearity, as it
is shown in the following proposition.

Proposition 1.3. Assume that M ∈ 2N and P =
∑M/2

j=0 ζ2j∂
2j
x .

(1) If the boundary conditions BY x(0, t) = 0 reduce to ∂2jx y(0, t) = 0 for 2j ≤M − 1, and if
for all x ∈ [−1, 1] and all (y0, ..., yM ) ∈ (−4, 4)M+1 we have

f(−x,−y0, . . . , (−1)i+1yi, . . . , yM−1) = −f(x, y0, . . . , yM−1) (1.18)

then

C =
{
Y0 = (y0, y1, ..., yN−1) ∈ C∞([0, 1])N ; ∂2jx yl(0) = 0 ∀j ∈ N, ∀l = 0, ....N − 1

}
(2) If the boundary conditions BY x(0, t) = 0 reduce to ∂2j+1

x y(0, t) = 0 for 2j + 1 ≤M − 1,
and if for all x ∈ [−1, 1] and all (y0, ..., yM ) ∈ (−4, 4)M+1 we have

f(−x, y0, . . . , (−1)iyi, . . . ,−yM−1) = f(x, y0, . . . , yM−1) (1.19)

then

C =
{
Y0 = (y0, y1, ..., yN−1) ∈ C∞([0, 1])N ; ∂2j+1

x yl(0) = 0, ∀j ∈ N,∀l = 0, ..., N − 1
}
.

Note that in the last two cases, the intersection of C with the set of analytic functions is a
set of functions that admit odd (respectively even) extensions. Note also that the “good” and
“bad” Boussinesq equations satisfy only (1.19), while the Ginzburg-Landau equation satisfies
both (1.18) and (1.19).

Remark 1. (1) The constant R̂ := 4Me(λe)
−1

is probably not optimal, but we aimed to
provide an explicit (reasonable) constant. For the linear heat equation, it is known that

the optimal constant is R̂ := 1 with a diamond-shaped domain of analyticity (see [4, 13,
14]).

(2) If f is linear in the variables ~y = (y0, . . . , yM−1), then the PDE (1.1) is linear and the
smallness assumption on the amplitude of the initial and final data can be removed, as
long as Y 0, Y 1 ∈ (RR,Ĉ)N∩C for some Ĉ ∈ (0,+∞). In particular, for f(x, ~y) = V (x)y0,

Theorem 1.2 applies for any equation of the form ∂Nt y = P y+V (x)y where V is analytic
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in a sufficiently large ball. The compatibility set C may depend on V . Note however that
both conditions (1.18) and (1.19) are satisfied if V is even (i.e. V (x) = V (−x) for
all x ∈ [−1, 1]). Theorem 1.2 applies for instance for the linear heat equation ∂ty =
∂2xy+ V (x)y without any smallness assumption about the potential V (x), giving that the
reachable space from zero contains functions that are analytic in some sufficiently large
ball. See [8] for a more precise result about the reachable space, but under a smallness
assumption about the potential.

Note also that the most relevant term of P is actually the higher order term ζM∂
M
x ,

since linear lower order terms can be put either in P or in f(x, y, ∂xy, ..., ∂
M−1
x y). Yet,

we have chosen to keep this form because C is easily determined for a linear PDE with
constant coefficients.

(3) The definition of C seems to depend on some choice of the functions Jkl . However, the
proof of Lemma 1.1 is constructive and therefore it provides an algorithm to define these
functions. Moreover, it is possible (see Lemma 4.17 below) to prove that if two functions
Jkl satisfy the property (1.16) for all solution y of (1.1), then they coincide in the product

of [−1, 1] and some small ball B(0, ε) of (RN )m(l)+1 which is the domain where we are
going to use it. In any case, the previous property implies that the functions Jkl are
unique in the class of analytic functions.

(4) The paper has been written for a quite general PDE. However, it might certainly be
possible to consider more general PDEs, containing for instance time derivatives in the
lower order terms, or in the nonlinearity, or some time-dependent coefficients. We
did not consider these cases because it would render the proof more technical and more
difficult to read.

The paper is organized as follows. In Section 2, we apply our main results to the Korteweg de-
Vries equation, the Boussinesq equation, the Ginzbourg-Landau equation, and the Kuramoto-
Sivashinsky equation. Section 3 is concerned with the existence and uniqueness results for the
Cauchy problem in the x-variable (Theorem 3.1). The relationship between the jet of space
derivatives and the jet of time derivatives at some point (jet analysis) for a solution of (1.1) is
studied in Section 4. In particular, we show that the nonlinear equation (1.1) can be (locally)
solved forward and backward if the initial data Y0 can be extended as an analytic function in
some ball of C (Proposition 4.11). Finally, the proofs of Theorem 1.2 and Proposition 1.3 are
displayed in Section 5.

2. Examples

In this section, we list a few examples of equations coming from physical models for which our
general result applies. The list is of course not exhaustive. Also, we limited ourselves to some
models that contain a regularizing effect coming from a parabolic behavior or from smoothing
boundary conditions. It is not that Theorem 1.2 is limited to this kind of problems, but for
conservative equations (like nonlinear Schrödinger equations, KdV with some specific boundary
conditions as in [31], [3] among other works), it is quite likely (and very often it has already
been proved) that the controllability can be obtained in much lower regularity. Notice that even
in this context, our result can be interesting if we are looking for a very regular control since
the control we build is in some Gevrey class.
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2.1. The Korteweg-de Vries equation. In this section, we are concerned with the control-
lability of the Korteweg-de Vries (KdV) equation:

∂ty = ∂3xy + ∂xy + y∂xy, x ∈ [0, 1], t ∈ [0, T ], (2.1)

y(1, t) = h(t), t ∈ [0, T ], (2.2)

y(0, t) = 0, t ∈ [0, T ], (2.3)

∂xy(0, t) = 0, t ∈ [0, T ], (2.4)

y(x, 0) = y0(x), x ∈ [0, 1], (2.5)

which adapts to our abstract setting (1.1)-(1.3) with N = 1, M = 3 (hence λ = 3), P =
∂3x + ∂x and f(x, y, ∂xy, ∂

2
xy) = y∂xy. Thus Y t = y and Y x = (y, ∂xy, ∂

2
xy). Note that the

change of variables x → 1 − x transforms (2.1) into the classical form of the KdV equation
∂ty + ∂3xy + ∂xy + y∂xy = 0, and (2.2)-(2.4) into the boundary conditions y(0, t) = h(t) and
y(1, t) = ∂xy(1, t) = 0.
It is well-known [10, 31] that system (2.1)-(2.5) is null controllable, and also controllable to
the trajectories. Due to the smoothing effect, an exact controllability cannot hold in L2(0, 1).
The reachable space for the linearized KdV equation ∂ty = ∂3xy + ∂xy supplemented with the
boundary conditions (2.2)-(2.4) was described in [22].

By Theorem 1.2, for any T > 0 and any R > R̂ := 12e(3e)
−1

, there is some number Ĉ > 0
such that for any y0, ỹ0 ∈ RR,Ĉ ∩ C, there exists a solution y ∈ G1,3([0, 1] × [0, T ]) of (2.1)-

(2.5) satisfying y(x, T ) = ỹ0(x) for all x ∈ [0, 1]. Let us now describe more precisely the set
C defined in (1.17). Denote Jl = (Jl,1, Jl,2, Jl,3). Recall that C is given by the conditions

BJl(x, y0, ∂xy0, ...., ∂
m(l)
x y0)

∣∣∣
x=0

= 0 for all l ≥ 0, where B =

(
1 0 0
0 1 0

)
. The following

Lemma provides a more precise version of Lemma 1.1 adapted to KdV.

Lemma 2.1. For any l ∈ N, m(l) = 3l+ 2 and there exists a smooth map Hl : R3l−1 → R such
that

Jl,1 = y3l +Hl(y0, y1, ..., y3l−2), (2.6)

Jl,2 = y3l+1 +

3l−2∑
i=0

∂Hl

∂yi
(y0, y1, ..., y3l−2)yi+1, (2.7)

Jl,3 = y3l+2 +

3l−2∑
i=0

∂Hl

∂yi
(y0, y1, ..., y3l−2)yi+2,+

3l−2∑
i,j=0

∂2Hl

∂yj∂yi
(y0, y1, ..., y3l−2)yj+1yi+1. (2.8)

Proof. Clearly J0,1 = y0, J0,2 = y1, J0,3 = y2, so that m(0) = 2 and H0 = 0. From (2.1), we
infer that

∂t∂xy = ∂4xy + ∂2xy + y∂2xy + (∂xy)2,

∂t∂
2
xy = ∂5xy + ∂3xy + y∂3xy + 3∂xy∂

2
xy.

Therefore m(1) = 5 with

J1,1 = y3 + y1 + y0y1, J1,2 = y4 + y2 + y0y2 + y21, J1,3 = y5 + y3 + y0y3 + 3y1y2.
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Thus H1(y0, y1) = y1 + y0y1. Assume now that m(l) = 3l + 2 and that (2.6)-(2.8) hold. Then

∂l+1
t y = ∂tJl,1(x, y, ∂xy, ..., ∂

3l+2
x y)

= ∂t
(
∂3lx y +Hl(y, ∂xy, ..., ∂

3l−2
x y)

)
= ∂t∂

3l
x y +

3l−2∑
i=0

∂Hl

∂yi
(y, ∂xy, ..., ∂

3l−2
x y)∂t∂

i
xy.

Since

∂ix(y∂xy) = ∂i+1
x (

y2

2
) =

1

2

i+1∑
k=0

(
i+ 1
k

)
∂kxy∂

i+1−k
x y,

we obtain

∂l+1
t y = ∂3l+3

x y +

(
∂3l+1
x y +

1

2

3l+1∑
k=0

(
3l + 1
k

)
∂kxy∂

3l+1−k
x y

+
3l−2∑
i=0

∂Hl

∂yi
(y, ∂xy, ..., ∂

3l−2
x y)

(
∂i+3
x y + ∂i+1

x y +
1

2

i+1∑
k=0

(
i+ 1
k

)
∂kxy∂

i+1−k
x y

))
. (2.9)

It follows that Jl+1,1 = y3l+3 +Hl+1(y0, y1, ..., y3l+1) with

Hl+1 := y3l+1 +
1

2

3l+1∑
k=0

(
3l + 1
k

)
yky3l+1−k

+
3l−2∑
i=0

∂Hl

∂yi
(y0, y1, ..., y3l−2)

(
yi+3 + yi+1 +

1

2

i+1∑
k=0

(
i+ 1
k

)
ykyi+1−k

)
.

Thus (2.6) holds at the step l + 1. Taking the derivative in x in (2.9) gives (2.7) and (2.8) at
the rank l + 1. Finally m(l + 1) = 3l + 5. �

Thus C is the set of the functions y0 ∈ C∞([0, 1]) such that Jl,1 = Jl,2 = 0 for all l ≥ 0, i.e.

y(0) = ∂xy(0) = 0,

∂3lx y(0) = −Hl(y, ∂xy, ..., ∂
3l−2
x y)

∣∣∣
x=0

, ∀l ∈ N∗,

∂3l+1
x y(0) = −

(
3l−2∑
i=0

∂Hl

∂yi
(y, ∂xy, ..., ∂

3l−2
x y)∂i+1

x y

)∣∣∣
x=0

∀l ∈ N∗.

Writing y0(x) =
∑∞

n=0 αn
xn

n! , we obtain the following conditions for the coefficients αn:

α0 = α1 = 0, (2.10)

α3l = −Hl(α0, α1, ..., α3l−2), ∀l ∈ N∗, (2.11)

α3l+1 = −
3l−2∑
i=0

∂Hl

∂yi
(α0, α1, ..., α3l−2)αi+1, ∀l ∈ N∗. (2.12)
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We conclude that

RR,Ĉ ∩ C =
{
z : [−1, 1]→ C : ∃(αn)n≥0 ∈ NR,Ĉ such that (2.10)-(2.12) hold and

z(x) =
∞∑
n=0

αn
xn

n!
, ∀x ∈ [−1, 1]

}
.

Remark 2. The condition

|αn| ≤ Ĉ
n!

Rn
(2.13)

has to be satisfied for all n ∈ N. It is likely (but still to be proved) that if (2.13) is satisfied

for the subsequence (α3l+2)l≥0, eventually for a small constant Ĉ, it is also satisfied for the
whole sequence (αn)n≥0 (the two other subsequences (α3l)l≥0 and (α3l+1)l≥0 being defined due to
(2.10)-(2.12)). If it is indeed the case, then the coefficients α3l+2 (l ∈ N) can be chosen “freely”
provided that they satisfy (2.13), and hence the set RR,Ĉ ∩C looks like a nonlinear submanifold.

Theorem 2.2. Let R > R̂ := 12e(3e)
−1

and T > 0. Then there exists some number Ĉ > 0
such that for all functions y0, ỹ0 ∈ RR,Ĉ ∩ C, there exist functions y ∈ G1,3([0, 1] × [0, T ]) and

h ∈ G3([0, T ]) satisfying (2.1)-(2.5) together with y(x, T ) = ỹ0(x) for all x ∈ [0, 1].

2.2. Boussinesq equation. We consider the issue of the exact controllability of two systems
involving the (good or bad) Boussinesq equation.

2.2.1. Neumann boundary conditions. We first consider the system

∂2t y = ±∂4xy + ∂2xy − ∂2x(y2), x ∈ [0, 1], t ∈ [0, T ],
∂xy(0, t) = 0, t ∈ [0, T ],
∂xy(1, t) = v(t), t ∈ [0, T ],
∂3xy(0, t) = 0, t ∈ [0, T ],
∂3xy(1, t) = w(t), t ∈ [0, T ],
y(x, 0) = y0(x), x ∈ [0, 1],
yt(x, 0) = y1(x), x ∈ [0, 1].

(2.14)

If the sign in ± is +, the first equation in (2.14) is called the bad Boussinesq equation which
is known to be severely ill-posed, even for the linear part. It would therefore be difficult to
obtain any controllability result with the standard methods. We shall obtain the following exact
controllability result.

Theorem 2.3. Let R > R̂ := 16e(2e)
−1

and T > 0. Then there exists some number Ĉ > 0
such that for all pairs of functions (y0, y1), (ỹ0, ỹ1) ∈ (RR,Ĉ)2 which are even with respect to 0,

there exist functions y ∈ G1,2([0, 1]× [0, T ]) and v, w ∈ G2([0, T ]) satisfying (2.14) together with
y(x, T ) = ỹ0(x) and yt(x, T ) = ỹ1(x) for all x ∈ [0, 1].

Proof of Theorem 2.3. We apply Theorem 1.2 together with Proposition 1.3 with λ = 4/2 =
2. Note that the control inputs v, w are just taken as traces of the constructed solution y ∈
G1,2([0, 1]× [0, T ]). The regularity of v, w then follows from (1.15).
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We need to check that the non-linearity satisfies the right assumption. Since ∂2x(y2) = 2
(
y∂2xy + (∂xy)2

)
,

the non-linearity reads f(x, y0, y1, y2, y3) = −2(y0y2 + y21). As

f(−x, y0,−y1, y2,−y3) = −2(y0y2 + (−y1)2) = f(x, y0, y1, y2, y3),

we see that condition (1.19) in Proposition 1.3 is fulfilled. Finally, we notice that for any function

h ∈ RR,Ĉ , h is even if and only if ∂2j+1
x h(0) = 0 for any j ∈ N. �

2.2.2. Dirichlet boundary conditions. If we keep the non-linearity f(x, y, ∂xy, ∂
2
xy, ∂

3
xy) = −∂2x(y2),

then

f(−x,−y0, y1,−y2, y3) = −2(y0y2 + y21) = f(x, y0, y1, y2, y3),

so that condition (1.18) in Proposition 1.3 is not fulfilled. Theorem 1.2 may be applied, but the
determination of the compatibility set C is not obvious.
We consider instead a different non-linearity, namely f(x, y, ∂xy, ∂

2
xy, ∂

3
xy) = −∂x(y2). More

precisely, we consider the system

∂2t y = ±∂4xy + ∂2xy − ∂x(y2), x ∈ [0, 1], t ∈ [0, T ],
y(0, t) = 0, t ∈ [0, T ],
y(1, t) = v(t), t ∈ [0, T ],

∂2xy(0, t) = 0, t ∈ [0, T ],
∂2xy(1, t) = w(t), t ∈ [0, T ],
y(x, 0) = y0(x), x ∈ [0, 1],
yt(x, 0) = y1(x), x ∈ [0, 1].

(2.15)

Theorem 2.4. Let R > R̂ := 16e(2e)
−1

and T > 0. Then there exists some number Ĉ > 0
such that for all pairs of functions (y0, y1), (ỹ0, ỹ1) ∈ (RR,Ĉ)2 which are odd with respect to 0,

there exist functions y ∈ G1,2([0, 1]× [0, T ]) and v, w ∈ G2([0, T ]) satisfying (2.15) together with
y(x, T ) = ỹ0(x) and yt(x, T ) = ỹ1(x) for all x ∈ [0, 1].

Proof of Theorem 2.4. The proof is the same as for Theorem 2.3. Since ∂x(y2) = 2y∂xy, the
non-linearity reads f(x, y0, y1, y2, y3) = −2y0y1. From

f(−x,−y0, y1,−y2, y3) = 2y0y1 = −f(x, y0, y1, y2, y3),

we infer that condition (1.18) in Proposition 1.3 is fulfilled. As a function h ∈ RR,Ĉ is odd if

and only if ∂2jx h(0) = 0 for any j ∈ N, the conclusion follows at once. �

2.3. The complex Ginzburg-Landau equation. We are concerned with the controllability
of the complex Ginzburg-Landau equation with parameters θ, ϕ ∈ R. We begin with the control
problem with Dirichlet boundary conditions:

∂ty = eiθ∂2x y + eiϕ|y|2y, x ∈ [0, 1], t ∈ [0, T ],
y(0, t) = 0, t ∈ [0, T ],
y(1, t) = v(t), t ∈ [0, T ],
y(x, 0) = y0(x) x ∈ [0, 1].

(2.16)
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Theorem 2.5. Let R > R̂ := 8e(2e)
−1

and T > 0. Then there exists some number Ĉ > 0
such that for all functions y0, ỹ0 ∈ RR,Ĉ which are odd with respect to 0, there exist y ∈
G1,2([0, 1] × [0, T ]) and v ∈ G2([0, T ]) satisfying (2.16) together with y(x, T ) = ỹ0(x) for all
x ∈ [0, 1].

The control problem with Neumann boundary conditions reads
∂ty = eiθ∂2x y + eiϕ|y|2y, x ∈ [0, 1], t ∈ [0, T ],

∂xy(0, t) = 0, t ∈ [0, T ],
∂xy(1, t) = v(t), t ∈ [0, T ],
y(x, 0) = y0(x) x ∈ [0, 1].

(2.17)

Theorem 2.6. Let R > R̂ := 8e(2e)
−1

and T > 0. Then there exists some number Ĉ > 0
such that for all functions y0, ỹ0 ∈ RR,Ĉ which are even with respect to 0, there exist y ∈
G1,2([0, 1] × [0, T ]) and v ∈ G2([0, T ]) satisfying (2.17) together with y(x, T ) = ỹ0(x) for all
x ∈ [0, 1].

The proof follows the previous cases closely, except that they are complex-valued functions
and the nonlinearity |y|2y = y2y cannot be written as a sum (finite or infinite) of powers of
the variable y. We describe in Section 7 the modifications that must be performed to get the
expected result.

Remark 3. It might seem problematic to use the nonlinearity f(z) = |z|2z which is not holo-
morphic. The solution we construct satisfies y(·, t) ∈ RR,Ĉ , which means that it is real ana-

lytic on [−1, 1] for any t ∈ [0, T ], in the sense that it agrees with its Taylor expansion at 0,
which is enough for the proof we are doing. Indeed, as noticed in Lemma 6.1, it implies that

it has a holomorphic extension z 7→ y(z, t) for z ∈ BC(0, R̃) for some R̃ > 0. The application
x ∈ [−1, 1] 7→ |y(x, t)|2y(x, t) is also real analytic and also has a holomorphic extension. Yet,
this extension does not coincide with |y(z, t)|2y(z, t). In particular, the solution can be extended

to BC(0, R̃)× [0, T ] but it is not clear what equation it satisfies on this set. We only know that
the solution satisfies the Ginzburg-Landau equation on [−1, 1]× [0, T ].

2.4. The Kuramoto-Sivashinsky equation. We investigate the controllability of the Kuramoto-
Sivashinsky (KS) equation with boundary conditions of Dirichlet type:

∂ty = −∂4xy − ∂2xy − y∂xy, x ∈ [0, 1], t ∈ [0, T ],
y(0, t) = 0, t ∈ [0, T ],
y(1, t) = v(t), t ∈ [0, T ],

∂2xy(0, t) = 0, t ∈ [0, T ],
∂2xy(1, t) = w(t), t ∈ [0, T ],
y(x, 0) = y0(x), x ∈ [0, 1].

(2.18)

Theorem 2.7. Let R > R̂ = 16e(4e)
−1

and T > 0. Then there exists some number Ĉ > 0
such that for all functions y0, ỹ0 ∈ RR,Ĉ which are odd with respect to 0, there exist functions

y ∈ G1,4([0, 1]× [0, T ]) and v, w ∈ G4([0, T ]) satisfying (2.18) together with y(x, T ) = ỹ0(x) for
all x ∈ [0, 1].
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Proof of Theorem 2.7. For λ = 4/1 = 4, and the non-linearity reads as f(x, y0, y1, y2, y3) =
−y0y1. It satisfies

f(−x,−y0, y1,−y2, y3) = y0y1 = −f(x, y0, y1, y2, y3),

which is condition (1.19) in Proposition 1.3. �

The null controllability for the Kuramoto-Sivashinsky equation has been already studied in [1,
2, 12, 18], for different combinations of boundary data, and in the cases where boundary setting
agrees with the setting of (1.2), our results are consistent with the known results. However, the
critical set of parameters of diffusion appears only in cases when only one control is considered,
which is not the case in this paper.

2.5. The case of a linear PDE with constant coefficients.

Proposition 2.8. Assume f = 0 (linear PDE with constant coefficients). Then

C =
{
Y0 = (y0, y1, ..., yN−1) ∈ C∞([0, 1])N ; (BP kY x,l)(0) = 0, ∀k ∈ N, ∀l = 0, . . . , N − 1

}
where we have denoted Y x,l := (yl, . . . , ∂

M−1
x yl) as in (1.4) .

Proof. Using Euclidian division, we are led to compute the application JNk+l defined in Lemma
(1.1) for any k ∈ N and l = 0, . . . , N − 1.

We infer from (1.1) that ∂Nk+lt ∂ixy = P k∂lt∂
i
xy for any k ∈ N, l = 0, ..., N − 1 and i ∈ N. In

particular, ∂Nk+lt Y x = P k∂ltY
x for any k ∈ N, l = 0, ..., N − 1, we can define a linear map

JNk+l : (RN )(k+1)M → RM such that

JNk+l(Y0(0), · · · , ∂(k+1)M−1
x Y0(0)) = (P kyl, P

k∂xyl, . . . , P
k∂M−1x yl)(0),

for any Y0 = (y0, y1, ..., yN−1) ∈ C∞([0, 1])N (denoting y0 = y, yl = ∂lty0 for 1 ≤ l ≤ N − 1).
Moreover, for a solution of the equation with initial datum Y0, we have

(P kyl, P
k∂xyl, . . . , P

k∂M−1x yl)(0) = P kY x,l(0). (2.19)

The previous computation gives ∂Nk+lt Y x(0) = JNk+l(Y0(0), · · · , ∂(k+1)M−1
x Y0(0)). Therefore,

the application JNk+l by (2.19) satisfies the property (1.1) for all solutions. Then, using the
uniqueness of the operators Jl (up to adding unnecessary variables) proved in Lemma 4.17, we
conclude that it is the expected application.

In particular, BJNk+l(Y0(0), · · · , ∂(k+1)M−1
x Y0(0)) = 0 is equivalent to BP kY x,l(0) = 0 for any

k ∈ N and l = 0, . . . , N − 1. �

3. Cauchy problem in the space variable

3.1. Statement of the global wellposedness result. Let f = f(x, y0, y1, · · · , yM−1) be as
in (1.7)-(1.10). We are concerned with the wellposedness of the Cauchy problem:{

∂Nt y = Py + f(x, y, ..., ∂M−1x y), x ∈ [−1, 1], t ∈ [t1, t2],
∂ixy(0, t) = ki(t), 0 ≤ i ≤M − 1, t ∈ [t1, t2]

(3.1)
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for some given functions k0, . . . , kM−1 ∈ Gλ([t1, t2]). We denote K0 = (k0, ..., kM−1). Note that
the initial conditions of (3.1) can be written as Y x(0, t) = K0(t).

The goal of this section is to prove the following result.

Theorem 3.1. Let P be as in (1.6) and f = f(x, ~y) be as in (1.7)-(1.10). Let −∞ < t1 < t2 <
+∞ and R > (4N)λ, where λ = M/N . Then there exists some numbers C > 0, Q > 0, R1, R2

with 4Me−1/M < R1 < R2 satisfying that for all K0 = (k0, . . . , kM−1) ∈ Gλ([t1, t2])
M with

|k(n)i (t)| ≤ C

(
|ζM |1/N

R

)n
(n!)λ, i = 0, 1, . . . ,M − 1, n ≥ 0, t ∈ [t1, t2], (3.2)

there exists a solution y ∈ G1,λ([−1, 1]× [t1, t2]) of (3.1) satisfying,

|∂p1x ∂
p2
t y(x, t)| ≤ Q(p1 + λp2)!

Rp11 R
λp2
2

|ζM |p2/N , (x, t) ∈ [−1, 1]× [t1, t2], (p1, p2) ∈ N2. (3.3)

The proof of Theorem 3.1 will be given after that some preliminary results are established. We
use the notation x! = Γ(x+ 1) even if x is not an integer.

Remark 4. It is sufficient to prove Theorem 3.1 for the unidimensional system (3.1), i.e Con-
sidering |ζM | = 1 and [t1, t2] = [0, t2]. Indeed, the equation ∂Nt y = Py + f(x, y, . . . , ∂M−1x y)
is invariant by translation in time, so that we can assume that [t1, t2] = [0, t2]. On the other

hand, if |ζM | ∈ (0,+∞) \ {1}, we can use the following scaling argument. Set ζ̃M := ζM/|ζM |,
P̃ := |ζM |−1P and f̃ := |ζM |−1f . Note that P̃ and f̃ satisfy the expected assumptions with

|ζ̃M | = 1. For K0 satisfying (3.2) on [0, t2], define K̃0(t) := K0(|ζM |−1/N t). Then K̃0 satisfies

(3.2) with |ζ̃M | = 1, that is |k̃(n)i (t)| ≤ C (n!)λ

Rn on [0, |ζM |1/N t2]. This allows to define a solution

ỹ(x, t) of (3.1) for x ∈ [−1, 1] and t ∈ [0, |ζM |−1/N t2] associated with P̃ , f̃ and K̃0. Then the
function

y(x, t) := ỹ(x, |ζM |
1
N t), x ∈ [−1, 1], t ∈ [0, t2]

is a solution of (3.1) associated with P , f and K0.

3.2. Abstract existence theorem. We consider a family of Banach spaces (Xs)s∈[0,1] satisfy-
ing for 0 ≤ s′ ≤ s ≤ 1,

Xs ⊂ Xs′ , (3.4)

‖f‖Xs′ ≤ ‖f‖Xs ; (3.5)

that is, the embedding Xs ⊂ Xs′ for s′ ≤ s.
We are concerned with an abstract Cauchy problem:{

∂xU(x) = T(x)U(x), −1 ≤ x ≤ 1,

U(0) = U0

where U0 ∈ X1 and
(
T(x)

)
x∈[−1,1] is a family of nonlinear operators with possible loss of

derivatives.
The following result, taken from [20, Theorem 2.2], is a global wellposedness result. It extends
the abstract result in [28, 29] which gives only local solutions.
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Theorem 3.2. Let ε ∈ (0, 1/4), D > 0 and a family (T(x))x∈[−1,1] of nonlinear maps from Xs

to Xs′ for 0 ≤ s′ < s ≤ 1 satisfying

‖T(x)U‖Xs′ ≤
ε

s− s′
‖U‖Xs , (3.6)

‖T(x)U − T(x)V ‖Xs′ ≤
ε

s− s′
‖U − V ‖Xs (3.7)

for 0 ≤ s′ < s ≤ 1, x ∈ [−1, 1] and U ,V ∈ Xs with ‖U‖Xs ≤ D, ‖V ‖Xs ≤ D. Then there

exists a number 0 < η ≤ D such that for any U0 ∈ X1 with
∥∥U0

∥∥
X1
≤ η, there exists a solution

U ∈ C([−1, 1], Xs0) for some s0 ∈ (0, 1) of the integral equation

U(x) = U0 +

∫ x

0
T(τ)U(τ)dτ. (3.8)

Moreover, we have the estimate

‖U(x)‖Xs ≤ C1

(
1− α|x|

a∞(1− s)

)−1 ∥∥U0
∥∥
X1
, for 0 ≤ s < 1, |x| < a∞

α
(1− s),

where α ∈ (0, 1), a∞ ∈ (α, 1) and C1 > 0 are some constants. In particular, we have

‖U(x)‖Xs ≤ C1

(
1− 2

a∞
α + 1

)−1 ∥∥U0
∥∥
X1
, for 0 ≤ s ≤ s0 =

1

2
(1− α

a∞
), |x| ≤ 1.

If, in addition, we assume that

for all U0 ∈ Xs with ‖U0‖Xs ≤ D, the map τ ∈ [−1, 1]→ T(τ)U0 ∈ Xs′ is continuous, (3.9)

then U is the classical solution of{
∂xU(x) = T(x)U(x), −1 ≤ x ≤ 1,
U(0) = U0.

(3.10)

Note that we slightly changed the order of the quantifiers for D to the original statement in [20,
Theorem 2.2]. The result is a direct consequence of [20, Proposition 2.3.] where the quantifiers
are written this way.

3.3. Gevrey type functional spaces. We define several λ Gevrey spaces for λ > 1 (see
[16, 35]) and we follow closely the ideas developed in [20] for the heat equation. We shall take
λ = M/N , but for the moment we stay in the generality.

We introduce a variant of the Gamma function of Euler with a parameter a ∈ R given by

Γλ,a(k) =

{
2−5(Γ(k + 1− a))λ(1 + k)−2, k ∈ N, k > |a|+ 1,

Γλ(k), k ∈ N, 0 ≤ k ≤ |a|+ 1
(3.11)

with

Γλ(k) = 2−5(k!)λ(1 + k)−2, (3.12)

and Γ being the usual Gamma function of Euler which is increasing on [2,+∞).
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Clearly, Γλ,0 = Γλ. Note that for k > |a|+ 1, we have k + 1− a ≥ 2 and k + 1 ≥ 2, so we are in
an interval where Γ is increasing. Thus we have for all k ∈ N

Γλ,a(k) ≤ Γλ(k), if a ≥ 0, (3.13)

Γλ(k) ≤ Γλ,a(k), if a ≤ 0. (3.14)

For any L > 0, we consider the intermediate space of functions in C∞(K) (where K = [t1, t2]
with −∞ < t1 < t2 <∞) such that

|u|L,a := sup
t∈K,k∈N

∣∣u(k)(t)∣∣
L|k−a|Γλ,a(k)

<∞.

Note that for a = 0, we recover the spaces defined earlier in [35], and |u|L,0 = |u|L.

Definition 2. We consider the norm defined in [35] by Yamanaka

‖u‖L := max
{

26 ‖u‖L∞(K) , 2
3L−1

∣∣u′∣∣
L

}
,

and similarly, we define for a ∈ R

‖u‖L,a := max
{

26 ‖u‖L∞(K) , 2
3L−1

∣∣u′∣∣
L,a

}
.

For L > 0 and 0 ≤ a1 < a2, we have

‖u‖L,a1 ≤ C(L, a1, a2, λ)‖u‖L,a2 ∀u ∈ GλL,a2 . (3.15)

Indeed, for k > a2 + 1, we have k + 1 − a1 ≥ k + 1 − a2 ≥ 2 where Γ is increasing so that
Γ(k + 1 − a2) ≤ Γ(k + 1 − a1), and therefore L|k−a2|Γλ,a2(k) ≤ La1−a2L|k−a1|Γλ,a1(k). We can
obtain a similar inequality for k ≤ a2 + 1 with different constant which gives then (3.15).

We define the Banach spaces GλL,a and GλL as

GλL,a := {u ∈ C∞(K) such that ‖u‖L,a <∞} (3.16)

and

GλL := {u ∈ C∞(K) such that ‖u‖L <∞}. (3.17)

The space GλL,a can be seen as the space of functions Gevrey λ with radius L−1 with a derivatives.

Roughly, we could think that u ∈ GλL,a if Dau ∈ GλL, even if it is not completely true if a /∈ N.

Note that, as a direct consequence of (3.13)-(3.14), we have the embeddings GλL,a ⊂ GλL if a ≥ 0

and GλL ⊂ GλL,a if a ≤ 0, together with the inequalities

‖u‖L ≤ max(La, L−a) ‖u‖L,a , if a ≥ 0, (3.18)

‖u‖L,a ≤ max(La, L−a) ‖u‖L , if a ≤ 0. (3.19)

Furthermore, for any a ∈ R and 0 < L < L′, we have the embedding GλL,a ⊂ GλL′,a with

‖u‖L′,a ≤ ‖u‖L,a . (3.20)

The following result [36, Theorem 5.4] will be used several times in the sequel.



16 C. LAURENT, I. RIVAS, AND L. ROSIER

Lemma 3.3. (Algebra property) For L > 0

‖uv‖L ≤ ‖u‖L ‖v‖L ∀u, v ∈ GλL. (3.21)

The following result [20, Lemma 2.6] is a variant of [16, Proposition 2.3] with spaces containing
non-integer “derivatives”.

Lemma 3.4 (Cost of derivatives for Gevrey spaces containing derivatives). Let λ > 0 and
δ > 0. Let q ∈ N and a, b ∈ R with d = q − a + b > 0. Then there exists some number
C = C(λ, δ, a, b, q) > 0 such that for all L > 0, α > 1 and u ∈ GλL,a, we have∣∣∣u(q)∣∣∣

αL,b
≤

(
C(L−d + Ld) + (1 + δ)αbLd

(
λd

e lnα

)λd)
|u|L,a (3.22)

and hence ∥∥∥u(q)∥∥∥
αL,b
≤

(
C(L−d + 〈L〉C) + (1 + δ)αbLd

(
λd

e lnα

)λd)
‖u‖L,a . (3.23)

where we denote 〈x〉 :=
√

1 + x2 for x ∈ R.

3.4. Application to the semi-linear PDE. We write our system in the equivalent form{
∂Mx u = 1

ζM

(
∂Nt u−

∑M−1
j=0 ζj∂

j
xu− f(x, u, ∂xu, ..., ∂

M−1
x u)

)
, x ∈ [−1, 1], t ∈ [t1, t2],

Ux(0, t) = K0(t), t ∈ [t1, t2],
(3.24)

recalling Ux(x, t) =
(
u(x, t), ∂xu(x, t), ..., ∂M−1x u(x, t)

)
and K0 := (k0(t), . . . , kM−1(t)). |ζM | = 1

will be considered in this section, for more detailed see Remark 4.

We write (3.24) as a first-order system

∂xU = AU + F (x, U), (3.25)

U(0) = K0 (3.26)

with U = Ux = (u, ∂xu, · · · , ∂M−1x u),

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1

ζ−1M (∂Nt − ζ0) −ζ−1M ζ1 · · · −ζ−1M ζM−2 −ζ−1M ζM−1

 , (3.27)

and

F (x, ~u) =

 0
...

−ζ−1M f(x, ~u)

 ,
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where the current vector ~u := (u0, u1, . . . , uM−1) will contain the derivatives. We decompose A
as

A = A0 +AR

=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1

ζ−1M ∂Nt 0 · · · 0 0

+


0 0 0 . . . 0
0 0 0 . . . 0
...

...
... . . .

...
0 0 0 . . . 0

−ζ−1M ζ0 −ζ−1M ζ1 · · · −ζ−1M ζM−2 −ζ−1M ζM−1

 .

Let L > 0, we define the space

XL := {U = (u0, u1, . . . , uM−1) ∈ GλL,M−1
λ

× . . .×Gλ
L, 1
λ

×GλL} (3.28)

with the norm

‖U‖XL = ‖(u0, u1, . . . , uM−1)‖XL = ‖u0‖L,M−1
λ

+ . . .+ ‖uM−1‖L =
M−1∑
j=0

‖uj‖L,M−j−1
λ

,

where the norms are those defined in Definition 2 with λ = M/N . Note that u0 is more regular
than u1 of ”1/λ derivative”. In particular, using that |ζM | = 1, we have that

‖A0U‖XL =
M−1∑
j=1

‖uj‖L,M−j
λ

+
∥∥∂Nt u0∥∥L .

In the following result, L1 stands for the inverse of the radius R of the initial datum.

Theorem 3.5. Pick any L1 with 0 < L1 <
1

(4N)λ
. Then there exists a number η > 0 such that

for any K0 ∈ XL1 with ‖K0‖XL1
≤ η, there exists a solution to (3.24)in C([−1, 1],XL0) for some

L0 > 0.

Proof. In order to apply Theorem 3.2, we introduce a scale of Banach spaces (Xs)s∈[0,1] as
follows, for s ∈ [0, 1], we set

‖U‖Xs = e−τ(1−s) ‖U‖XL(s)
for U ∈ Xs := XL(s) (3.29)

L(s) = er(1−s)L1, (3.30)

where

r = 1/N

and τ > 0 will be chosen thereafter. Note that (3.5) is satisfied from (3.20) and the fact that
L(s′) > L(s) for s′ < s. Additionally, we have that

‖U‖Xs′ ≤ e
−τ(s−s′) ‖U‖Xs . (3.31)

The use of Lemmas 3.6, 3.7 and 3.8 will allow us to select the parameters such that T =
A + F satisfies the assumptions of Theorem 3.2. Then, we only need to notice that ‖K0‖X1

=
‖K0‖XL1

≤ D for η = D small. �
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Remark 5. It is interesting to notice that for Theorem 3.5, we use the analytic regularity of
f in the variables u0, . . . , uM−1, but only the continuity of f in x. The analyticity of f in
x, u0, . . . , uM−1 will be used to prove the additional regularity of the solution in the variable x.
Also, as noticed in Section 7 concerning the Ginzburg-Landau equation, the same result holds
for a polynomial function of u0, u0 . . . , uM−1, uM−1. The crucial part for the existence is the
composition of Gevrey functions.

Lemma 3.6. Let L1 <
1

(4N)λ
. There exist τ0 > 0 (large enough) and ε0 < 1/4 such that we

have the estimates

‖A0U‖Xs′ ≤
ε0

s− s′
‖U‖Xs , ∀U ∈ Xs,

for all τ ≥ τ0 (as in (3.29)) and all s, s′ with 0 ≤ s′ < s ≤ 1.

Proof. By assumption, NL
1/λ
1 < 1/4. Pick δ > 0 small enough such that

(1 + δ)NL
1/λ
1 < 1/4, (3.32)

applying Lemma 3.4 to the M − 1-first terms of A0U (namely u1, ..., uM−1) for λ = M/N and

taking q = 0, b = M−j
λ and a = M−j−1

λ , so that d = 1
λ > 0, we obtain the existence of some

number C = Cδ > 0 such that for j = 1, ...,M − 1

‖uj‖αL,M−j
λ
≤
(
C(L−

1
λ + 〈L〉C) +

1 + δ

e lnα
α
M−1
λ L1/λ

)
‖uj‖L,M−j−1

λ
, for α > 1 and L > 0.

For the last term of A0U (namely ζ−1M ∂Nt u0) with λ = M/N and δ > 0, (3.32) is satisfied, and

considering now q = N , b = 0, a = M−1
λ , so d = 1

λ > 0, we obtain the existence of some number
C = Cδ > 0 such that∥∥∂Nt u0∥∥αL ≤ (C(L−

1
λ + 〈L〉C) +

1 + δ

e lnα
L1/λ

)
‖u0‖L,M−1

λ
.

It gives after summation

‖A0U‖XαL ≤
(
C(L−

1
λ + 〈L〉C) +

1 + δ

e lnα
α
M−1
λ L1/λ

)
‖U‖XL , (3.33)

uniformly for α > 1 and L > 0.

Therefore, from equation (3.29), (3.30), (3.31) and considering the estimate (3.33) with L = L(s),

α = L(s′)
L(s) = er(s−s

′) > 1 and s′ < s. Hence, for 0 ≤ s′ < s ≤ 1,

‖A0U‖Xs′ ≤ e−τ(s−s
′)

(
C(L

− 1
λ

1 + 〈erL1〉C) + (1 + δ)
e
M−1
λ

r(s−s′)er
1−s
λ L

1/λ
1

er(s− s′)

)
‖U‖Xs

≤

(
Ce−τ(s−s

′)(L
− 1
λ

1 + erC) + (1 + δ)erN
L
1/λ
1

er(s− s′)

)
‖U‖Xs

≤

(
e−1

τ(s− s′)
C(L

− 1
λ

1 + erC) + (1 + δ)
erNL

1/λ
1

er(s− s′)

)
‖U‖Xs (3.34)
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where we have used 0 < s− s′ ≤ 1, 0 < L1 < 1/4 and

e−τ(s−s
′) =

τ(s− s′)e−τ(s−s′)

τ(s− s′)
≤ e−1

τ(s− s′)
, (3.35)

since te−t ≤ e−1 for t ≥ 0. Minimizing the constant in the second term of the right hand side of
(3.34) leads to the choice r = 1/N . (Note that the initial space X1 = XL1 is independent of the
choice of r.) We arrive at the estimate

‖A0U‖Xs′ ≤

Ce−1(L− 1
λ

1 + eC/N )

τ
+ (1 + δ)NL

1/λ
1

 1

s− s′
‖U‖Xs ·

By (3.32), selecting τ0 large enough so that ε0 :=
Ce−1(L

− 1
λ

1 +eC/N )
τ0

+ (1 + δ)NL
1/λ
1 < 1/4. This

completes the proof of Lemma 3.6. �

Lemma 3.7. Let ε > 0, r = 1
N and L1 > 0. There exists τ0 > 0 such that we have the estimates

‖ARU‖Xs′ ≤
ε

s− s′
‖U‖Xs ∀U ∈ Xs,

for all τ ≥ τ0 and all s, s′ with 0 ≤ s′ < s ≤ 1.

Proof. Using (3.18), we first get that there exists C > 0 (depending on all the previous constants
L1, M ,...) such that for L ∈ [L1, e

rL1], (|ζM | = 1),

‖ARU‖XL = |ζM |−1
∥∥∥∥∥∥
M−1∑
j=0

ζjuj

∥∥∥∥∥∥
L

≤
M−1∑
j=0

‖ζjuj‖L ≤ C
M−1∑
j=0

‖uj‖L,M−j−1
λ

= C ‖U‖XL . (3.36)

Applying the previous estimate to L = L(s′) and using (3.29) and (3.35), we obtain

‖ARU‖Xs′ = e−τ(1−s
′) ‖ARU‖XL(s′)

≤

Ce−τ(1−s
′) ‖U‖XL(s′)

= Ce−τ(s−s
′) ‖U‖Xs′ ≤ C

e−1

τ(s− s′)
‖U‖Xs .

It gives the result for τ0 large enough. �

Lemma 3.8. Let f be as in (1.7)-(1.10), and let F (x, U) =

(
0

−f(x, u0, u1, . . . , uM−1)

)
for

x ∈ [−1, 1] and U = (u0, u1, . . . , uM−1) ∈ L∞(K)M with supi=0,...,M−1(‖ui‖L∞(K)) < 4. Let
r = 1/N , L1 > 0, and ε > 0. Then there exists τ0 > 0 (large enough) such that for any τ ≥ τ0,
there exists D > 0 (small enough) such that we have the estimates

‖F (x, U)‖Xs′ ≤
ε

s− s′
‖U‖Xs , (3.37)

‖F (x, U)− F (x, V )‖Xs′ ≤
ε

s− s′
‖U − V ‖Xs (3.38)

for 0 ≤ s′ < s ≤ 1, and U = (u0, u1, . . . , uM−1) ∈ Xs, V = (v0, v1, . . . , vM−1) ∈ Xs with

‖U‖Xs ≤ D, ‖V ‖Xs ≤ D. (3.39)
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Furthermore, for 0 ≤ s ≤ 1 and U ∈ Xs with ‖U‖Xs ≤ D, the map x ∈ [−1, 1]→ F (x, U) ∈ Xs

is continuous.

Proof. The assumption (1.7) gives F (x, 0) = 0 and therefore (3.37) follows from (3.38). Thus it
is sufficient to prove (3.38). Pick 0 ≤ s′ < s ≤ 1, D > 0 and U, V ∈ Xs satisfying (3.39). Then,
the definition (1.11) of f gives

‖F (x, U)− F (x, V )‖Xs′ =

∥∥∥∥−( 0
f(x, U)− f(x, V )

)∥∥∥∥
Xs′

= e−τ(1−s
′)‖f(x, U)− f(x, V )‖L(s′)

≤ e−τ(1−s
′)
∑
|~p|>0

‖A~p(x)[
M−1∏
j=0

u
pj
j −

M−1∏
j=0

v
pj
j ]‖L(s′)

≤ e−τ(1−s
′)
∑
|~p|>0

|A~p(x)|
M−1∑
j=0

‖upjj − v
pj
j ‖L(s′)

∏
i 6=j

(
‖ui‖piL(s′) + ‖vi‖piL(s′)

)
where we used the triangle inequality, Lemma 3.3 and an iteration argument. Note that, by

(3.18), we have for a constant Ĉ = Ĉ(L1,M) ≥ 1 and any 0 ≤ s′ < 1

M−1∑
i=0

‖ui‖L(s′) ≤ Ĉ
M−1∑
i=0

‖ui‖L(s′),M−i−1
λ
≤ Ĉeτ(1−s′) ‖U‖Xs′ ≤ ĈDe

τ , (3.40)

and similarly
∑M−1

i=0 ‖vi‖L(s′) ≤ ĈDeτ . Using again Lemma 3.3, for j = 0, . . . ,M − 1, we obtain

‖upjj − v
pj
j ‖L(s′) = ‖(uj − vj)(u

pj−1
j + u

pj−2
j vj + · · ·+ v

pj−1
j )‖L(s′)

≤ ‖uj − vj‖L(s′)
(
‖uj‖

pj−1
L(s′) + ‖uj‖

pj−2
L(s′)‖vj‖L(s′) + · · ·+ ‖vj‖

pj−1
L(s′)

)
≤ pj(ĈDe

τ )pj−1‖uj − vj‖L(s′).

It follows that

‖F (x, U)− F (x, V )‖Xs′ ≤ 2M−1e−τ(1−s
′)
∑
|~p|>0

|A~p(x)|
M−1∑
j=0

pj‖uj − vj‖L(s′)(ĈDeτ )|~p|−1

≤ C(L1, N,M)‖U − V ‖Xs′
∑
|~p|>0

|A~p(x)|
M−1∑
j=0

pj(ĈDe
τ )|~p|−1

=: C(L1, N,M)‖U − V ‖Xs′S. (3.41)

where we have used (3.18). Let us estimate the term

S :=
∑
|~p|>0

|A~p(x)|
M−1∑
j=0

pj(ĈDe
τ )|~p|−1,
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set C ′a := Ca/(1− b−12 ). Estimate (1.12) becomes

|A~p(x)| ≤ Ca

b|~p|
1

1− |x|b2
≤ C ′a
b|~p|

, for |x| ≤ 1,

so that we have

S ≤
∑
|~p|>0

C ′a
b|~p|
|~p|(CDeτ )|~p|−1 ≤

+∞∑
R=1

∑
|~p|=R

C ′a
bR
R(CDeτ )R−1.

Using the fact that
∑
|~p|=R 1 ≤ C(R+ 1)M−1 and that for 0 < ρ < 1,

∞∑
R=0

(R+ 1) · · · (R+M)ρR =
dM

dρM

∞∑
R=0

ρR+M =
dM

dρM
ρM

1− ρ
= P (ρ)(1− ρ)−M−1,

for some P ∈ R[X]. We obtain

S ≤ C(C ′a, b,M)

+∞∑
R=1

(R+ 1)M−1R

(
ĈDeτ

b

)R−1

≤ C(C ′a, b,M)
+∞∑
R=0

(R+ 1) · · · (R+M)

(
ĈDeτ

b

)R

≤ C(C ′a, b,M)

(
1− ĈDeτ

b

)−M−1
≤ C(C ′a, b,M),

provided that

D ≤ be−τ

2Ĉ(L1,M)
· (3.42)

Therefore, using (3.31), (3.35) and (3.41), we infer that (3.42) implies

‖F (x, U)− F (x, V )‖Xs′ ≤ C(C ′a, b,M,N,L1)‖U − V ‖Xs′
≤ C(C ′a, b,M,N,L1)e

−τ(s−s′)‖U − V ‖Xs

≤ C(C ′a, b,M,N,L1)

e

1

τ(s− s′)
‖U − V ‖Xs ·

To complete the proof of (3.38), it is sufficient to pick τ ≥ τ0 with τ0 such that C(C′a,b,M,N,L1)
eτ0

≤ ε,
and D as in (3.42).

For given 0 ≤ s ≤ 1 and U = (u0, u1, ..., uM−1) ∈ Xs with ‖U‖Xs ≤ D, let us prove that the
map x ∈ [−1, 1] → F (x, U) ∈ Xs is continuous. Pick any x, x′ ∈ [−1, 1]. From the mean value
theorem, we have for r ∈ N such that |xR − x′R| ≤ R|x− x′| with R ∈ N,

|A~p(x)−A~p(x′)| ≤ |x− x′|
∑
R∈N

RCa

b|~p|bR2
=

Ca

b|~p|b2

(
1− 1

b2

)−2
|x− x′|.
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We infer that

‖F (x, U)− F (x′, U)‖Xs = e−τ(1−s)‖f(x, u0, · · · , uM−1)− f(x′, u0, · · · , uM−1)‖L(s)
≤

∑
|~p|>0

|A~p(x)−A~p(x′)|‖up00 u
p1
1 , · · ·u

pM−1

M−1 ‖L(s)

≤ Ca
b2

(
1− 1

b2

)−2
|x− x′|

∑
|~p|>0

(
Ĉ(L1,M)Deτ

)|~p|
b|~p|

,

due to Lemma 3.3 and (3.40), the last series being convergent when (3.42) is fulfilled. This
proves the continuity of the map x ∈ [−1, 1]→ F (x, U) ∈ Xs. �

We are in a position to prove Theorem 3.1.

Proof of Theorem 3.1. By Remark 4, we can assume |ζM | = 1. Let f = f(x, ~y) be as in (1.7)-
(1.10), −∞ < t1 < t2 < +∞ and R > (4N)λ. Pick k0, k1, · · · , kM−1 ∈ Gλ([t1, t2]) such that (3.2)
holds. We will show that Theorem 3.5 can be applied provided that C is small enough. Pick
L1 ∈ (1/R, 1/(4N)λ). Let η = η(L1) > 0 be as in Theorem 3.5. Let K0 = (k0, k1, · · · , kM−1).
We have to show that

‖K0‖XL1
=

M−1∑
j=0

‖ki‖L1,
M−j−1

λ
≤ η,

for C small enough. Thanks to (3.15) and up to a change of η(L1) by a smaller constant, it is
sufficient to have for any i = 0, · · · ,M − 1,

‖ki‖L1,
M−1
λ

≤ η

2
. (3.43)

Recall that

‖f‖L1,
M−1
λ

= max

26‖f‖L∞([t1,t2]), 2
3L−11 sup

t∈[t1,t2],n∈N

|f (n+1)(t)|

L
|n−M−1

λ
|

1 Γλ,M−1
λ

(n)

 , (3.44)

where

Γλ,M−1
λ

(n) =

{
2−5
(
Γ(n+ 1− M−1

λ )
)λ

(1 + n)−2, if n > M−1
λ + 1,

2−5(n!)λ(1 + n)−2, if 0 ≤ n ≤ M−1
λ + 1.

Then, if follows that (3.43) is satisfied provided that

‖ki‖L∞([t1,t2]) ≤ 2−7η, (3.45)

‖k(n+1)
i ‖L∞([t1,t2]) ≤ 2−4ηL

1+|n−M−1
λ
|

1 Γλ,M−1
λ

(n), ∀n ∈ N. (3.46)

Since Γ(n+1−M−1
λ ) ∼ Γ(n+1)/n

M−1
λ ∼ n!/n

M−1
λ as n→ +∞, we have that

(
Γ(n+1−M−1

λ )
)λ ∼

(n!)λ/nM−1. Thus, the r.h.s. of (3.46) is equivalent to 2−9ηL
n+1−M−1

λ
1 (n!)λn−(M+1) as n→ +∞.

Using (3.2) and L1 > 1/R, we have that (3.46) holds if C is small enough. The same is true for
(3.45).



EXACT CONTROLLABILITY OF ANISOTROPIC 1D PDE 23

We infer from Theorem 3.5 the existence of a solution U = (y, ∂xy, · · · , ∂M−1x y) ∈ C([−1, 1], Xs0)
(for some s0 ∈ (0, 1)) of (3.24). Let us check that y ∈ C∞([−1, 1] × [t1, t2]). To this end, we
prove by induction on n ∈ N the following statement

U ∈ Cn([−1, 1], Ck([t1, t2])
M ), ∀k ∈ N. (3.47)

The assertion (3.47) is true for n = 0, since Xs0 ⊂ Ck([t1, t2])
M for all k ∈ N. Assume that

(3.47) is true for some n ∈ N. Since A is a continuous linear map from Ck+N ([t1, t2])
M into

Ck([t1, t2])
M for all k ∈ N, we have that

AU ∈ Cn([−1, 1], Ck([t1, t2])
M ), ∀k ∈ N.

On the other hand, as f is analytic and hence of class C∞, we infer from (3.47) that F (x, U) ∈
Cn([−1, 1], Ck([t1, t2])

M ) for all k ∈ N. Since ∂xU = AU + F (x, U), we obtain that (3.47) is
true with n replaced by n + 1. Therefore, y ∈ C∞([−1, 1] × [t1, t2]). Finally, the proof that
y ∈ G1,λ([−1, 1] × [t1, t2]), is given in Appendix 6.1, which uses some estimates of the next
section, with eventually a stronger smallness assumption on the initial data. �

4. Correspondence between the space derivatives and the time derivatives

We would like to know the relationship between the time derivatives and the space derivatives
of any solution of a general nonlinear equation given by

∂Nt y = Py + f(x, Y x) (4.1)

where f = f(x, Y x) is of class C∞ on RM+1.

When f = 0 and Py = ∂Mx y, then it is easy to see that

∂nN+j
t Y x = ∂nMx ∂jt Y

x, ∀j ∈ {0, ..., N − 1}, ∀n ∈ N. (4.2)

It follows that for any (x0, t0) the determination of the jet (∂nt Y
x(x0, t0))n≥0 is equivalent

to the determination of the jet (∂nxY
t(x0, t0))n≥0. In the general case (f = f(x, Y x) and

Py =
∑M

j=0 ζj∂
j
xy), the relation (4.2) may not be true. Nevertheless, there is still a one-to-

one correspondence between the jet (∂nt Y
x(x0, t0))n≥0 and the jet (∂nxY

t(x0, t0))n≥0.
Introduce some notations. For given −∞ < t1 ≤ τ ≤ t2 < +∞, we set

S := {y ∈ C∞([−1, 1]× [t1, t2]) : y satisfies (4.1) on [−1, 1]× [t1, t2]}, (4.3)

J t := {(∂nt Y x(0, τ))n≥0 : Y x = (y, ∂xy, ..., ∂
M−1
x y), y ∈ S} ⊂ (RM )N, (4.4)

J x := {(∂nxY t(0, τ))n≥0 : Y t = (y, ∂ty, ..., ∂
N−1
t y), y ∈ S} ⊂ (RN )N. (4.5)

The set J t (resp. J x), which stands for the set of sequences of time derivatives (resp. space
derivatives) at (0, τ) of Y x (resp. Y t) for smooth solutions y of (4.1), is a subset of (RM )N (resp.
(RN )N) that we will not determine explicitly.

Proposition 4.1. Let −∞ < t1 ≤ τ ≤ t2 < +∞ and assume that f ∈ C∞(RM+1). Then
there exists a map Λ : (RN )N → (RM )N whose restriction (still denoted by Λ) Λ : J x → J t
is a bijection such that for any y ∈ C∞([−1, 1] × [t1, t2]) satisfying (4.1) on [−1, 1] × [t1, t2],
we have (∂nt Y

x(0, τ))n≥0 = Λ
(
(∂nxY

t(0, τ))n≥0
)
, where Y x = (y, ∂xy, ..., ∂

M−1
x y) and Y t =

(y, ∂ty, ..., ∂
N−1
t y).
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Proof. Proposition 4.1 is a consequence of Lemma 4.2 (see below) which, roughly speaking,
consists in taking sufficiently many derivatives in (4.1). �

Notation 4.1. The space (Rq+1)p+1 will be denoted Ep,q. The current vector in Ep,q will be
denoted Yp,q ∈ Ep,q when a confusion may occur, but very often merely Y to make notations
easier.
For y ∈ C∞([−1, 1]×[t1, t2]) and p, q ∈ N, we denote the vector Y x,t

p,q (y) := (Y t
q , ∂xY

t
q , . . . , ∂

p
xY t

q ) ∈
Ep,q with Y t

q (x, t) = (y(x, t), ∂ty(x, t), ..., ∂qt y(x, t)) as it was defined in (1.5). Most of the time,

when only one function y is concerned, we will write Y x,t
p,q .

Lemma 4.2. Let f ∈ C∞(RM+1) and l, k ∈ N with l = Nn + j for some 0 ≤ j < N and
n ∈ N. Then there exists a smooth function Hk

l : R×EMn+k−1,N−1 → R such that any solution
y ∈ C∞([0, 1]× [t1, t2]) of (4.1) satisfies

∂lt∂
k
xy = Pn∂jt ∂

k
xy +Hk

l (x, Y x,t
Mn+k−1,N−1) (4.6)

where we have used the Notations 4.1.

We introduce first some definitions, notations, and lemmas that will be needed for the proof of
Lemma 4.2. To apply Leibniz formula for x in a formal way, we have to see how the derivations
∂x and ∂t operate in Ep,q. This leads us to define the following operators.

Notation 4.2. There is a linear operator D̃t from Ep,q+1 to Ep,q such that we can write

∂tY
x,t
p,q = D̃t(Y

x,t
p,q+1) for any smooth function.

Similarly, we define the operator D̃x from Ep+1,q to Ep,q by the shift D̃x(Y0, Y1, . . . , Yp+1) =

(Y1, . . . , Yp+1) so that for any y ∈ C∞([−1, 1]× [t1, t2]), Y
x,t
p,q being as in Notation 4.1, we have

D̃xY
x,t
k+1,N−1 = ∂xY

x,t
k,N−1. (4.7)

Note that D̃t can also be seen as a shift, but after a proper identification between Ep,q and Eq,p.

The operator D̃x depends of course on p and q but, since the definition is similar for each p, q,
it should not lead to any confusion.

Notation 4.3. For Y = (Y 0, . . . , Y i, . . . , Y k) ∈ Ek,N−1, we denote

I(Y ) := (Y 0, . . . , (−1)iY i, . . . , (−1)kY k).

Strictly speaking, the operator I depends on k, but since it takes the same form on each space,
we will keep the same notation. The interest of this operator is that for y ∈ C∞([−1, 1]× [t1, t2])

and Y = Y x,t
k,N−1(y) as in Notation 4.1, we have

I(Y (y)) = Y (y−)(−x), (4.8)

where y− is the reflected function y−(t, x) := y(t,−x).

We notice that

D̃tI(Y ) = I(D̃tY ), (4.9)

D̃xI(Y ) = −I(D̃xY ). (4.10)
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Lemma 4.3. Let p, q ∈ N and let M : R × Ep,q → R be a smooth function. Then there exist
two smooth functions Mt : [−1, 1] × Ep,q+1 → R and Mx : [−1, 1] × Ep+1,q → R such that for

any y ∈ C∞([−1, 1]× [t1, t2]) (not necessarily solution of (4.1)), Y x,t
p,q being as in Notation 4.1,

we have

∂tM(x, Y x,t
p,q ) = Mt(x, Y

x,t
p,q+1), (4.11)

∂xM(x, Y x,t
p,q ) = Mx(x, Y x,t

p+1,q). (4.12)

Moreover, if we assume that for some $,σ ∈ {−1, 1}, M(−x,$I(Y )) = σM(x, Y ), then we
have

Mt(−x,$I(Y )) = σMt(x, Y ), (4.13)

Mx(−x,$I(Y )) = −σMx(x, Y ). (4.14)

Proof. By the chain rule, we have

∂tM(x, Y x,t
p,q ) = ∇M(x, Y x,t

p,q ) ·
(

0

∂tY
x,t
p,q

)
. (4.15)

Using the operator D̃t introduced in Notation 4.2, we can define Mt as

Mt(x, Yp,q+1) := ∇M(x, Yp,q) ·
(

0

D̃t(Yp,q+1)

)
, ∀x ∈ [−1, 1], ∀Yp,q+1 ∈ Ep,q+1. (4.16)

For Yp,q+1 = (Y0, Y1, ..., Yp) ∈ Ep,q+1, we have denoted Yp,q the vector in Ep,q obtained by se-
lecting the q + 1 first components of each vector Yi for 0 ≤ i ≤ p. With this definition, (4.11) is
true for any smooth function y.

Similarly, we define the function Mx by

Mx(x, Yp+1,q) := ∇M(x, Yp,q) ·
(

1

D̃x(Yp+1,q)

)
, ∀x ∈ [−1, 1], ∀Yp+1,q ∈ Ep+1,q, (4.17)

and it can be seen that (4.12) is true for any smooth function y.
To prove (4.13), we take the derivative w.r.t. Y in the relation M(−x,$I(Y )) = σM(x, Y ) to
obtain for any Z ∈ Ep,q,

∇M(−x,$I(Y )) ·
(

0
$I(Z)

)
= σ∇M(x, Y ) ·

(
0
Z

)
.

Let Yp,q+1 ∈ Ep,q+1. Taking Y = Yp,q and Z = D̃t(Yp,q+1) and noticing that I(D̃t(Yp,q+1)) =

D̃t(I(Yp,q+1)) by (4.9), we obtain

∇M(−x,$I(Yp,q)) ·
(

0

$D̃t(I(Yp,q+1))

)
= σ∇M(x, Yp,q) ·

(
0

D̃t(Yp,q+1)

)
,

which is exactly (4.13). The proof of (4.14) is similar and is omitted. �

Proof of Lemma 4.2. We will actually prove the slightly stronger result that for k ∈ N and
l = Nn+j for some 0 ≤ j < N and n ∈ N, each Hk

l is actually a function of x and Y ∈ EMn+k−1,j
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so that (4.6) is satisfied with Hk
l (x, Y x,t

Mn+k−1,N−1) replaced by Hk
l (x, Y x,t

Mn+k−1,j).

The case n = 0, 0 ≤ j < N is trivial since we can take Hk
l = 0.

For some technical reasons, we will also need to deal with the case n = 1. Letting f0(x, Y
x
M−1) :=

f(x, Y x
M−1), we apply the operator ∂jt in (4.1) for 0 ≤ j < N to get

∂N+j
t y = P∂jt y + ∂jt f(x, Y x,t

M−1,0) (4.18)

We want to define functions fj so that for any y ∈ C∞([−1, 1]× [t1, t2]), we have

fj(x, Y
x,t
M−1,j) = ∂jt f0(x, Y

x,t
M−1,0) for 0 < j < N. (4.19)

Using Notation 4.2 we can define fj iteratively by

fj(x, YM−1,j) := ∇fj−1(x, YM−1,j−1) ·
(

0

D̃t(YM−1,j)

)
, (4.20)

so that by Lemma 4.3, (4.19) is true for any y ∈ C∞([−1, 1] × [t1, t2]). Now that the fj are
defined, we see that any solution y of (4.1) satisfies (4.18) and also

∂N+j
t y = P∂jt y + fj(x, Y

x,t
M−1,j). (4.21)

In particular, defining H0
N+j := fj , we see that the case k = 0, l = N + j with 0 ≤ j < N is

treated.

Applying ∂kx in (4.21) and using Lemma 4.3, we can find some smooth functions Hk
N+j such that

∂N+j
t ∂kxy = P∂jt ∂

k
xy +Hk

N+j(x, Y
x,t
M−1+k,j). (4.22)

The Hk
N+j are defined by the iteration formula

Hk
N+j(x, YM−1+k,j) := ∇Hk−1

N+j(x, YM−1+k−1,j) ·
(

1

D̃x(YM−1+k,j)

)
, (4.23)

this is the case n = 1 of the Lemma.

Now, we construct the functions Hk
Nn+j by induction on n. Assume that the (4.6) is satisfied

for some n ∈ N∗, for all l = Nn + j with 0 ≤ j < N and all k ∈ N. Applying the operator ∂Nt
in (4.6) yields

∂l+Nt ∂kxy = Pn∂jt ∂
k
x∂

N
t y + ∂Nt H

k
l (x, Y x,t

Mn+k−1,j). (4.24)

Using equation (4.1), we obtain

∂l+Nt ∂kxy = Pn+1∂jt ∂
k
xy + Pn∂kx∂

j
t f(x, Y x

M−1) + ∂Nt H
k
l (x, Y x,t

Mn+k−1,j). (4.25)

So, we are led to prove that the last two terms Pn∂kx∂
j
t f(x, Y x

M−1) + ∂Nt H
k
l (x, Y x,t

Mn+k−1,j) can

be written as Hk
l+N (x, Y x,t

M(n+1)+k−1,j). Concerning the first one, due to (4.19) we can write

Pn∂kx∂
j
t f(x, Y x

M−1) = Pn∂kxfj(x, Y
x,t
M−1,j). (4.26)
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Since Pn∂kx is a differential operator of order Mn + k in x, we see by successive applications

of Lemma 4.3 that the previous term can be written as a smooth function of x and Y x,t
M(n+1)+k−1,j .

By iterative applications of Lemma 4.3, the second term ∂Nt H
k
l (x, Y x,t

Mn+k−1,j) can be written

as F (x, Y x,t
Mn+k−1,j+N ) for some smooth function F . But thanks to the case n = 1, namely

(4.22), for each 0 ≤ p ≤ Mn + k − 1, ∂N+j
t ∂pxy can be written as JpN+j(x, Y

x,t
M+p,j) for some

smooth function JpN+j . In particular, Y x,t
Mn+k−1,N+j can be written as a smooth function of x

and Y x,t
M+Mn+k−1,j . It follows that ∂Nt H

k
l (x, Y x,t

Mn+k−1,j) = F (x, Y x,t
Mn+k−1,j+N ) can be written as

a smooth function of x and Y x,t
M(n+1)+k−1,j . Going back to (4.25) and summing up the expression

of the last two terms as functions of x and Y x,t
M(n+1)+k−1,j , we can write

∂
N(n+1)+j
t ∂kxy = Pn+1∂jt ∂

k
xy +Hk

N(n+1)+j(x, Y
x,t
M(n+1)+k−1,j) (4.27)

for some smooth function Hk
N(n+1)+j . This is the expected result at step n+ 1. �

We present a few consequences of Lemma 4.2.

Notation 4.4. Let k ∈ N and l = Nn + j for some 0 ≤ j < N and n ∈ N. Noticing that

Pn∂jt ∂
k
xy can be expressed as a linear combination of variables in Y x,t

Mn+k,N−1, we can define a

smooth function Jkl : [−1, 1]× EMn+k,N−1 → R such that

Jkl (x, Y x,t
Mn+k,N−1) = ∂lt∂

k
xy = Pn∂jt ∂

k
xy +Hk

l (x, Y x,t
Mn+k−1,N−1) (4.28)

for any solution y of (4.1). We define also the vector-valued functions

Jl : [−1, 1]× EMn+M−1,N−1 → RM ,

with Jl = (J0
l , J

1
l , . . . , J

M−1
l ).

These definitions will mainly be used at x = 0 and t = 0. Since the knowledge of the initial
datum Y0 and all its x-derivatives are sufficient to know Y x,t

Mn+k,N−1 for t = 0, Jl has to be

thought as the function that, from a sufficient amount of x-derivatives of the initial datum,
provides (∂ltY

x)(0, 0), that is the l time derivative of the boundary data. More precisely, if y is
a solution of (4.1), we have for any t, x

∂ltY
x = Jl(x, Y

x,t
Mn+M−1,N−1). (4.29)

In particular, this definition of Jl provides a proof for Lemma 1.1 with the appropriate choice
of m(l) = Mn+M − 1 if l = Nn+ j for some 0 ≤ j < N and n ∈ N.

The two following Lemmas are almost tautological with the definitions, but they are important
to justify the relevance of the set C.

Lemma 4.4. Assume that y is a smooth solution of (1.1)-(1.3). Then Y t(., t) ∈ C for all
t ∈ [0, T ].
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Proof. From (1.2), we have BY x(0, t) = 0 for all t ∈ [0, T ]. Applying the operator ∂lt in
that equation yields B∂ltY

x(0, t) = 0 for all t ∈ [0, T ]. Writing l = Nn + j, with 0 ≤
j < N , n ∈ N, and using the fundamental property (4.29) of the function Jl, we obtain
BJl(x, Y

t, ∂xY
t, ..., ∂Mn+M−1

x Y t)x=0. It means that Y t(., t) ∈ C for all t ∈ [0, T ]. �

Lemma 4.5. Let y be a smooth solution to ∂Nt y = P y + f(x, y, ∂xy, ..., ∂
M−1
x y) such that

Y x(0, t) ∈ C for some t ∈ [0, T ]. Then Y x satisfies the boundary condition BY x(0, t) = 0.

Proof. We have Y x(0, t) ∈ C, which implies, with the choice l = 0

BJ0(x, Y
t, ∂xY

t, ..., ∂Mn+M−1
x Y t)x=0 = 0.

Using property (4.29) at time t and with x = 0 and l = n = 0, one obtains BY x(0, t) = 0. �

The following Lemma is needed to prove Proposition 1.3.

Lemma 4.6. Assume that M is even and that

P =

M/2∑
j=0

ζ2j∂
2j
x . (4.30)

(1) If (1.18) holds, then for all l, k ∈ N we have

Hk
l (−x,−I(Y )) = (−1)k+1Hk

l (x, Y ), ∀x ∈ [−1, 1], ∀Y ∈ EMn+k−1,N−1, (4.31)

Jkl (−x,−I(Y )) = (−1)k+1Jkl (x, Y ), ∀x ∈ [−1, 1], ∀Y ∈ EMn+k,N−1. (4.32)

(2) If (1.19) holds, then for all l, k ∈ N we have

Hk
l (−x, I(Y )) = (−1)kHk

l (x, Y ), ∀x ∈ [−1, 1], ∀Y ∈ EMn+k−1,N−1, (4.33)

Jkl (−x, I(Y )) = (−1)kJkl (x, Y ), ∀x ∈ [−1, 1], ∀Y ∈ EMn+k,N−1. (4.34)

Proof. To treat both cases simultaneously, we define $ as $ = −1 (resp $ = 1) if (1.18) holds
(resp. (1.19) holds). Therefore, we want to prove

Hk
l (−x,$I(Y )) = $(−1)kHk

l (x, Y ) ∀Y ∈ EMn+k−1,N−1, (4.35)

Jkl (−x,$I(Y )) = $(−1)kJkl (x, Y ) ∀Y ∈ EMn+k,N−1. (4.36)

We still denote l = Nn+ j, where n ∈ N and 0 ≤ j < N . We first prove (4.35) by induction on
n. If n = 0, then (4.35) is obvious since Hk

l = 0.
Assume that n = 1 so that l = N + j. Assume first that k = 0. We claim that

fj(−x,$I(YM−1,j)) = $fj(x, YM−1,j), ∀YM−1,j ∈ EM−1,j · (4.37)

We proceed by induction. For j = 0, f0 = f , so it follows from assumption (1.18) or (1.19)
thanks to the choice of $. If (4.37) is true for j − 1, taking derivatives with respect to Y , we
also have, for any Z ∈ EM−1,j−1,

$∇fj−1(−x,$I(YM−1,j−1)) ·
(

0
I(Z)

)
= $∇fj−1(x, YM−1,j−1) ·

(
0
Z

)
. (4.38)
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By (4.9), (4.20) and (4.38), we have

fj(−x,$I(YM−1,j)) = ∇fj−1(−x,$I(YM−1,j−1)) ·
(

0

D̃t($I(YM−1,j))

)
= $∇fj−1(−x,$I(YM−1,j−1)) ·

(
0

I(D̃t(YM−1,j))

)
= $∇fj−1(x, YM−1,j−1) ·

(
0

D̃t(YM−1,j)

)
= $fj(x, YM−1,j).

Assume now that (4.35) is true for 0 ≤ j < N and at step k − 1, i.e.

Hk−1
N+j(−x,$I(YM−1+k−1,j)) = $(−1)k−1Hk−1

N+j(x, YM−1+k−1,j).

Taking derivatives with respect to x and Y , it gives for any Z ∈ EM−1+k−1,j ,

∇Hk−1
N+j(−x,$I(YM−1+k−1,j)) ·

(
−1

$I(Z)

)
= $(−1)k−1∇Hk−1

N+j(x, YM−1+k−1,j) ·
(

1
Z

)
.

Combined with (4.23) and (4.10), this gives

Hk
N+j(−x,$I(YM−1+k,j)) = ∇Hk−1

N+j(−x,$I(YM−1+k−1,j)) ·
(

1

D̃x($I(YM−1+k,j))

)
= ∇Hk−1

N+j(−x,$I(YM−1+k−1,j)) ·
(

1

−$I(D̃x(YM−1+k,j))

)
= $(−1)k∇Hk−1

N+j(x, YM−1+k−1,j) ·
(

1

D̃x(YM−1+k,j)

)
= $(−1)kHk

N+j(x, YM−1+k,j).

Thus (4.35) is proved for n = 1. Assume that (4.35) is true for l = Nn+ j, with 0 ≤ j < N and
n ∈ N∗, and for k ∈ N. Let us prove that (4.35) is also true for l+N and k. From (4.25)-(4.26),
we have that

Hk
l+N (x, Y x,t

M(n+1)+k−1,j) = Pn∂kxfj(x, Y
x,t
M−1,j) + ∂Nt H

k
l (x, Y x,t

M(n+1)+k−1,j). (4.39)

By Lemma 4.3, (4.30) and (4.37), we infer that the first term Pn∂kxfj(x, Y
x,t
M−1,j) can be written

as G(x, Y x,t
M(n+1)+k−1,j) where G satisfies G(−x,$I(Y )) = (−1)k$G(x, Y ).

The second term ∂Nt H
k
l (x, Y x,t

Mn+k−1,j), by an application of Lemma 4.3, can be written as

F (Y x,t
Mn+k−1,N+j) for a smooth function F that satisfies the same parity property as Hk

l , that is

F (−x,$I(Y )) = $(−1)kF (x, Y ).

But the case n = 1 (see (4.22)) gives that, for each 0 ≤ p ≤ Mn + k − 1, ∂N+j
t ∂pxy can be

written as JpN+j(Y
x,t
M+p,j) for some smooth function JpN+j that satisfies JpN+j(−x,$I(Y )) =

$(−1)pJpN+j(x, Y ). In particular, Y x,t
Mn+k−1,N+j can be written as K(x, Y x,t

M+Mn+k−1,N−1) (the
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components of K are the JpN+j(x, Y )). Therefore, the symmetry properties of JpN+j imply

K(−x,$I(Y )) = $I(K(x, Y )). In particular, we can write

∂Nt H
k
l (x, Y x,t

Mn+k−1,j) = F (x, Y x,t
Mn+k−1,j+N ) = F (x,K(x, Y x,t

M+Mn+k−1,N−1)).

Summarizing the symmetry properties of K and F , we obtain

F (−x,K(−x,$I(Y ))) = F (−x,$I(K(x, Y )) = $(−1)kF (x,K(x, Y )).

This is the expected result, and it completes the proof of (4.35).
To prove (4.36), we use (4.28) and (4.35). Thus it remains to establish the symmetry property

for the term Pn∂jt ∂
k
xy for any smooth function y. This follows at once from (4.8) and (4.30). �

Next, we relate the behaviors as n→ +∞ of the jets (∂nxY
t(0, τ))n≥0 and (∂nt Y

x(0, τ))n≥0.
To do that, we assume that in (4.1) the nonlinear term reads

f(x, y0, y1, ..., yM−1) =
∑

(~p,r)∈NM+1

a~p,ry
p0
0 y

p1
1 . . . y

pM−1

M−1 x
r ∀(x, y0, ..., yM−1) ∈ (−4, 4)M+1,

(4.40)
where the coefficients a~p,r, (~p, r) ∈ NM+1, satisfy (1.9)-(1.10).
For x ∈ (−1,+∞), we denote x! = Γ(x+1), where Γ(x) =

∫∞
0 tx−1e−tdt is the Gamma function.

Then (x+ 1)! = (x+ 1)(x!) for x > −1. We also set

(
y
x

)
= y!

x!(y−x)! for y ≥ x ≥ 0.

Proposition 4.7. Let −∞ < t1 ≤ τ ≤ t2 < +∞ and f = f(x, y0, y1, ..., yM−1) be as in (1.7)-
(1.8) with the coefficients a~p,r, (~p, r) ∈ NM+1, satisfying (1.9)-(1.10). Assume that |ζM | = 1.

Let R̃ > 4, R,R′ ∈ R with 4 < R′ < R < min(R̃, b2), and µ > M + 1. Then there exists some

number C̃ > 0 such that for any C ∈ (0, C̃], one can find a number C ′ = C ′(C,R,R′, µ) > 0
with limC→0+ C

′(C,R,R′, µ) = 0 such that

(1) for any function y ∈ C∞([−1, 1]× [t1, t2]) satisfying (4.1) on [−1, 1]× [t1, t2] and

Y t(x, τ) = Y0(x) =
∞∑
k=0

Ak
xk

k!
, ∀x ∈ [−1, 1] (4.41)

for some Y0 ∈ (R
R̃,C

)N , we have

|∂kx∂nt y(0, τ)| ≤ C ′ (λn+ k)!

RkR′λn(λn+ k + 1)µ
∀k, n ∈ N; (4.42)

(2) there exists an application

Λ∞ : (Ak)k≥0 ∈ (NR̃,C)N → (dkn)(n,k)∈N2 ∈ RN2

such that if there exists a solution y of (4.1) on [−1, 1]×[t1, t2] with Y t(x, τ) =
∑

k≥0Ak
xk

k! ,

then ∂kx∂
n
t y(0, τ) = dkn for all (n, k) ∈ N2 (without knowing a priori the existence of such

solution). Moreover, we have

|dkn| ≤ C ′
(λn+ k)!

RkR′λn(λn+ k + 1)µ
∀k, n ∈ N. (4.43)
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(3) The application Λ∞ satisfies the following property: Assume y is a smooth solution of
(4.1) such that there exists (dkn)(n,k)∈N2 = Λ∞((Ak)k≥0) for some (Ak)k≥0 ∈ (NR̃,C)N so

that ∂kx∂
n
t y(0, τ) = dkn for k = 0, . . . ,M − 1 and n ∈ N. Then ∂kx∂

n
t y(0, τ) = dkn for all

(n, k) ∈ N2.

We shall need several lemmas and give the proof of Proposition 4.7 later.

Lemma 4.8. (see [17, Lemma A.1]) For all k, q ∈ N and a ∈ {0, ..., k + q}, we have∑
j + p = a
0 ≤ j ≤ k
0 ≤ p ≤ q

(
k
j

) (
q
p

)
=

(
k + q
a

)
.

Lemma 4.9. For all λ ∈ [1,+∞) and all k, j, n, i ∈ N with k ≥ j and n ≥ i, we have(
k
j

)(
n
i

)
≤ λ

(
k + λn
j + λi

)
· (4.44)

Proof of Lemma 4.9. Recall the relationship (see e.g. [32]) between the Gamma function Γ and

the Beta function B defined by B(x, y) =
∫ 1
0 t

x−1(1− t)y−1dt for Re x > 0 and Re y > 0:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
· (4.45)

In particular, we have for x, y ∈ [0,+∞)(
x+ y
x

)
=

Γ(x+ y + 1)

Γ(x+ 1)Γ(y + 1)

=
Γ(x+ y + 1)

Γ(x+ y + 2)
B(x+ 1, y + 1)−1 =

(
(x+ y + 1)

∫ 1

0
tx(1− t)ydt

)−1
.

Taking x = j + λi, y = k − j + λ(n− i), this yields

(k + λn+ 1)

(
k + λn
j + λi

)
=

(∫ 1

0
tj+λi(1− t)k−j+λ(n−i)dt

)−1
. (4.46)

As the right-hand side of (4.46) is a non-decreasing function of λ, we infer that for λ ≥ 1

(k + n+ 1)

(
k + n
j + i

)
≤ (k + λn+ 1)

(
k + λn
j + λi

)
.

Therefore, using Lemma 4.8,(
k
j

)(
n
i

)
≤
(
k + n
j + i

)
≤ k + λn+ 1

k + n+ 1

(
k + λn
j + λi

)
≤ λ

(
k + λn
j + λi

)
.

�

The following result gives the algebra property for the mixed Gevrey spaces G1,λ([−1, 1]×[t1, t2]).
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Lemma 4.10. Let −∞ < t1 ≤ t2 < ∞, (x0, t0) ∈ [−1, 1] × [t1, t2], R,R
′ ∈ (0,+∞), q ∈ N,

λ ∈ [1,+∞), µ ∈ (q + 2,+∞), k0, n0 ∈ N, C1, C2 ∈ (0,+∞), and y1, y2 ∈ C∞([−1, 1] × [t1, t2])
be such that

|∂kx∂nt yi(x0, t0)| ≤ Ci
(λn+ k + q)!

RkR′λn(λn+ k + 1)µ
∀i = 1, 2, ∀k ∈ {0, ..., k0}, ∀n ∈ {0, ..., n0}.

(4.47)
Then we have

|∂kx∂nt (y1y2)(x0, t0)| ≤ Kq,µC1C2
(λn+ k + q)!

RkR′λn(λn+ k + 1)µ
∀k ∈ {0, ..., k0}, ∀n ∈ {0, ..., n0},

(4.48)
where

Kq,µ := λ2µ−q+1(1 + q)2q
∑
j≥0

∑
i≥0

1

(λi+ j + 1)µ−q
<∞.

Proof of Lemma 4.10: Using (λn+ k + q)q ≤ (1 + q)q (1 + λn+ k)q, we obtain

(λn+k+q)! = (λn+k)!

q∏
j=1

(λn+k+j) ≤ (λn+k)!(λn+k+q)q ≤ (1+q)q(λn+k)! (1 + λn+ k)q .

So, denoting µ̃ := µ− q > 2 and C̃i := (1 + q)qCi, we have

|∂kx∂nt yi(x0, t0)| ≤ C̃i
(λn+ k)!

RkR′λn(λn+ k + 1)µ̃
, ∀i = 1, 2, ∀k ∈ {0, ..., k0}, ∀n ∈ {0, ..., n0}.

(4.49)
We infer from the Leibniz rule that

|∂kx∂nt (y1y2)(x0, t0)|

=

∣∣∣∣∣∣
∑

0≤j≤k

∑
0≤i≤n

(
k
j

) (
n
i

)
(∂jx∂

i
ty1)(x0, t0)(∂

k−j
x ∂n−it y2)(x0, t0)

∣∣∣∣∣∣
≤
∑

0≤j≤k

∑
0≤i≤n

(
k
j

) (
n
i

)
C̃1(λi+ j)!

RjR′λi(λi+ j + 1)µ̃
C̃2(λ(n− i) + k − j)!

Rk−jR′λ(n−i)(λ(n− i) + k − j + 1)µ̃

=
C̃1C̃2

RkR′λn
(λn+ k)!

∑
0≤j≤k

∑
0≤i≤n

(
k
j

) (
n
i

) (
λn+ k
λi+ j

)−1
(λi+ j + 1)µ̃(λ(n− i) + k − j + 1)µ̃︸ ︷︷ ︸

I

·

We infer from Lemma 4.9 that(
k
j

) (
n
i

)(
λn+ k
λi+ j

)−1
≤ λ.



EXACT CONTROLLABILITY OF ANISOTROPIC 1D PDE 33

Finally, by the convexity of x→ xµ̃ on [0,+∞), we have that

∑
0≤j≤k

∑
0≤i≤n

(λn+ k + 2)µ̃

(λi+ j + 1)µ̃(λ(n− i) + k − j + 1)µ̃
=

∑
0≤j≤k

∑
0≤i≤n

(
1

λi+ j + 1
+

1

λ(n− i) + k − j + 1

)µ̃
≤

2µ̃−1
∑

0≤j≤k

∑
0≤i≤n

(
1

(λi+ j + 1)µ̃
+

1

(λ(n− i) + k − j + 1)µ̃

)
≤

2µ̃
∑
j≥0

∑
i≥0

1

(λi+ j + 1)µ̃
<∞,

where we used the fact that µ̃ = µ− q > 2.
It follows that

I ≤ 2µ̃λ

∑
j≥0

∑
i≥0

1

(λi+ j + 1)µ̃

 1

(λn+ k + 2)µ̃

= 2µ−qλ

∑
j≥0

∑
i≥0

1

(λi+ j + 1)µ−q

 (λn+ k + 2)q

(λn+ k + 2)µ
,

and hence the proof of Lemma 4.10 is complete once we have noticed that (λn+k)!(λn+k+2)q ≤
2(λn+ k + q)!. (We used the fact that (x+ 2)q ≤ 2

∏q
j=1(x+ j) for all x ≥ 0, q ∈ N∗.) �

Remark 6. Lemma 4.10 can also be written as the existence of an application π : R(k0+1)×(n0+1)×
R(k0+1)×(n0+1) 7→ R(k0+1)×(n0+1) such that, if for some d1, d2 ∈ R(k0+1)×(n0+1) and two smooth
functions y1, y2 satisfying ∂kx∂

n
t yi(x0, t0) = dkn,i , i = 1, 2 for all k ∈ {0, ..., k0}, for all

n ∈ {0, ..., n0}, then ∂kx∂
n
t (y1y2)(x0, t0) = (π(d1, d2))

k
n. The definition of π(d1, d2) is given

inside of the proof by the Leibniz formula. The Lemma gives then that the estimates∣∣∣dkn,i∣∣∣ ≤ Ci (λn+ k + q)!

RkR′λn(λn+ k + 1)µ
∀i = 1, 2, ∀k ∈ {0, ..., k0}, ∀n ∈ {0, ..., n0}. (4.50)

imply∣∣∣∣(π(d, d̃)
)k
n

∣∣∣∣ ≤ Kq,µC1C2
(λn+ k + q)!

RkR′λn(λn+ k + 1)µ
∀k ∈ {0, ..., k0}, ∀n ∈ {0, ..., n0}. (4.51)

This equivalent way of writing the same result is consistent with the second part of Proposition
4.7.

We are now ready to complete the proof of Proposition 4.7.

Proof of Proposition 4.7. We will prove the first part of the proposition. The construction of
the application Λ in the second part of the proposition will appear along the proof.
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Pick any number µ > M + 1. We shall prove by induction on n ∈ N that

|∂kx∂nt y(0, τ)| ≤ Cn
(λn+ k)!

RkR′λn(λn+ k + 1)µ
, ∀k ∈ N, (4.52)

where 0 < Cn ≤ Cn+1 ≤ C ′ < +∞. The value of the constant C ′ will appear along the proof.

Assume first that n = 0. Recall that Y t(x, τ) = Y0(x) =
∑∞

k=0Ak
xk

k! with ‖Ak‖∞ ≤ C k!

R̃k
.

Denote Ak = (A0
k, ..., A

N−1
k ). Using the fact that R < R̃, we have that for 0 ≤ n ≤ N − 1,

|∂kx∂nt y(0, τ)| = |Ank | ≤ C
k!

R̃k
≤ CD (λn+ k)!

RkR′λn(λn+ k + 1)µ

where

D :=

(
sup

k∈N,0≤n≤N−1
(
R

R̃
)kR′λn(λn+ k + 1)µ

k!

(λn+ k)!

)
<∞.

Il follows that (4.52) holds for 0 ≤ n ≤ N − 1 for some constants C0, ..., CN−1 ≤ CD.
Assume now that (4.52) is true up to the rank n− 1 for some n ≥ N . Let us show that (4.52)
is also true at the rank n for some constant Cn > 0. Then, by (1.1) and (1.11), we have that

∂kx∂
n
t y(0, τ) = ∂kx∂

n−N
t

M∑
j=0

ζj∂
j
xy(0, τ) +

∑
~p 6=0

∂kx∂
n−N
t

(
A~p(x)yp0(∂xy)p1 · · · (∂M−1x y)pM−1

)
(0, τ)

=: I1 + I2. (4.53)

Let us estimate I1 first. For 0 ≤ j ≤M , we have that

|ζj∂k+jx ∂n−Nt y(0, τ)| ≤ |ζj |Cn−N
(λ(n−N) + k + j)!

Rk+jR′λ(n−N)(λ(n−N) + k + j + 1)µ

≤ |ζj |Cn−N
(λn+ k + j −M)!

Rk+jR′λn−M (λn+ k + j −M + 1)µ
,

where we have used λN = M . It follows that

|I1| ≤

Cn−N (R′
R

)M
+
M−1∑
j=0

|ζj |Cn−N
(λn+ k + j −M + 1) · · · (λn+ k)

R′M

Rj

(
λn+ k + 1

λn+ k + j −M + 1

)µ
× (λn+ k)!

RkR′λn(λn+ k + 1)µ

≤

Cn−N (R′
R

)M
+
M−1∑
j=0

|ζj |Cn−N
(λn+ j −M + 1) · · ·λn

R′M

Rj
(M + 1)µ


× (λn+ k)!

RkR′λn(λn+ k + 1)µ
· (4.54)

where we have used k, j ≥ 0 and λn + k ≥ M so that λn+k+1
λn+k+j−M+1 ≤ M + 1. Let us estimate

I2. Since A~p does not depend on t, we have that ∂kx∂
m
t A~p = 0 for m ≥ 1 and k ≥ 0. Next, for
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k ≥ 0, we have that

|∂kxA~p(0)| = k! |a~p,k| ≤
Ca k!

b|~p|bk2
≤ C

b|~p|
k!

(k + 1)µRk
,

for some constant C > 0 depending on R, b2, µ, since R < b2.
Note that, still by the iteration assumption (4.52) at step n− 1, for 0 ≤ j ≤M − 1 the function

∂jxy satisfies the estimate

|∂kx∂mt (∂jxy)(0, τ)| ≤ Cm
(λm+ k + j)!

Rk+jR′λm(λm+ k + j + 1)µ

≤ Cm
Rj

(λm+ k +M − 1)!

RkR′λm(λm+ k + 1)µ
∀k ∈ N, ∀m ∈ {0, ..., n− 1}.

Let q = M − 1. Since µ > M + 1 = q + 2, it follows from iterated applications of Lemma 4.10
that ∣∣∣∂kx∂n−Nt

(
A~py

p0(∂xy)p1 · · · (∂M−1x y)pM−1
)
(0, τ)

∣∣∣
≤ C

(
KCn−N

b

)|~p| (λ(n−N) + k +M − 1)!

RkR′λ(n−N)(λ(n−N) + k + 1)µ

M−1∏
j=0

1

(Rj)pj
(4.55)

where K = Kq,µ > 0. If, for some number δ ∈ (0, 1), we have

Cn−N ≤ δ min
0≤j≤M−1

bRj

K
, (4.56)

then∑
~p 6=0

(
KCn−N

b

)|~p|M−1∏
j=0

1

(Rj)pj
≤ KCn−N

b

(
(1− δ)−1 + · · ·+ (1− δ)−M

)
≤ MK

b(1− δ)M
Cn−N .

(We considered the subcases (1) p0 ≥ 1 and p1 = . . . = pM−1 = 0; (2) p0 ≥ 0, p1 ≥ 1 and
p2 = . . . = pM−1 = 0; (3) p0 ≥ 0, p1 ≥ 0, p2 ≥ 1 and p3 = . . . = pM−1 = 0 etc.). Gathering the
previous estimates and noticing that λN = M , it follows that

|I2| ≤ C
(λn+ k − 1)!

RkR′λn−M (λn−M + k + 1)µ
MK

b(1− δ)M
Cn−N

≤

[
CMKR′M

b(1− δ)M (λn+ k)

(
λn+ k + 1

λn−M + k + 1

)µ]
× (λn+ k)!

RkR′λn(λn+ k + 1)µ
Cn−N (4.57)

≤

[
CMKR′M

b(1− δ)Mλn
(M + 1)µ

]
× (λn+ k)!

RkR′λn(λn+ k + 1)µ
Cn−N · (4.58)

where we have used again λn+k+1
λn+k−M+1 ≤M + 1. We set Cn := max(λn, 1)Cn−N , where

λn := |ζM |
(
R′

R

)M
+

M−1∑
j=0

|ζj |
(λn+ j −M + 1) . . . λn

R′M

Rj
(M + 1)µ+

CMKR′M

b(1− δ)Mλn
(M + 1)µ .
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Then (4.52) holds. Since
(
R′

R

)M
< 1 and |ζM | = 1, it is clear that |λn| ≤ 1 for n � 1, say for

n ≥ n0 ≥ N . This yields Cn ≤ Cn−N for all n ≥ n0 ≥ N , provided that (4.56) holds for n ≤ n0.
To ensure (4.56) for n ≤ n0, it is sufficient to choose C small enough (or, equivalently, C̃ small
enough). The proof by induction of (4.52) is achieved. The proof of the first part of Proposition
4.7 is complete. For the second part of Proposition 4.7, we follow the proof of the first part and
define the coefficients dkn by induction on n.

For n = 0, . . . , N−1 and k ∈ N, if we denoteAk = (A0
k, A

1
k, ..., A

N−1
k ), then we have ∂kx∂

n
t y(0, τ) =

Ank for any solution satisfying (4.41). So we are led to define dkn := Ank .
For n ≥ N , following the proof of the previous estimates, we obtain using the notations intro-
duced in (4.53) and Leibniz’ rule

I1 =

M∑
j=0

ζj∂
k+j
x ∂n−Nt y(0, τ) (4.59)

I2 =
∑
~p 6=0

∑
k1+···+kM+1=k

∑
n1+···+nM+1=n−N

k!

k1! · · · kM+1!

(n−N)!

n1! · · ·nM+1!(
∂k1x ∂

n1
t (A~p) ∂

k2
x ∂

n2
t (yp0) ∂k3x ∂

n3
t (∂xy)p1 · · · ∂kM+1

x ∂
nM+1

t (∂M−1x y)pM−1

)
(0, τ) (4.60)

with, for 0 ≤ i ≤M − 1,

∂
ki+2
x ∂

ni+2

t (∂ixy)pi(0, τ) =
∑

l1+···+lpi=ki+2

∑
m1+···+mpi=ni+2

ki+2!

l1! · · · lpi !
ni+2!

m1! · · ·mpi !
∂l1+ix ∂m1

t y(0, τ) · · · ∂lpi+ix ∂
mpi
t y(0, τ). (4.61)

We define some Ĩ1 and Ĩ2 by replacing in (4.59) ∂k+jx ∂n−Nt y(0, τ) by dk+jn−N , and in (4.61)

∂
lj+i
x ∂

mj
t y(0, τ) by d

lj+i
mj , where mj ≤ ni+2 ≤ n−N . For instance, Ĩ1 writes

Ĩ1 =
M∑
j=0

ζjd
k+j
n−N

and Ĩ2 is defined similarly. We see that

dkn := Ĩ1 + Ĩ2

is uniquely defined in terms of the dlm’s for m ≤ n −N , l ∈ N. Thus the sequence (dkn)(n,k)∈N2

can be defined by induction on n and the same estimates as before allow us to obtain (4.43), see
also Remark 6.
For the third part of Proposition 4.7, we prove by iteration on k that ∂kx∂

n
t y(0, τ) = dkn for all

n ∈ N. By assumption, the result is true for all k = 0, . . . ,M − 1. We assume that the result is
true until the rank k + M − 1 and we prove it at rank k + M . Let n ≥ N . We know that we
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have

∂kx∂
n
t y(0, τ) =

M∑
j=0

ζj∂
k+j
x ∂n−Nt y(0, τ) + I2, (4.62)

where I2 is defined by (4.60) and (4.61). The dkn have been defined by iteration on n by the
formula

dkn =
M∑
j=0

ζjd
k+j
n−N + Ĩ2 (4.63)

where Ĩ2 has been obtained by replacing ∂
lj+i
x ∂

mj
t y(0, τ) by d

lj+i
mj in the formula of I2. Since it

only involves some terms with 0 ≤ i ≤ M − 1 and 0 ≤ lj ≤ k, we have lj + i ≤ k + M − 1 for

these terms and the iteration property gives ∂
lj+i
x ∂

mj
t y(0, τ) = d

lj+i
mj . In particular, Ĩ2 = I2. So,

(4.63) can be written as

ζMd
k+M
n−N = dkn −

M−1∑
j=0

ζjd
k+j
n−N − I2.

Again, for 0 ≤ j ≤ M − 1, the iteration assumption gives dk+jn−N = ∂k+jx ∂n−Nt y(0, τ) and dkn =

∂kx∂
n
t y(0, τ). So, we obtain

ζMd
k+M
n−N = ∂kx∂

n
t y(0, τ)−

M−1∑
j=0

ζj∂
k+j
x ∂n−Nt y(0, τ)− I2.

After comparison with (4.62) and since ζM 6= 0, we obtain dk+Mn−N = ∂k+Mx ∂n−Nt y(0, τ). Since
n ≥ N is arbitrary, it gives the result at step k +M . �

Remark 7. We note that even if we do not know a priori whether Y0 will give rise to a solution,
the algorithm is still well-defined. Our proof will show a posteriori that any initial data Y0 which
is analytic (with an appropriate radius) and small enough will produce a solution making this
detail not so relevant. But this fact is not obvious at this moment of the proof.

Note that at that moment, both Proposition 4.1 and Proposition 4.7 seem to give two relations
between the space derivatives of Y0 and the time derivatives of an eventual solution. If there
exists a solution y starting from Y0 at time t = 0, that relation should be unique (but this claim
is not proved yet).

The following result will show the existence of a solution. It will allow us clarifying the relation
between the dn,k and the functions Jkn in Corollary 4.14. There is likely a direct way to prove
this relation, but it might be quite computational. The difference between Lemma 4.2 and
Proposition 4.7 is only the order in which we apply time and space derivatives to the equation.

Proposition 4.11 (Existence of solution without boundary condition). Let −∞ < t1 ≤ τ ≤
t2 < +∞ and f = f(x, y0, y1, ..., yM−1) be as in (1.7)-(1.8) with the coefficients a~p,r, (~p, r) ∈
NM+1, satisfying (1.9)-(1.10). Assume in addition that b2 > R̂ := 4Nλe(λe)

−1
. Let R̃ > R̂. Then
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there exists some number C̃ > 0 such that for any C ∈ (0, C̃] and any numbers RL with R̂ <

RL < min(R̃, b2) there exists a number C ′′ = C ′′(C, R̃,RL) > 0 with limC→0+ C
′′(C, R̃,RL) = 0

such that for any Y0 ∈ (R
R̃,C

)N , we can pick a function y ∈ G1,λ([−1, 1] × [t1, t2]) satisfying

(4.1) for (x, t) ∈ [−1, 1]× [t1, t2] and

Y t(x, τ) = Y0(x) =
∞∑
k=0

Ak
xk

k!
, ∀x ∈ [−1, 1], (4.64)

and such that for all t ∈ [t1, t2]

‖∂nt Y x(0, t)‖∞ ≤ C ′′(n!)λ

(
D|ζM |1/M

RL

)nλ
, (4.65)

with D := λe(λe)
−1

.

Proof. We assume first that |ζM | = 1, dealing with the general case at the end of the proof.
Note that the scaling in time affects only (4.65).

Let R̂ := 4Nλe(λe)
−1

, we will need some intermediate radii R, R′, R′′ with R̂ < RL < R′′ <

R′ < R < min(R̃, b2). Pick C̃, C as in Proposition 4.7, and pick any Y0 ∈ (R
R̃,C

)N . If a function

y as in Proposition 4.11 does exists, then both sequences of numbers

dkn := ∂nt ∂
k
xy(0, τ), n ∈ N, k ∈ N

can be computed inductively in terms of the coefficients Ak = ∂kxY0(0), k ∈ N, according to
Proposition 4.7, that is (dkn)(n,k)∈N2 = Λ∞(Ak)k∈N. Note that the sequence (dkn)(n,k)∈N2 can
be defined in terms of the coefficients Ak’s, even if the existence of the solution y is not yet
established, according to Proposition 4.7 (2). Furthermore, it follows from Proposition 4.7 that
we have for some constant C ′ = C ′(C,R,R′) > 0,

|dkn| ≤ C ′
(λn+ k)!

RkR′λn
, ∀n ∈ N, ∀k ∈ {0, . . . ,M − 1}.

Since R′′ ∈ (R̂, R′), there exists some constant P = P (R,R′, R′′) > 0 such that we have also

|dkn| ≤ C ′P
(λn)!

(R′′)λn
, ∀n ∈ N, ∀k ∈ {0, . . . ,M − 1}.

The following lemma is a consequence of [25, Proposition 3.6]. The proof that [25, Proposition
3.6] implies Lemma 4.12 will be done later.

Lemma 4.12. Let λ > 1. Let (dq)q≥0 be a sequence of real numbers such that

|dq| ≤ CHq(λq)! ∀q ≥ 0

for some H > 0 and C > 0. Then for all H̃ > ee
−1
H there exists a function f ∈ C∞(R) such

that

f (q)(0) = dq ∀q ≥ 0, (4.66)

|f (q)(t)| ≤ CH̃q(λq)! ∀q ≥ 0, ∀t ∈ R. (4.67)
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Pick H := 1/(R′′)λ and HL := ee
−1
/(RL)λ. Since R̂ < RL < R′′, we have ee

−1
H < HL <

1/(4Nλ)λ. Then by Lemma 4.12, there exist M functions h0, h1, . . . , hM−1 ∈ Gλ([t1, t2]) such
that for k = 0, . . . ,M − 1,

h
(n)
k (τ) = dkn, n ≥ 0 (4.68)

|h(n)k (t)| ≤ C ′PHn
L(λn)!, n ≥ 0, t ∈ [t1, t2]. (4.69)

It follows at once from Stirling’s formula that (λn)! ≤ Csλ
λn(n!)λ for some universal constant

Cs > 0, so that for k = 0, . . . ,M − 1,

|h(n)k (t)| ≤ C ′PCs(λ
λHL)n(n!)λ, n ≥ 0, t ∈ [t1, t2], (4.70)

Note that λλHL < 1/(4N)λ. So, if C is sufficiently small, then C ′ is as small as desired,
and it follows then from Theorem 3.1 that we can pick a function y ∈ G1,λ([−1, 1] × [t1, t2])
satisfying (3.1) with ki := hi for 0 ≤ i ≤ M − 1. In particular, for all n ∈ N and k =

0, . . . ,M − 1, we have ∂nt ∂
k
xy(0, τ) = h

(n)
k (τ) = dkn. Using the third Item of Proposition

4.7, we infer that ∂nt ∂
k
xy(0, τ) = dkn for n ∈ N and k ∈ N. Moreover, we can check in

the proof of Proposition 4.7 (case 0 ≤ n ≤ N − 1) that if (dkn)(n,k)∈N2 = Λ∞(Ak)k∈N, then

dkn = Ank for k ∈ N and 0 ≤ n ≤ N − 1. In particular, ∂nt ∂
k
xy(0, τ) = Ank = ∂kxy

n
0 (0) for

k ∈ N and 0 ≤ n ≤ N − 1, where Y0 = (y00, y
1
0, ...., y

N−1
0 ), and hence (4.64) holds. Since

Y x(0, t) = (h0(t), . . . , hM−1(t)) by construction, the estimate (4.65) follow from (4.70) with

C ′′ := C ′PCs and λλHL =
(
λe(λe)

−1
/RL

)λ
. The proof of Proposition 4.11 is complete for the

case |ζM | = 1.

In the general case, assuming τ = 0 without loss of generality, we proceed as in Remark 4 and

define P̃ = |ζM |−1P and f̃ = |ζM |−1f for which the result is proved for any interval in time. We

have therefore a solution ỹ of ∂Nt ỹ = |ζM |−1P ỹ+ |ζM |−1f(x, Ỹ x) on [−1, 1]× [|ζM |−1t1, |ζM |−1t2]
with Ỹ t(x, 0) = Y0(x). Moreover, ỹ satisfies (4.65) with |ζM | = 1. Now, we define y(x, t) :=

ỹ(x, |ζM |1/N t) which is a solution of ∂Nt y = Py + f(x, Y x) on [−1, 1] × [t1, t2] with Y t(x, 0) =
Y0(x). By scaling, Y x satisfies

|∂nt Y x(0, t)| ≤ |ζM |n/N
∣∣∣(∂nt Ỹ x)(0, |ζM |N t)

∣∣∣ ≤ |ζM |nλ/MC ′′(n!)λ
(
D

RL

)nλ
. (4.71)

�

Proof of Lemma 4.12. We want to apply [25, Proposition 3.6] (stated below in Proposition 4.13)

with the choice a0 = 1 and k becoming k−1 so that Mq = (λq)! ak = (λ(k−1))!
(λk))! = Γ(λ)−1B(λ(k−

1) + 1, λ) = Γ(λ)−1
∫ 1
0 t

λ(k−1)(1− t)λ−1dt for k ≥ 1. All the terms being positive, we obtain for
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p ≥ 1 ∑
k>p

ak = Γ(λ)−1
∫ 1

0
(1− t)λ−1(

∑
k>p

tλ(k−1))dt

= Γ(λ)−1
∫ 1

0
(1− t)λ−1 tλp

1− tλ
dt ≤ Γ(λ)−1

∫ 1

0
(1− t)λ−2tλpdt

=
λp

Γ(λ)(λ− 1)

∫ 1

0
(1− t)λ−1tλp−1dt ≤ λ

(λ− 1)
pap < +∞,

where we have used twice tλ ≤ t for t ∈ [0, 1] and λ > 1, and performed an integration by
parts. In particular, the three conditions of Proposition 4.13 are fulfilled with A := λ

λ−1 + 1 and

Mq = (λq)!. This completes the proof of Lemma 4.12. �

For the convenience of the reader, we state the following proposition that we used before to
construct the suitable Gevrey functions.

Proposition 4.13 (Proposition 3.6 of [25]). Pick any sequence (aq)q∈N satisfying

• 1 = a0 ≥ a1 ≥ a2 ≥ · · · > 0
•
∑

k≥1 ak < +∞
• pap +

∑
k>p ak ≤ Apap, ∀p ≥ 1,

for some constant A ∈ (0,+∞). Let Mq := (a0 · · · aq)−1 for q ≥ 0. Then for any sequence of
real numbers (dq)q≥0 such that

|dq| ≤ CHqMq, ∀q ≥ 0

for some H > 0 and C > 0, and for any H̃ > ee
−1
H, there exists a function f ∈ C∞(R) such

that

f (q)(0) = dq ∀q ≥ 0,

|f (q)(x)| ≤ CH̃qMq ∀q ≥ 0, ∀x ∈ R.

Corollary 4.14. Let Y0 satisfying the assumptions of Proposition 4.7 and let (dkn)(n,k)∈N2 be the
sequence introduced in Proposition 4.7 (2). Then we have the relationship

dkn = Jkn(0, A0, A1, ..., AM [ n
N
]+k) (4.72)

where the Jkn are the functions defined in (4.28).
Moreover, if Y0 ∈ C and if we set Dn := (d0n, d

1
n, . . . , d

M−1
n ), then BDn = 0 for all n ∈ N.

Proof. Let y be a solution given by Proposition 4.7. Then (4.72) holds since both sides of the
equality agree with ∂nt ∂

k
xy(0, τ), according to (4.28) for the right-hand side and to Proposition

4.7 (2) for the left-hand side. Moreover if Y0 ∈ C, then BDn = BJn = 0 by (1.17). �

Proposition 4.15 (Existence of solution with boundary condition). Consider the same assump-

tions and constants as in Proposition 4.11. Then, for any Y 0 ∈
(
RR̃,C

)N
∩ C, we can find a

solution of (1.1)-(1.2) for (x, t) ∈ [−1, 1]× [t1, t2] satisfying (4.64) and (4.65).
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Proof. The proof is similar to those of Proposition 4.11. The modifications to ensure the bound-
ary conditions are the following.
The sequence (Dn)n≥0 defined in Corollary 4.14 satisfies BDn = 0 for all n ∈ N. We can
then proceed as in the proof of Proposition 4.11, replacing Lemma 4.12 by Lemma 4.16 (see
below). The advantage of using Lemma 4.16 is that the condition BH0(t) = 0 is satisfied by the
function H0 = (h0, ..., hM−1) ∈ Gλ([t1, t2])

M it provides. Then, using Theorem 3.1 again with
that boundary condition H0, the equation (3.1) gives Y x(0, t) = H0(t), so that the boundary
condition BY x(0, t) = 0 is satisfied, as expected. This gives a solution of the system (1.1)-(1.2).
The conditions (4.64) and (4.65) are fulfilled for the same reasons as in Proposition 4.11. �

Lemma 4.16. Let (Dq)q≥0 be a sequence in CM such that

‖Dq‖∞ ≤ CHq(λq)! ∀q ≥ 0,

BDq = 0 ∀q ≥ 0

for some H > 0 and C > 0. Then for all H̃ > ee
−1
H, there exists a function F ∈ C∞(R)M such

that

F (q)(0) = Dq ∀q ≥ 0, (4.73)

‖F (q)(t)‖∞ ≤ CH̃q(λq)! ∀q ≥ 0, ∀t ∈ R, (4.74)

BF (q)(t) = 0 ∀q ≥ 0, ∀t ∈ R. (4.75)

Proof. Let ei ∈ CM , i = 1, · · · , dim(ker(B)), be the vectors of a basis of ker(B). In particular, we
can write Dq =

∑
iDq,iei. By assumption, the real sequence (Dq,i)q∈N satisfies the assumptions

of Lemma 4.12, so that there are some functions fi ∈ C∞(R) satisfying f
(q)
i (0) = Dq,i and

|f (q)i (t)| ≤ CH̃q(λq)! for all q ≥ 0, t ∈ R. The function F =
∑

i fiei satisfies the requested
properties. �

We also infer from the existence of solutions given by Proposition 4.11 the following uniqueness
result for the functions Jkl .

Lemma 4.17. Let l ∈ N. Then there exists some number ε > 0 such that if two applications

Jl, J̃l : [−1, 1] × (RN )m(l)+1 → RM satisfy (1.16) for any smooth solution y of (4.1), then they
coincide on [−1, 1]×B(0, ε). In particular, if both functions are analytic, then they are equal.

Proof. Since (1.16) is assumed to be satisfied, it is sufficient to prove that for any
(x0, Y0, Y1, · · · , Ym(l)) ∈ [−1, 1]×B(0, ε), there exists one solution of y ∈ C∞([−1, 1]× [t1, t2]) so-

lution of (4.1) with (Y0, Y1, · · · , Ym(l)) = (Y t, ∂xY
t(x0, τ), ..., ∂

m(l)
x Y t(x0, τ))). Thanks to Propo-

sition 4.11, it suffices to find Y 0 ∈ (RR̃,C)N so that (Y 0(x0), · · · , ∂m(l)
x Y 0(x0)) = (Y0, Y1, · · · , Ym(l)).

This is simple analytic interpolation if ε is chosen small enough with respect to R̃, C. �

5. Proofs of Theorem 1.2 and Proposition 1.3

Proof of Theorem 1.2. Let R > R̂ := 4Nλe(λe)
−1

and let C̃ be the constant given by Proposition
4.11. Let Y 0, Y 1 ∈ (R

R,C̃
)N ∩ C. We infer from Proposition 4.15 applied with [t1, t2] = [0, T ]
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and τ = 0 (resp. τ = T ) the existence of two functions ŷ, ỹ ∈ G1,λ([−1, 1] × [0, T ]) satisfying
(1.1)-(1.2) and such that

Ŷ t(x, 0) = Y 0(x) and Ỹ t(x, T ) = Y 1(x), ∀x ∈ [−1, 1].

Let ρ ∈ C∞(R) be such that

ρ(t) =

{
1 if t ≤ T

4 ,

0 if t ≥ 3T
4 ,

and ρ|[0,T ] ∈ G
λ+1
2 ([0, T ]). (Note that (λ+ 1)/2 > 1.) Let

K0(t) = ρ(t)Ŷ x(0, t) + (1− ρ(t))Ỹ x(0, t), t ∈ [0, T ].

Then K0 ∈ Gλ([0, T ])M by [25, Lemma 3.7], and assuming Y 0, Y 1 ∈ (R
R,Ĉ

)N ∩ C with 0 < Ĉ <

C̃, Ĉ small enough, we can assume that (3.2) is satisfied. It follows then from Theorem 3.1 that
there exists a solution y ∈ G1,λ([−1, 1] × [0, T ]) of (3.1). Then y satisfies (1.1)-(1.2) together
with Y t(x, T ) = Y 1(x) for x ∈ [−1, 1].
Indeed, since ρ(t) = 0 for t > 3T/4, we have

∂nt Y
x(0, T ) = K

(n)
0 (T ) = ∂nt Ỹ

x(0, T ), ∀n ∈ N,

It follows then from Proposition 4.1 that ∂nxY
t(0, T ) = ∂nx Ỹ

t(0, T ) = ∂nxY
1(0) for all n ∈ N, and

hence Y t(., T ) = Y 1. We can prove in the same way that Y t(., 0) = Y 0. The proof of Theorem
1.2 is achieved. �

Let us now proceed to the proof of Proposition 1.3 describing the compatibility set in cases
where parity arguments can be used.

Proof of Proposition 1.3. We first consider the Dirichlet case. We will give the modifications of
the proof for the Neumann case after.

Consider first the Dirichlet case when BY x(0, t) = 0 reduces to ∂2jx y(0, t) = 0 for 2j ≤ M − 1.
It means that, following the definition (1.17) and denoting J il the ith component of the vector

Jl ∈ RM , we have

C =
{
Y0 ∈ C∞([0, 1])N ; J2j

l (0, Y0, ∂xY0, ..., ∂
m(l)
x Y0)x=0 = 0, ∀0 ≤ 2j ≤M − 1, ∀l ∈ N

}
So, we need to show C = C̃, where

C̃ :=
{
Y0 = (y0, y1, ..., yN−1) ∈ C∞([0, 1])N ; ∂2jx yl(0) = 0, ∀j ∈ N, ∀l = 0, ..., N − 1

}
=

{
Y0 ∈ C∞([0, 1])N ; ∂2jx Y0(0) = 0, ∀j ∈ N

}
.

We first prove that C̃ ⊂ C.
The set C̃ is the set of smooth functions that admit a smooth odd extension to [−1, 1]. We still
denote Y0 ∈ C∞([−1, 1])N this extension. We use the notation (Y0)

x
k for the vector (Y0)

x
k =

(Y0, ∂xY0, ..., ∂
k
xY0) ∈ Ek,N−1. A vectorial variant of property (4.8) is then

I((Y0)
x
k)(x) = (Y0,−)xk(−x) (5.1)

where Y0,− is the reflected application Y0,−(x) = Y0(−x).
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The derivatives at zero are not modified, so we need to prove that J2j
l (0, (Y0)

x
m(l))x=0 = 0 for

this extension. Using Lemma 4.6 and property (5.1)

Jkl (−x,−(Y0,−)xm(l)(−x)) = Jkl (−x,−I((Y0)
x
m(l))(x)) = (−1)k+1Jkl (x, (Y0)

x
m(l)(x)). (5.2)

But since Y0 is odd, Y0,− = −Y0 and (Y0,−)xm(l) = −(Y0)
x
m(l), which gives

Jkl (−x,−(Y0,−)xm(l))(−x))) = Jkl (−x, (Y0)xm(l)(−x)).

In particular, thanks to (5.2), the function x 7→ J2j
l (x, (Y0)

x
m(l)(x)) is odd and J2j

l (0, (Y0)
x
m(l)(0)) =

0.

Next we prove that C ⊂ C̃. Let Y0 ∈ C. We prove by induction on k the following equivalent
fact: I((Y0)

x
k) = −(Y0)

x
k at x = 0.

For k ≤ M − 1, we notice from the proof of Lemma 4.2 that for 0 ≤ l < N , we have Hk
l = 0

so that for Y0 = (y0, y1, ..., yN−1), we have Jkl (x, Y0, . . . , ∂
k
xY0) = ∂kxyl. So the assumption

Jkl (x, Y0, . . . , ∂
k
xY0)x=0 = 0 for k even, k ≤M − 1 implies ∂kxyl = 0 for k even, k ≤M − 1.

Now, assume that I((Y0)
x
2k−1) = −(Y0)

x
2k−1 at x = 0 for some k ∈ N with 2k−1 ≥M −1. Write

2k = Mn+ i with 0 ≤ i < M (necessarily even) and pick any l = Nn+ j, where j is arbitrary
with 0 ≤ j < N .

By (4.31), since i is even, we have H i
l (0,−I(Y )) = −H i

l (0, Y ) for all Y . We have by the
inductive hypothesis I((Y0)

x
Mn+i−1) = −(Y0)

x
Mn+i−1 at x = 0, so that H i

l (0, (Y0)
x
Mn+i−1(0)) =

−H i
l (0, (Y0)

x
Mn+i−1(0)), and hence H i

l (0, (Y0)
x
Mn+i−1(0)) = 0. Now, using the definition (4.28)

of J il and the assumption Y0 ∈ C which gives J il (x, (Y0)
x
Mn+i)x=0 = 0 (since i is even), we obtain

Pn∂ixyj = 0 if we denote Y0 = (y0, . . . , yN−1). By the structure of P , this gives the result at
step 2k = Mn+ i since 0 ≤ j < N is arbitrary. This implies that the result is also true at step
2k + 1.

For the Neumann case, we modify the proof as follows.

This time, we are in the case when BY x(0, t) = 0 reduces to ∂2j+1
x y(0, t) = 0 for 2j+1 ≤M −1,

and using (1.17), we have

C =
{
Y0 ∈ C∞([0, 1])N ; J2j+1

l (0, Y0, ∂xY0, ..., ∂
m(l)
x Y0)x=0 = 0, ∀0 ≤ 2j + 1 ≤M − 1, ∀l ∈ N

}
.

So, we have to show that C = C̃ with

C̃ :=
{
Y0 = (y0, y1, ..., yN−1) ∈ C∞([0, 1])N ; ∂2j+1

x yl(0) = 0, ∀j ∈ N, ∀l = 0, ..., N − 1
}

=
{
Y0 ∈ C∞([0, 1])N ; ∂2j+1

x Y0(0) = 0,∀j ∈ N
}
.

We first prove that C̃ ⊂ C. In this case, the set C̃ is the set of smooth functions that admit a

smooth even extension to [−1, 1]. So we need to prove that J2j+1
l (0, Y0, ∂xY0, ..., ∂

m(l)
x Y0)x=0 = 0

for this extension. Using the second part of Lemma 4.6 and property (5.1)

Jkl (−x, (Y0,−)xm(l)(−x)) = Jkl (−x, I((Y0)
x
m(l))(x)) = (−1)kJkl (x, (Y0)

x
m(l)(x)). (5.3)
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But since Y0 is even, Y0,− = Y0 and (Y0,−)xm(l) = (Y0)
x
m(l), which gives this time

Jkl (−x, (Y0,−)xm(l)(−x)) = Jkl (−x, (Y0)xm(l)(−x)).

In particular, thanks to (5.3), the function x→ J2j+1
l (x, (Y0)

x
m(l)(x)) is odd and

J2j+1
l (0, (Y0)

x
m(l)(0)) = 0.

In order to prove that C ⊂ C̃, we prove by induction on k that for all k ∈ N, I((Y0)
x
k) = (Y0)

x
k at

x = 0.
For k ≤ M − 1, we still have Hk

l = 0 and the same arguments as in the Dirichlet case gives

∂kxyl = 0 for k odd in the range we consider.

Assume that I((Y0)
x
2k) = (Y0)

x
2k at x = 0 for some k ∈ N with 2k ≥M−1. Write 2k+1 = Mn+i

with 0 ≤ i < M (necessarily odd), and pick l = Nn+ j where j is arbitrary with 0 ≤ j < N .

By (4.33), since i is odd, we have H i
l (0, I(Y )) = −H i

l (0, Y ) for all Y . But we have from
the inductive hypothesis I((Y0)

x
Mn+i−1) = (Y0)

x
Mn+i−1 at x = 0, so that H i

l (0, (Y0)
x
Mn+i−1) =

−H i
l (0, (Y0)

x
Mn+i−1), and hence H i

l (0, (Y0)
x
Mn+i−1) = 0. Now, using the definition (4.28) of J il

and the assumption J il (x, (Y0)
x
Mn+i)x=0 = 0 (since i is odd), we obtain Pn∂ixyj = 0 if Y0 =

(y0, . . . , yN−1). Since 0 ≤ j < N is arbitrary, this gives the result at step 2k+ 1 and also at step
2k + 2. �

Appendix

6. A Lemma of complex analysis

Lemma 6.1. Consider

BR,C :=

{
z : [−1, 1]→ C; ∃f ∈ H∞R , ‖f‖L∞(B(0,R)) ≤ C, f

∣∣∣
[−1,1]

= z

}
.

Then, for any 1 < r < R and C > 0

BR,C ⊂ RR,C ⊂ Br,C(1− r
R
)−1 .

Proof. For given z ∈ BR,C , if f denotes its analytic extension to B(0, R), writing f(ξ) =∑∞
n=0 αn

ξn

n! for |ξ| < R, we have by Cauchy’s formula that for any n ∈ N and any r < R:

|αn| = |f (n)(0)| =

∣∣∣∣∣ n!

2πi

∫
|ξ|=r

f(ξ)

ξn+1
dξ

∣∣∣∣∣ ≤ n!

rn
‖f‖L∞(B(0,R)),

and hence |αn| ≤ ‖f‖L∞(B(0,R))
n!
Rn by letting r → R−. On the other hand, if z ∈ RR,C is given

by z(ξ) = f(ξ) :=
∑∞

n=0 αn
ξn

n! for ξ ∈ [−1, 1] and 1 < r < R, then for |ξ| < r we have that

|f(ξ)| ≤ C
∑∞

n=0(
r
R)n = C(1− r

R)−1 <∞.

�
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6.1. Gevrey regularity of the solution of (3.1) provided in Theorem 3.1. Assume that
f satisfies (1.7)-(1.10), still under the assumption |ζM | = 1. Let us show that y ∈ G1,λ([−1, 1]×
[t1, t2]). Let L0 = L(s0) = e

1−s0
N L1 <

e
1
N

(4N)λ
where s0 ∈ [0, 1] and L1 are given in the proof of

Theorem 3.1. Then, we can pick some numbers R1, R2 such that 4M

e
1
M

< R1 < R2 <
λ

L
1
λ
0

. Let

us prove that there exists some constant Q > 0 such that (3.3) holds. To this end, picking any
µ > M + 1, we prove by induction on k ∈ N that

|∂kx∂nt y(x, t)| ≤ Ck
(λn+ k)!

Rk1R
λn
2 (λn+ k + 1)µ

∀(x, t) ∈ [−1, 1]× [t1, t2], ∀n ∈ N, (6.1)

with supk∈NCk <∞, the sequence Ck being nondecreasing. Let us start with k ∈ {0, ...,M−1}.
We already know that y ∈ C∞([−1, 1]×[t1, t2]) and that U = (y, ∂xy, ..., ∂

M−1
x ) ∈ C([−1, 1], Xs0)

for some s0 ∈ (0, 1), the space Xs0 being defined in (3.29); that is, U ∈ C([−1, 1],XL0) with

L0 = L(s0) = er(1−s0)L1 = e
1−s0
N L1 ≤ e

1
N L1. Thus, we have for some constant C > 0 and for

all n ∈ N and all (x, t) ∈ [−1, 1]× [t1, t2]

|∂kx∂n+1
t y(x, t)| ≤ C L

|n−M−1−k
λ
|

0 Γ(n+ 1− M − 1− k
λ

)λ(1 + n)−2,

|∂kx∂n+1
t y(x, t)| ≤ C,

|∂M−1x ∂n+1
t y(x, t)| ≤ C Ln0 (n!)λ(1 + n)−2,

for 0 ≤ k < M − 1, n ≤
∣∣M−k−1

λ

∣∣+ 1.

We readily infer from Stirling’s formula Γ(x+1) ∼ (xe )x
√

2πx that Γ(x+a) ∼ Γ(x)xa as x→∞,

for any a ∈ R, and that (n!)λ ∼ (2πn)
λ−1
2 λ−

1
2 (λn)!/λλn. It follows that for some constant C > 0

|∂kx∂n+1
t y(x, t)| ≤ CLn0L

−M−1−k
λ

0 [n!(n+ 1)−
M−1−k

λ ]λ(n+ 1)−2 ≤ CLn0
(λn)!

λλn
(n+ 1)−(M−1−k)n

λ−1
2

for 0 ≤ k ≤M − 1. Thus there are some positive constants Ck, 0 ≤ k ≤M − 1, such that (6.1)

holds, provided that R2 < λ/L
1
λ
0 .

Assume now that (6.1) is true for k ∈ {0, ..., l +M − 1} for some l ∈ N. Let us show that (6.1)
is true for k = l +M ; that is, for all n ≥ 0 and all (x, t) ∈ [−1, 1]× [t1, t2]

∣∣∣∂l+Mx ∂nt y(x, t)
∣∣∣ ≤ Cl+M (λn+ l +M)!

Rl+M1 Rλn2 (λn+ l +M + 1)µ
,
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for some constant Cl+M > 0. Since |ζM | = 1, using (3.1), we have that

|∂l+Mx ∂nt y| = |∂lx∂nt (ζM∂
M
x y)|

= |∂lx∂nt (∂Nt y −
M−1∑
j=0

ζj∂
j
xy − f(x, y, ∂xy, ..., ∂

M−1
x y)|

≤ |∂lx∂n+Nt y|+ |∂lx∂nt (

M−1∑
j=0

ζj∂
j
xy)|+ |∂lx∂nt f(x, y, ∂xy, ..., ∂

M−1
x y)|

=: I1 + I2 + I3.

Then using directly the iteration assumption and λN = M , we have

I1 ≤ Cl
(λn+ λN + l)!

Rl1R
λn+λN
2 (λn+ λN + l + 1)µ

= Cl

(
R1

R2

)M (λn+ l +M)!

Rl+M1 Rλn2 (λn+ l +M + 1)µ
·

On the other hand, we have that

I2 ≤
M−1∑
j=0

|ζj | |∂l+jx ∂nt y|

≤
M−1∑
j=0

|ζj |Cl+j
(λn+ l + j)!

Rl+j1 Rλn2 (λn+ l + j + 1)µ

≤

M−1∑
j=0

|ζj |Cl+j
RM−j1

(λn+ l + j + 1) · · · (λn+ l +M)

(
λn+ l +M + 1

λn+ l + j + 1

)µ
× (λn+ l +M)!

Rl+M1 Rλn2 (λn+ l +M + 1)µ
·

Finally, as in the proof of Proposition 4.7 (see estimate (4.55) iterating Lemma 4.10), we have
that for some positive constant C

I3 ≤

∣∣∣∣∣∣∂lx∂nt
∑
~p 6=0

A~py
p0(∂xy)p1 · · · (∂M−1x y)pM−1

∣∣∣∣∣∣
≤

∑
~p 6=0

K |~p|
C

b|~p|
(λn+ l +M − 1)!

Rl1R
λn
2 (λn+ l + 1)µ

C
|~p|
l+M−1

M−1∏
j=0

1

(Rj1)
pj

Note that R1 > 1. If, for some constant δ ∈ (0, 1), we have

Cl+M−1K

b
≤ δ, (6.2)
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this yields

I3 ≤ δC
(λn+ l +M − 1)!

Rl1R
λn
2 (λn+ l + 1)µ

(
1

1− δ

)M
≤ δCRM1

(λn+ l +M)(1− δ)M

(
λn+ l +M + 1

λn+ l + 1

)µ (λn+ l +M)!

Rl+M1 Rλn2 (λn+ l +M + 1)µ

It follows that

|∂l+Mx ∂nt y(x, t)| ≤ Cl+M
(λn+ l +M)!

Rl+M1 Rλn2 (λn+ l +M + 1)µ
, (6.3)

with

Cl+M := max

(
Cl+M−1, Cl

(
R1

R2

)M

+

M−1∑
j=0

|ζj |Cl+j
RM−j1

(λn+ l + j + 1) · · · (λn+ l +M)

(
λn+ l +M + 1

λn+ l + j + 1

)µ
+

δCRM1
(λn+ l +M)(1− δ)M

(
λn+ l +M + 1

λn+ l + 1

)µ)
·

Then, using the fact that R1 < R2, if
CjK
b ≤ δ for j = 0, 1, ..., l + M − 1, then

Cl+MK
b ≤ δ

provided that l is large enough, say l ≥ l0. It is then sufficient to impose that

max(C0, ..., Cl0+M−1) ≤
δb

K
,

and this is the case provided that the constant C in (3.2) is small enough.

7. On the complex Ginzburg-Landau equation

Theorem 7.1. Theorem 3.1 holds true for the complex Ginzburg-Landau equation.

Proof. The fact that the equation is complex-valued does not change the proof. The only slight
difference is for Lemma 3.8 where the nonlinearity contains some conjugate. The proof is even
simpler since the sum is finite. We give a simpler proof for the convenience of the reader. In that

case, M = 2, N = 1 and λ = 2. If U = (u0, u1) ∈ L∞(K)2, and F (x, U) =

(
0

−eiϕ|u0|2u0

)
then

‖F (x, U)− F (x, V )‖Xs′ =

∥∥∥∥( 0
|u0|2u0 − |v0|2v0

)∥∥∥∥
Xs′

= e−τ(1−s
′)‖|u0|2u0 − |v0|2v0‖L(s′)

= e−τ(1−s
′)‖(u0 − v0)(u0 + v0)u0 + v20(u0 − v0)‖L(s′)

≤ 3

2
e−τ(1−s

′)‖u0 − v0‖L(s′)
(
‖u0‖2L(s′) + ‖v0‖2L(s′)

)
.
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We used the algebra property of Lemma 3.3 and the fact that the norm is invariant by conju-
gation. Using (3.18) and (3.31), we get, for a constant C depending on L1, M and N ,

‖u0‖L(s′) ≤ C‖u0‖L(s′),M−1
λ
≤ C ‖U‖XL(s′)

= Ceτ(1−s
′) ‖U‖Xs′ ≤ Ce

τe−τ(s−s
′)‖U‖Xs .

The same estimate is true for u0 − v0, and therefore we obtain

‖F (x, U)− F (x, V )‖Xs′ ≤

C3e−τ(s−s
′)e3τ ‖U − V ‖Xs

(
‖U‖2Xs + ‖V ‖2Xs

)
≤ C3e−1e3τ

τ(s− s′)
D2 ‖U − V ‖Xs ,

where we have used (3.35). For fixed τ , it can be made arbitrarily small when D is chosen
small enough. The proof finishes the same way for the existence of the solution. Concerning
the estimates given in Section 6.1, the only difference concerns the term I3 that becomes I3 =
|eiϕ∂lx∂nt (y2y)|. In this part of the proof the induction argument (6.1) is valid for k ∈ {0, ..., l +
M −1} for some l ∈ N. The derivatives of y have the same bounds as those of y in (6.1), namely

|∂kx∂nt y(x, t)| ≤ Ck
(2n+ k)!

Rk1R
2n
2 (2n+ k + 1)µ

∀(x, t) ∈ [−1, 1]× [t1, t2], ∀n ∈ N. (7.1)

We can apply similarly Lemma 4.10 twice to get

I3 =
∣∣∣∂lx∂nt (y2y)

∣∣∣ ≤ K2C3
l

(2n+ l)!

Rl1R
2n
2 (2n+ l + 1)µ

≤ β̃l+2Cl
(2n+ l + 2)!

Rl+2
1 R2n

2 (2n+ l + 2 + 1)µ

with β̃l+2 = supn∈N
K2C2

l R
2
1

(2n+l+1)(2n+l+2)
(2n+l+2+1)µ

(2n+l+1)µ ≤ K2C2
l R

2
1

(l+1)(l+2)3
µ. The rest of the estimate being

the same, we can make the β̃l+2 arbitrarily small in a similar way. This completes the inductive
step. �

Proposition 7.2. Proposition 4.7 holds true for the complex Ginzburg-Landau equation.

Proof. The reconstruction is exactly the same working in C instead of R. The modifications of
the estimates of the nonlinear term are done in the same way as in Theorem 7.1, noticing that
y satisfies the same estimates as y. �

Proof of Theorem 2.5 and 2.6. This is the same as before with λ = 2/1 = 2. It only remains
to check the condition about the non-linearity. We have f(x, y0, y1) = eiϕ|y0|2y0. It satisfies
f(−x,−y0, y1) = −eiϕ|y0|2y0 = −f(x, y0, y1) which is condition (1.18) for system (2.16), and
f(−x, y0,−y1) = eiϕ|y0|2y0 = f(x, y0, y1) which is condition (1.19) for system (2.17). �
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