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Abstract

We consider a linear Schrödinger equation, on a bounded interval, with bilinear
control, that represents a quantum particle in an electric �eld (the control). We prove
the exact controllability of this system, in any positive time, locally around the ground
state.

Similar results were proved for particular models [14, 15, 17], in non optimal spaces,
in long time and the proof relied on the Nash-Moser implicit function theorem in order
to deal with an a priori loss of regularity.

In this article, the model is more general, the spaces are optimal, there is no re-
striction on the time and the proof relies on the classical inverse mapping theorem. A
hidden regularizing e�ect is emphasized, showing there is actually no loss of regularity.

Then, the same strategy is applied to nonlinear Schrödinger equations and nonlinear
wave equations, showing that the method works for a wide range of bilinear control
systems.

Résumé

On considère une équation de Schrödinger linéaire, sur un intervalle borné, avec
contrôle bilinéaire, représentant une particule quantique dans un champ électrique (le
contrôle). On démontre la contrôlabilité exacte locale de ce système, en tout temps
positif, localement au voisinage de l'état fondamental.

Des résultats similaires ont déjà été établis [14, 15, 17], mais dans des espaces non
optimaux, en temps long et leur preuve reposait sur le théorème de Nash-Moser, pour
gérer une apparente perte de régularité.

Dans cet article, le modèle étudié est plus général, les espaces sont optimaux, il n'y
a pas de restriction sur le temps et la preuve repose sur le théorème d'inversion locale
classique. Un e�et régularisant est exhibé, montrant qu'il n'y a �nalement pas de perte
de régularité.

La même stratégie est ensuite utilisée sur des équations de Schrödinger nonlinéaires
et des équations des ondes nonlinéaires, montrant qu'elle s'applique de façon assez
générale aux systèmes de contrôle bilinéaires.
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tion; wave equation.
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1 Introduction

1.1 Main result

Following [57], we consider a quantum particle, in a 1D in�nite square potential well, sub-
jected to an electric �eld. It is represented by the following Schrödinger equation{

i∂ψ∂t (t, x) = −∂
2ψ
∂x2 (t, x)− u(t)µ(x)ψ(t, x), x ∈ (0, 1), t ∈ (0, T ),

ψ(t, 0) = ψ(t, 1) = 0,
(1)

where ψ is the wave function of the particle, u is the amplitude of the electric �eld and
µ ∈ H3((0, 1),R) is the dipolar moment of the particle. The system (1) is a bilinear control
system, in which

• the state is ψ, with ‖ψ(t)‖L2(0,1) = 1, ∀t ∈ (0, T ),

• the control is the real valued function u : [0, T ]→ R.

Let us introduce some notations. The operator A is de�ned by

D(A) := H2 ∩H1
0 ((0, 1),C), Aϕ := −d

2ϕ
dx2 . (2)

Its eigenvalues and eigenvectors are

λk := (kπ)2, ϕk(x) :=
√

2 sin(kπx),∀k ∈ N∗. (3)

The family (ϕk)k∈N∗ is an orthonormal basis of L2((0, 1),C) and

ψk(t, x) := ϕk(x)e−iλkt,∀k ∈ N∗

is a solution of (1) with u ≡ 0 called eigenstate, or ground state, when k = 1. We de�ne the
spaces

Hs
(0)((0, 1),C) := D(As/2),∀s > 0 (4)

equipped with the norm

‖ϕ‖Hs
(0)

:=

( ∞∑
k=1

|ks〈ϕ,ϕk〉|2
)1/2

.

We denote by 〈., .〉 the L2((0, 1),C) scalar product

〈f, g〉 =

∫ 1

0

f(x)g(x)dx

and by S the unit L2((0, 1),C)-sphere. The �rst goal of this article is the proof of the
following result.

Theorem 1 Let T > 0 and µ ∈ H3((0, 1),R) be such that

∃c > 0 such that
c

k3
6 |〈µϕ1, ϕk〉|,∀k ∈ N∗. (5)

There exists δ > 0 and a C1 map

Γ : VT → L2((0, T ),R)

where
VT := {ψf ∈ S ∩H3

(0)((0, 1),C); ‖ψf − ψ1(T )‖H3 < δ},
such that, Γ(ψ1(T )) = 0 and for every ψf ∈ VT , the solution of (1) with initial condition

ψ(0) = ϕ1 (6)

and control u = Γ(ψf ) satis�es ψ(T ) = ψf .
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Remark 1 Thanks to the time reversibility of the system, Theorem 1 ensures the local
controllability of the system (1) around the ground state: for every T > 0, there exists δ > 0
such that, for every ψ0, ψf ∈ S ∩H3

(0)((0, 1),C) with ‖ψ0−ψ1(0)‖H3 +‖ψf −ψ1(T )‖H3 < δ,

there exists a control u ∈ L2(0, T ) such that the solution of (1) with initial condition ψ(0) =
ψ0 satis�es ψ(T ) = ψf .

Remark 2 The assumption (5) holds, for example, with µ(x) = x2, because

〈x2ϕ1, ϕk〉 =

∫ 1

0

2x2 sin(kπx) sin(πx)dx =

{
(−1)k+18k
π2(k2−1)2 if k > 2,
−3+2π2

6π2 if k = 1.
(7)

But it does not hold when 〈µϕ1, ϕk〉 = 0, for some k ∈ N∗, or when µ has a symmetry
with respect to x = 1/2. However, the assumption (5) holds generically with respect to
µ ∈ H3((0, 1),R) because

〈µϕ1, ϕk〉 =
4[(−1)k+1µ′(1)− µ′(0)]

k3π2
−
√

2

(kπ)3

∫ 1

0

(µϕ1)′′′(x) cos(kπx)dx,∀k ∈ N∗. (8)

(see Appendix A for a proof). Thus, Theorem 1 is very general.

1.2 A simpler proof

The local exact controllability of 1D Schrödinger equations, with bilinear control, has already
been investigated in [14, 15, 17], (see also [16] for a similar result on a 1D beam equation). In
these articles, three di�erent models are studied. The local controllability of the nonlinear
system is proved thanks to the linearization principle:

• �rst, we prove the controllability of a linearized system,

• then, we prove the local controllability of the nonlinear system, by applying an inverse
mapping theorem.

This strategy is coupled with the return method and quasi-static deformations in [14, 17]
and with power series expansions in [15, 17] (see [30, 32] by Coron for a presentation of
these technics). In these articles, the most di�cult part of the proof is the application of
the inverse mapping theorem. Indeed, because of an a priori loss of regularity, we were led
to apply the Nash-Moser implicit function theorem (see, for instance [6] by Alinhac, Gérard
and [38] by Hörmander), instead of the classical inverse mapping theorem. The Nash-Moser
theorem requires, in particular, the controllability of an in�nite number of linearized systems,
and tame estimates on the corresponding controls. These two points are di�cult to prove
and lead to long technical developments in [14, 15, 17].

In this article, we propose a simpler proof, that uses only the classical inverse mapping
theorem (needing the controllability of only one linearized system), because we emphasize
a hidden regularizing e�ect (see Proposition 2).

Therefore, the controllability result of Theorem 1 enters the classical framework of local
controllability results for nonlinear systems, proved with �xed point arguments (see, for
instance, [55] by Rosier, [28] by Cerpa and Crépeau, [58] by Russell and Zhang, [63] by
Zhang, [64] by Zuazua; this list is not exhaustive).

1.3 Additionnal results

The proof we developed for Theorem 1 is quite robust, thus we could apply it to other
situations: other linear PDEs and also nonlinear PDEs, that are presented in the next
subsections. This shows that the strategy proposed in this article works for a wide range of
bilinear systems.
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1.3.1 Generalization to higher regularities

The �rst situation is the analogue result of Theorem 1, but with higher regularities: we
prove the local exact controllability of (1) in smoother spaces and with smoother controls.
Namely, we prove the following result.

Theorem 2 Let T > 0 and µ ∈ H5((0, 1),R) be such that (5) holds. There exists δ > 0
and a C1 map

Γ : VT → H1
0 ((0, T ),R)

ψf 7→ Γ(ψf )

where
VT := {ψf ∈ S ∩H5

(0)((0, 1),C); ‖ψf − ψ1(T )‖H5 < δ},
such that, Γ(ψ1(T )) = 0 and for every ψf ∈ VT , the solution of (1), (6) with control
u = Γ(ψf ) satis�es ψ(T ) = ψf .

Of course, the strategy may be used to go further and prove the local exact controllability
of (1) around the ground state

• in H7
(0)(0, 1) with controls in H2

0 ((0, T ),R),

• in H9
(0)(0, 1) with controls in H3

0 ((0, T ),R), etc.

1.3.2 On the 3D ball with radial data

The second situation is the analogue result of Theorem 1, but for the Schrödinger equation
posed on the three dimensional unit ball B3 for radial data. In polar coordinates, the
Laplacian for radial data can be written

∆u(r) = ∂2
ru(r) +

2

r
∂ru(r).

In particular, we have ∆
(
g(r)
r

)
=

∂2
ru(r)
r . The eigenfunctions of the Dirichlet operator

A = −∆ with domain D(A) := H2
radial ∩ H1

0 (B3) are ϕk = sin(kπr)

r
√

2π
with eigenvalues

λk = (kπ)2. Thus, we study the Schrödinger equation{
i∂ψ∂t (t, r) = −∆ψ(t, r)− u(t)µ(r)ψ(t, r), r ∈ (0, 1),
ψ(t, 1) = 0.

(9)

The theorem we obtain is very similar to Theorem 1.

Theorem 3 Let T > 0 and µ ∈ H3(B3,R) radial be such that

∃c > 0 such that
c

k3
6 |〈µϕ1, ϕk〉|,∀k ∈ N∗. (10)

There exists δ > 0 and a C1 map

Γ : VT → L2((0, T ),R)

where
VT := {ψf ∈ S ∩H3

(0),rad(B
3,C); ‖ψf − ψ1(T )‖H3 < δ},

such that, Γ(ψ1(T )) = 0 and for every ψf ∈ VT , the solution of (9) with initial condition

ψ(0) = ϕ1 (11)

and control u = Γ(ψf ) satis�es ψ(T ) = ψf .

The analysis is very close to the 1D case since for this particular data, the Laplacian
behaves as in dimension 1. We refer to Appendix A for the proof of the genericity of the
assumption (10). Note that this simpler situation has also been used by Anton for proving
global existence for the nonlinear Schrödinger equation [8].
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1.3.3 Nonlinear Schrödinger equations

The third situation concerns nonlinear Schrödinger equations. More precisely we study the
following nonlinear Schrödinger equation with Neumann boundary conditions{

i∂ψ∂t (t, x) = −∂
2ψ
∂x2 (t, x) + |ψ|2ψ(t, x)− u(t)µ(x)ψ(t, x), x ∈ (0, 1), t ∈ (0, T ),

∂ψ
∂x (t, 0) = ∂ψ

∂x (t, 1) = 0.
(12)

It is a nonlinear control system where

• the state is ψ, with ‖ψ(t)‖L2(0,1) = 1,∀t ∈ [0, T ],

• the control is the real valued function u : [0, T ]→ R.

We study its local controllability around the reference trajectory

(ψref (t, x) := e−it, uref (t) = 0).

More precisely, we prove the following result.

Theorem 4 Let T > 0 and µ ∈ H2(0, 1) be such that

∃c > 0 such that
∣∣∣ ∫ 1

0

µ(x) cos(kπx)dx
∣∣∣ > c

max{1, k}2
,∀k ∈ N. (13)

There exists η > 0 and a C1-map

Γ : VT → L2((0, T ),R)

where

VT := {ψf ∈ S ∩H2(0, 1);ψ′f (0) = ψ′f (1) = 0 and ‖ψf − e−iT ‖H2 < η}

such that, for every ψf ∈ VT , the solution of (12) with initial condition

ψ(0, x) = 1,∀x ∈ (0, 1) (14)

and control u := Γ(ψf ) is de�ned on [0, T ] and satis�es ψ(T ) = ψf .

Remark 3 The assumption (13) holds generically in H2(0, 1). Indeed, integrations by part
give∫ 1

0

µ(x) cos(kπx)dx =
1

(kπ)2

(
(−1)k+1µ′(1) + µ′(0) +

∫ 1

0

µ′′(x) cos(kπx)dx

)
,∀k ∈ N∗.

Other versions of this result, with higher regularities may be proved: the system is
exactly controllable, locally around the reference trajectory

• in H4(0, 1) with controls in H1
0 (0, T ),

• in H6(0, 1) with controls in H2
0 (0, T ), etc.

Focusing nonlinearities may also be considered.
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1.3.4 Nonlinear wave equations

The third situation concerns nonlinear wave equations. More precisely we study the following
wave equation with Neumann boundary conditions{

wtt = wxx + f(w,wt) + u(t)µ(x)(w + wt), x ∈ (0, 1), t ∈ (0, T ),
wx(t, 0) = wx(t, 1) = 0,

(15)

where f is an appropriate nonlinearity, that satis�es, in particular, f(1, 0) = 0. It is a
nonlinear control system where

• the state is (w,wt),

• the control is the real valued function u : [0, T ]→ R.

We study its exact controllability, locally around the reference trajectory

(wref (t, x) = 1, uref (t) = 0).

More precisely, we prove the following result.

Theorem 5 Let T > 2, µ ∈ H2((0, 1),R) be such that (13) holds and f ∈ C3(R2,R) be
such that f(1, 0) = 0 and ∇f(1, 0) = 0. There exists η > 0 and a C1-map

Γ : VT → L2((0, T ),R)

where

VT := {(wf , ẇf ) ∈ H3 ×H2((0, 1),R); w′f (0) = w′f (1) = ẇ′f (0) = ẇ′f (1) = 0

and ‖wf − 1‖H3 + ‖ẇf‖H2 < η}

such that Γ(1, 0) = 0 and for every (wf , ẇf ) ∈ VT , the solution of (15) with initial condition

(w,wt)(0, x) = (1, 0),∀x ∈ (0, 1) (16)

and control u := Γ(wf , ẇf ) is de�ned on [0, T ] and satis�es (w,wt)(T ) = (wf , ẇf ).

Other versions of this result, with higher regularities may be proved: the system is
exactly controllable, locally around the reference trajectory

• in H4 ×H3(0, 1) with controls in H1
0 (0, T ),

• in H5 ×H4(0, 1) with controls in H2
0 (0, T ), etc.

1.4 A brief bibliography

1.4.1 A previous negative result

First, let us recall an important negative controllability result, for the equation (1), proved
by Turinici [61]. It is a corollary of a more general result due to Ball, Marsden and Slemrod
[10].

Proposition 1 Let ψ0 ∈ S ∩ H2
(0)((0, 1),C) and U [T ;u, ψ0] be the value at time T of the

solution of (1) with initial condition ψ(0) = ψ0. The set of attainable states from ψ0,

{U [T ;u, ψ0];T > 0, u ∈ L2((0, T ),R)}

has an empty interior in S∩H2
(0)((0, 1),C). Thus (1) is not controllable in S∩H2

(0)((0, 1),C)

with controls in L2
loc([0,+∞),R).
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Proposition 1 is a rather weak negative controllability result, because it does not prevent
from positive controllability results, in di�erent spaces. This had already been emphasized
for the particular cases studied in [14, 15, 17], in which the reachable set is proved to contain
H7

(0) or H5+
(0) . In this article, we prove that the reachable set (at least locally, with small

controls in L2((0, T ),R)), coincides with S ∩H3
(0), (which has, indeed, an empty interior in

S ∩H2
(0)). Therefore, sometimes, Ball, Marsden and Slemrod's negative result is only due to

an 'unfortunate' choice of functional spaces, that does not allow the controllability. It may
not be due to a deep non controllability (such as, for example, when a subsystem evolves
independently of the control).

1.4.2 Iterated Lie brackets

Now, let us quote some articles about the controllability of quantum systems.
First, the controllability of �nite dimensional quantum systems (i.e. modelled by an

ordinary di�erential equation) is well understood. Let us consider the quantum system

i
dX

dt
= H0X + u(t)H1X, (17)

where X ∈ Cn is the state, H0, H1 are n ∗ n hermitian matrices, and t 7→ u(t) ∈ R is the
control. The controllability of (17) is linked to the rank of the Lie algebra spanned by H0

and H1 (see for instance [5] by Albertini and D'Alessandro, [7] by Alta�ni, [26] by Brockett,
see also [3] by Agrachev and Sachkov, [32] by Coron for a more general discussion).

In in�nite dimension, there are cases where the iterated Lie brackets provide the right
intuition. For instance, it holds for the non controllability of the harmonic oscillator (see [49]
by Mirrahimi and Rouchon). However, the Lie brackets are often less powerful in in�nite
dimension than in �nite dimension. It is precisely the case of our system. Indeed, let us
de�ne the operators

D(f0) := H2 ∩H1
0 (0, 1), f0(ψ) := −ψ′′,

D(f1) := L2(0, 1), f1(ψ) := x2ψ,

which correspond to µ(x) = x2. Let us compute the iterated Lie brackets at the point
ϕ1(x) =

√
2 sin(πx). Since ϕ1 ∈ D(f0), we can compute

[f0, f1](ϕ1) = −4xϕ′1 − 2ϕ1,
[f1, [f0, f1]](ψ) = 8x2ϕ1 = 8f1(ϕ1).

Notice that [f0, f1](ϕ1) does not belong to D(f0) because [f0, f1](ϕ1)(1) = 4
√

2π 6= 0. Thus,
in order to give a sense to the Lie bracket [f0, [f0, f1]], one needs to extend the de�nition of
f0 to functions that do not vanish at x = 0, 1. A natural choice is

f0(ψ) := −ψ′′ + ψ(0)δ′0 − ψ(1)δ′1 (18)

because, with this choice, we have

〈f0(ψ), ψ̃〉 = 〈ψ, f0(ψ̃)〉,∀ψ ∈ D(f0),∀ψ̃ ∈ H2(0, 1),

in the sense

−
∫ 1

0

ψ′′(x)ψ̃(x)dx = −
∫ 1

0

ψ(x)ψ̃′′(x)dx− ψ′(1)ψ̃(1) + ψ′(0)ψ̃(0).

With the de�nition (18), we get

[f0, [f0, f1]](ψ) = −8f0(ψ) + 4ψ′(1)δ′1
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But then, again, [f0, [f0, [f0, f1]]] is not well de�ned. Moreover, even if we could give a sense
to any iterated Lie bracket, because of the presence of Dirac masses, it would not be clear
which space the Lie algebra should generate in case of local controllability. Therefore, the
way the Lie algebra rank condition could be used directly in in�nite dimension is not clear
(see also [32] for the same discussion on other examples). This is why we develop completely
analytic methods in this article.

Finally, let us quote important articles about the controllability of PDEs, in which pos-
itive results are proved by applying geometric control methods to the (�nite dimensional)
Galerkin approximations of the equation. In [4] by Sarychev and Agrachev and [59] by
Shirikyan, the authors prove exact controllability results for dissipative equations. In [29],
by Boscain, Chambrion, Mason and Sigalotti, the authors prove the approximate controlla-
bility in L2, for bilinear Schrödinger equations such as (1).

We also refer to the following works about the controllability of �nite dimensional quan-
tum systems [2, 20, 21, 22, 23, 24, 25], by Agrachev, Boscain, Chambrion, Charlot, Gauthier,
Guérin, Jauslin and Mason, [40] by Khaneja, Glaser and Brockett, [53] by Ramakrishna,
Salapaka, Dahleh, Rabitz, [60] by Sussmann and Jurdjevic, [62] by Turinici and Rabitz. Let
us also mention [50] by Mirrahimi, Rouchon, Turinici and [18] for explicit feedback controls,
inspired by Lyapunov technics.

1.4.3 Controllability results for Schrödinger and wave equations

The controllability of Schrödinger equations with distributed and boundary controls, that
act linearly on the state, is studied since a long time.

For linear equations, the controllability is equivalent to an observability inequality that
may be proved with di�erent technics: multiplier methods (see [36] by Fabre, [47] by
Machtyngier), microlocal analysis (see [46] by Lebeau, [27] by Burq), Carleman estimates
(see [42, 43] by Lasiecka, Triggiani, Zhang), or number theory (see [54] by Ramdani, Taka-
hashi, Tenenbaum and Tucsnak).

For nonlinear equations, we refer to [33] by Dehman, Gérard, Lebeau, [41] by Lange
Teismann, [44, 45] by Laurent, [56] by Rosier, Zhang.

1.4.4 Other results about bilinear quantum systems

The study of the controllability of Schrödinger PDEs with bilinear controls started later.
The �rst result is negative and it is due to Turinici (see [61] and Proposition 1). It is

a corollary of a more general result by Ball, Marsden and Slemrod [10]. Because of this
noncontrollability result, such equations have been considered as non controllable for a long
time. However, important progress have been made in the last years and this question is
now better understood (see section 1.4.1). Let us also mention that this negative result has
been adapted to nonlinear Schrödinger equations in [39] by Ilner, Lange and Teismann.

Concerning exact controllability issues, local results for 1D models have been proved
in [14, 15] by Beauchard; almost global results have been proved in [17], by Coron and
Beauchard. In [31], Coron proved that a positive minimal time was required for the local
controllability of the 1D model (1) with µ(x) = x− 1/2.

Now, let us quote some approximate controllability results. In [19] Mirrahimi and
Beauchard proved the global approximate controllability, in in�nite time, for a 1D model
and in [48] Mirrahimi proved a similar result for equations involving a continuous spectrum.
Approximate controllability, in �nite time, has been proved for particular models by Boscain
and Adami in [1], by using adiabatic theory and intersection of the eigenvalues in the space
of controls. Approximate controllability, in �nite time, for more general models, have been
studied by 3 teams, with di�erent tools: by Boscain, Chambrion, Mason, Sigalotti [29], with
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geometric control methods; by Nersesyan [52, 51] with feedback controls and variational
methods; and by Ervedoza and Puel [35] thanks to a simpli�ed model.

Let us emphasize that the local exact controllability result of this article and the global
approximate controllability of [52, 51] can be put together in order to get the global exact
controllability of 1D models (see [51]).

Optimal control techniques have also been investigated for Schrödinger equations with
a non linearity of Hartee type in [11, 12] by Baudouin, Kavian, Puel and in [34] by Cances,
Le Bris, Pilot. An algorithm for the computation of such optimal controls is studied in [13]
by Baudouin and Salomon.

1.5 Structure of this article

This article is organized as follows.
Section 2 aims at proving the controllability for the linear Schrödinger equations. The

Subsections 2.1, 2.2, 2.3 and 2.4 are dedicated to the di�erent steps of the proof of Theorem
1, where the equation is posed on a bounded interval. The Subsection 2.5 is dedicated to
the proof of the same result with higher regularities, i.e. Theorem 2. The Subsection 2.6 is
dedicated to the Schrödinger equation for radial data on the three dimensional ball, i.e. the
proof of Theorem 3.

In Section 3, we prove Theorem 4 concerning the nonlinear Schrödinger equation (12).
In Section 4, we prove Theorem 5 concerning the nonlinear wave equation (15).
Finally, in Section 5, we state some conclusions, open problems and perspectives.

1.6 Notations

Let us introduce some conventions and notations that are valid in all this article. Unless
otherwise speci�ed, the functions considered are complex valued and, for example, we write
H1

0 (0, 1) for H1
0 ((0, 1),C). When the functions considered are real valued, we specify it and

we write, for example, L2((0, T ),R). We use the spaces

hs(N∗,C) :=

{
a = (ak)k∈N∗ ∈ CN∗ ;

∞∑
k=1

|ksak|2 < +∞

}
equipped with the norm

‖a‖hs :=
( ∞∑
k=1

|ksak|2
)1/2

.

The same letter C denotes a positive constant, that can change from one line to another
one. If (X, ‖.‖) is a normed vector space and R > 0, BR[X] denotes the open ball {x ∈
X; ‖x‖ < R} and BR[X] denotes the closed ball {x ∈ X; ‖x‖ 6 R}.

2 Linear Schrödinger equations

The goal of this section is the proof of controllability results for linear Schrödinger equations,
with bilinear controls.

The Subsections 2.1, 2.2, 2.3 and 2.4 are dedicated to the di�erent steps of the proof of
Theorem 1, where the equation is posed on a bounded interval. In Subsection 2.1, we prove
existence, uniqueness, regularity results and bounds on the solution of the Cauchy problem
(1), (6). In Subsection 2.2, we prove the C1-regularity of the end-point map associated to
our control problem. In Subsection 2.3, we prove the controllability of the linearized system
around the ground state. Finally, in Subsection 2.4, we deduce Theorem 1 by applying the
inverse mapping theorem.

The Subsection 2.5 is dedicated to the proof of the same result with higher regularities,
i.e. Theorem 2.
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The Subsection 2.6 is dedicated to the Schrödinger equation for radial data on the three
dimensional ball, i.e. the proof of Theorem 3.

In all this section (except in Subsection 2.6), the operator A is de�ned by (2), the spaces
Hs

(0)(0, 1) are de�ned by (4) and e−iAt denotes the group of isometries of Hs
(0)(0, 1), ∀s > 0

generated by −iA,

e−iAtϕ =

∞∑
k=1

〈ϕ,ϕk〉e−iλktϕk,∀ϕ ∈ L2(0, 1). (19)

We use few classical results concerning trigonometric moment problems that are recalled in
Appendix B.

2.1 Well posedness of the Cauchy problem

This subsection is dedicated to the statement of existence, uniqueness, regularity results,
and bounds for the weak solutions of the Cauchy problem i∂ψ∂t = −∂

2ψ
∂x2 − u(t)µ(x)ψ − f(t, x), x ∈ (0, 1), t ∈ R+,

ψ(t, 0) = ψ(t, 1) = 0,
ψ(0, x) = ψ0(x).

(20)

Proposition 2 Let µ ∈ H3((0, 1),R), T > 0, ψ0 ∈ H3
(0)(0, 1), f ∈ L2((0, T ), H3 ∩ H1

0 )

and u ∈ L2((0, T ),R). There exists a unique weak solution of (20), i.e. a function ψ ∈
C0([0, T ], H3

(0)) such that the following equality holds in H3
(0)(0, 1) for every t ∈ [0, T ],

ψ(t) = e−iAtψ0 + i

∫ t

0

e−iA(t−τ)[u(τ)µψ(τ) + f(τ)]dτ. (21)

Moreover, for every R > 0, there exists C = C(T, µ,R) > 0 such that, if ‖u‖L2(0,T ) < R,
then this weak solution satis�es

‖ψ‖C0([0,T ],H3
(0)

) 6 C
(
‖ψ0‖H3

(0)
+ ‖f‖L2((0,T ),H3∩H1

0 )

)
. (22)

If f ≡ 0 then
‖ψ(t)‖L2(0,1) = ‖ψ0‖L2(0,1),∀t ∈ [0, T ]. (23)

The main di�culty of the proof of this result is that f(s) is not assumed to belong to
H3

(0)(0, 1) (i.e. f ′′(s, .) may not vanish at x = 0 and x = 1), and µ is not assumed to satisfy

µ′(0) = µ′(1) = 0 (and thus the operator ϕ 7→ µϕ does not preserve H3
(0)(0, 1) because for

ϕ ∈ H3
(0)(0, 1), we have (µϕ)′′ = 2µ′ϕ′ at x = 0 and x = 1). The argument for proving

Proposition 2 comes from the following Lemma.

Lemma 1 Let T > 0 and f ∈ L2((0, T ), H3 ∩ H1
0 ). The function G : t 7→

∫ t
0
eiAsf(s)ds

belongs to C0([0, T ], H3
(0)), moreover

‖G‖L∞((0,T ),H3
(0)

) 6 c1(T )‖f‖L2((0,T ),H3∩H1
0 ) (24)

where the constants c1(T ) are uniformly bounded for T lying in bounded intervals.

Proof of Lemma 1: By de�nition, we have

G(t) =

∞∑
k=1

(∫ t

0

〈f(s), ϕk〉eiλksds
)
ϕk.
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For almost every s ∈ (0, T ), f(s) ∈ H3 ∩H1
0 , and we have

〈f(s), ϕk〉 = 1
λk
〈Af(s), ϕk〉

= −
√

2
λk

∫ 1

0
f ′′(s, x) sin(kπx)dx

=
√

2
(kπ)3

(
(−1)kf ′′(s, 1)− f ′′(s, 0)

)
−
√

2
(kπ)3

∫ 1

0
f ′′′(s, x) cos(kπx)dx.

Thus, we have

‖G(t)‖H3
(0)

=
∥∥∥ ∫ t0 〈f(s), ϕk〉eiλksds

∥∥∥
h3

6
√

2
π3

(∥∥∥ ∫ t0 f ′′(s, 1)eiλksds
∥∥∥
l2

+
∥∥∥ ∫ t0 f ′′(s, 0)eiλksds

∥∥∥
l2

)
+ 1
π3

∥∥∥ ∫ t0 〈f ′′′(s),√2 cos(kπx)〉eiλksds
∥∥∥
l2
.

The family (
√

2 cos(kπx))k∈N∗ is orthonormal in L2(0, 1), thus∥∥∥ ∫ t0 〈f ′′′(s),√2 cos(kπx)〉eiλksds
∥∥∥
l2

=

( ∞∑
k=1

∣∣∣ ∫ t0 〈f ′′′(s),√2 cos(kπx)〉eiλksds
∣∣∣2)1/2

6

( ∞∑
k=1

t
∫ t

0
|〈f ′′′(s),

√
2 cos(kπx)〉|2ds

)1/2

6
√
t
(∫ t

0
‖f ′′′(s)‖2L2ds

)1/2

6
√
t‖f‖L2((0,t),H3).

Thanks to Corollary 4 (in Appendix B), we get

‖G(t)‖H3
(0)
6

√
2C(t)
π3

(
‖f ′′(., 0)‖L2(0,t) + ‖f ′′(., 1)‖L2(0,t)

)
+
√
t

π3 ‖f‖L2((0,t),H3)

6 c1(t)‖f‖L2((0,t),H3∩H1
0 )

where c1(t) is uniformly bounded for t lying in bounded intervals. This bound shows
that G(t) belongs to H3

(0)(0, 1) for every t ∈ [0, T ] and that the map t ∈ [0, T ] 7→
G(t) ∈ H3

(0) is continuous at t = 0 (because c1(t) is uniformly bounded when t → 0 and

‖f‖L2((0,t),H3∩H1
0 ) → 0 when t → 0, thanks to the dominated convergence theorem). The

continuity of G at any t ∈ (0, T ) can be proved similarly. �

Proof of Proposition 2: Let µ ∈ H3((0, 1),R), T > 0, ψ0 ∈ H3
(0)(0, 1), f ∈ L2((0, T ), H3∩

H1
0 ) and u ∈ L2((0, T ),R). We consider the map

F : C0([0, T ], H3
(0)) → C0([0, T ], H3

(0))

ψ 7→ ξ

where ξ := F (ψ) is de�ned by

ξ(t) := e−iAtψ0 + i

∫ t

0

e−iA(t−s)
(
u(s)µψ(s) + f(s)

)
ds,∀t ∈ [0, T ]. (25)

We have assumed that f ∈ L2((0, T ), H3 ∩ H1
0 ) and u ∈ L2(0, T ), thus, for every ψ ∈

C0([0, T ], H3
(0)), the map (uµψ + f) belongs to L2((0, T ), H3 ∩H1

0 ) and Lemma 1 ensures

that F takes values in C0([0, T ], H3
(0)). We have also used that in dimension 1, H3 is an

algebra.
Thanks to (24), we get, for every t ∈ [0, T ],

‖F (ψ1)(t)− F (ψ2)(t)‖H3
(0)

=
∥∥∥ ∫ t0 eiAsu(s)µ(ψ1 − ψ2)(s)ds

∥∥∥
H3

(0)

6 c1(t)‖uµ(ψ1 − ψ2)‖L2((0,t),H3∩H1
0 )

6 c1(t)‖u‖L2(0,t)‖µ(ψ1 − ψ2)‖L∞((0,t),H3∩H1
0 )

6 c1(t)‖u‖L2(0,t)C(µ)‖ψ1 − ψ2‖L∞((0,t),H3
(0)

)
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thus

‖F (ψ1)− F (ψ2)‖L∞((0,T ),H3
(0)

) 6 c2(T, µ)‖u‖L2(0,T )‖ψ1 − ψ2‖L∞((0,T ),H3
(0)

). (26)

If ‖u‖L2(0,T ) is small enough, then F is a contraction. Thanks to the Banach �xed point
theorem, there exists ψ ∈ C0([0, T ], H3

(0)) such that F (ψ) = ψ. The previous arguments
show that, for this �xed point, we have

‖ψ‖L∞((0,T ),H3
(0)

) 6 ‖ψ0‖H3
(0)

+c2(T, µ)‖u‖L2(0,T )‖ψ‖L∞((0,T ),H3
(0)

)+c1(T )‖f‖L2((0,T ),H3∩H1
0 ).

Thus, if c2(T, µ)‖u‖L2(0,T ) 6 1/2, then, we get (22).
We have proved Proposition 2 when ‖u‖L2(0,T ) is small enough. If it is not the case, one

may consider 0 = T0 < T1 < ... < TN = T such that ‖u‖L2(Tj ,Tj+1) is small and apply the
previous result on [T0, T1], ..., [TN−1, TN ] in order to get the conclusion. Since our constant
c1(t) is uniform on bounded sets, we easily get that N only depends on R, so that the
constant in Proposition 2 does only depend on T , µ and R as claimed.

Now, let us prove that (23) holds when f = 0. Classical arguments allow to prove that,
when u ∈ C0([0, T ],R), then ψ ∈ C1([0, T ], L2) and the �rst equality of (1) holds in L2 for
every t ∈ [0, T ]. Thus, when u ∈ C0([0, T ],R), we can take the L2-scalar product of this
equation with ψ; and the imaginary part of the resulting equality gives

d

dt
‖ψ(t)‖2L2 = 0.

Thus, we have (23) when u ∈ C0([0, T ],R). A density argument allows to prove (23) when
u only belongs to L2((0, T ),R). �

2.2 C1-regularity of the end-point map

For T > 0 we introduce the tangent space of S at ψ1(T )

VT := {ξ ∈ L2(0, 1);<〈ξ, ψ1(T )〉 = 0}

and the orthogonal projection
PT : L2(0, 1)→ VT .

Proposition 2 allows to consider the map

ΘT : L2((0, T ),R) → VT ∩H3
(0)(0, 1)

u 7→ PT [ψ(T )]
(27)

where ψ is the solution of (1), (6). The goal of this section is the proof of the following
result.

Proposition 3 Let T > 0 and µ ∈ H3((0, 1),R). The map ΘT de�ned by (27) is C1.
Moreover, for every u, v ∈ L2((0, T ),R), we have

dΘT (u).v = PT [Ψ(T )] (28)

where Ψ is the weak solution of the linearized system i∂Ψ
∂t = −Ψ′′ − u(t)µ(x)Ψ− v(t)µ(x)ψ, x ∈ (0, 1), t ∈ (0, T ),

Ψ(t, 0) = Ψ(t, 1) = 0,
Ψ(0, x) = 0,

(29)

and ψ is the solution of (1),(6).
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Proof of Proposition 3: Let T > 0, µ ∈ H3((0, 1),R) and u ∈ L2((0, T ),R). First, let
us emphasize that the linear map v 7→ Ψ(T ) is continuous from L2((0, T ),R) to H3

(0)(0, 1)
thanks to Proposition 2.

First step: We prove that ΘT is di�erentiable and that (28) holds. Let ψ be the weak

solution of (1),(6), Ψ solution of (29) and ψ̃ solution of
i∂ψ̃∂t = −ψ̃′′ − (u+ v)(t)µ(x)ψ̃, x ∈ (0, 1), t ∈ (0, T ),

ψ̃(t, 0) = ψ̃(t, 1) = 0,

ψ̃(0, x) = ϕ1.

(30)

Then ∆ := ψ̃ − ψ −Ψ is the weak solution of i∂∆
∂t = −∆′′ − (u+ v)(t)µ(x)∆− v(t)µΨ, x ∈ (0, 1), t ∈ (0, T ),

∆(t, 0) = ∆(t, 1) = 0,
∆(0, x) = 0.

(31)

Let us prove that
‖∆‖C0([0,T ],H3

(0)
) = o(‖v‖L2) when ‖v‖L2 → 0, (32)

which gives the conclusion. Let R > 0 be such that ‖u‖L2(0,T ) < R and ‖u+ v‖L2(0,T ) < R.
Thanks to Proposition 2, there exists Cj = Cj(T, µ,R) > 0 for j = 0, 1 such that

‖∆‖C0([0,T ],H3
(0)

) 6 C0‖vµΨ‖L2((0,T ),H3∩H1
0 ) 6 C1‖v‖L2‖Ψ‖C0([0,T ],H3

(0)
),

‖Ψ‖C0([0,T ],H3
(0)

) 6 C0‖vµψ‖L2((0,T ),H3∩H1
0 )

6 C1‖v‖L2‖ψ‖C0([0,T ],H3
(0)

)

6 C0C1‖v‖L2‖ϕ1‖H3
(0)
,

which proves (32).

Second step: We prove that dΘT is continuous. Actually, we prove that this map is
locally Lipschitz. Let u, ũ ∈ L2((0, T ),R) and v ∈ L2((0, T ),R). Let ψ be the solution of

(1),(6), Ψ solution of (29) and ψ̃, Ψ̃ solution of
i∂ψ̃∂t = −ψ̃′′ − ũ(t)µ(x)ψ̃,

ψ̃(t, 0) = ψ̃(t, 1) = 0,

ψ̃(0, x) = ϕ1,


i∂Ψ̃
∂t = −Ψ̃′′ − ũ(t)µ(x)Ψ̃− v(t)µ(x)ψ̃,

Ψ̃(t, 0) = Ψ̃(t, 1) = 0,

Ψ̃(0, x) = 0,

We have
[dΘT (u)− dΘT (ũ)].v = PT [Ψ(T )− Ψ̃(T )] = PT [Ξ(T )]

where Ξ is the weak solution of i∂Ξ
∂t = −∂

2Ξ
∂x2 − u(t)µΞ− (u− ũ)µΨ̃− vµ(ψ − ψ̃),

Ξ(t, 0) = Ξ(t, 1) = 0,
Ξ(0) = 0.

Let R > 0 be such that ‖u‖L2(0,T ) < R, ‖ũ‖L2(0,T ) < R. Let us prove that

‖Ξ‖C0([0,T ],H3
(0)

) 6 C‖v‖L2‖u− ũ‖L2

where C = C(T, µ,R) > 0, which gives the conclusion. Thanks to Proposition 2, we have

‖Ξ‖C0([0,T ],H3
(0)

) 6 C2‖(u− ũ)µΨ̃ + vµ(ψ − ψ̃)‖L2((0,T ),H3∩H1
0 )

6 C3

(
‖u− ũ‖L2‖Ψ̃‖C0([0,T ],H3

(0)
) + ‖v‖L2‖ψ − ψ̃‖C0([0,T ],H3

(0)
)

)
6 C4

(
‖u− ũ‖L2‖vµψ̃‖L2((0,T ),H3∩H1

0 ) + ‖v‖L2‖(ũ− u)µψ̃‖L2((0,T ),H3∩H1
0 )

)
6 C5

(
‖u− ũ‖L2‖v‖L2‖ψ̃‖C0([0,T ],H3

(0)
) + ‖v‖L2‖ũ− u‖L2‖ψ̃‖C0([0,T ],H3

(0)
)

)
6 C6‖u− ũ‖L2‖v‖L2 ,
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where Cj = Cj(T, µ,R) > 0 for j = 2, ..., 6. �

2.3 Controllability of the linearized system

The goal of this section is the proof of the following result.

Proposition 4 Let T > 0 and µ ∈ H3((0, 1),R) be such that (5) holds. The linear map
dΘT (0) : L2((0, T ),R) → VT ∩ H3

(0)(0, 1) has a continuous right inverse dΘT (0)−1 : VT ∩
H3

(0)(0, 1)→ L2((0, T ),R).

The proof of Proposition 4 relies on an Ingham inequality, due to Haraux (see [37] and
Appendix B).

Proof of Proposition 4: We have dΘT (0).v = Ψ(T ) where i∂Ψ
∂t = −Ψ′′ − v(t)µψ1,

Ψ(t, 0) = Ψ(t, 1) = 0,
Ψ(0) = 0,

(33)

thus

Ψ(T ) =

∞∑
k=1

i〈µϕ1, ϕk〉

(∫ T

0

v(t)ei(λk−λ1)tdt

)
e−iλkTϕk.

Let Ψf ∈ VT ∩H3
(0)(0, 1). If Ψ is the solution of (33) for some v ∈ L2((0, T ),R), then, the

equality Ψ(T ) = Ψf is equivalent to the trigonometric moment problem∫ T

0

v(t)ei(λk−λ1)tdt = dk−1(Ψf ) :=
〈Ψf , ϕk〉eiλkT

i〈µϕ1, ϕk〉
,∀k ∈ N∗. (34)

Now, we apply Corollary 1 (see Appendix B) with ωk := λk+1 − λ1,∀k ∈ N, and we get the
conclusion with

dΘT (0)−1(Ψf ) := L[d(Ψf )],

where d(Ψf ) := (dk(Ψf ))k∈N. Indeed, for Ψf ∈ VT ∩H3
(0)(0, 1), the sequence d(Ψf ) belongs

to l2r(N,C) thanks to the assumption (5). �

2.4 Proof of Theorem 1

Let T > 0 and µ ∈ H3((0, 1),R) be such that (5) holds. Let R1 > 0 and δ1 > 0 be such
that,

∀u ∈ BR1
[L2((0, T ),R)], the solution of (1), (6) satis�es <〈ψ(T ), ψ1(T )〉 > 0,

(see Proposition 2) and

∀ψf ∈ S ∩H3
(0)(0, 1) with ‖ψf − ψ1(T )‖H3

(0)
< δ1, we have <〈ψf , ψ1(T )〉 > 0.

The spaces BR1
[L2((0, T ),R)] and VT ∩ H3

(0)(0, 1) are Banach spaces. The map ΘT :

BR1
[L2((0, T ),R)] → VT ∩ H3

(0)(0, 1) is C1 (see Proposition 3), its di�erential at 0 has

a continuous right inverse dΘT (0)−1 : VT ∩ H3
(0)(0, 1) → L2((0, T ),R) (see Proposition 4).

Thanks to the inverse mapping theorem, there exists δ ∈ (0, δ1) and a C1 map

Θ−1
T : Bδ[VT ∩H3

(0)(0, 1)]→ BR1
[L2((0, T ),R)]

such that ΘT (Θ−1
T (ψ̃f )) = ψ̃f for every ψ̃f ∈ Bδ[VT ∩H3

(0)(0, 1)].
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For ψf ∈ S ∩ H3
(0)(0, 1) with ‖ψf − ψ1(T )‖H3

(0)
< δ, we have ‖PTψf‖H3

(0)
< δ, thus we

can de�ne
Γ(ψf ) =: Θ−1

T [PTψf ].

Thanks to the choice of R1 and δ1 we know that the solution of (1), (6) with u = Γ(ψf )
satis�es

ψ(T ) = PT (ψ(T )) +
√

1− ‖PTψ(T )‖2L2ψ1(T )

= PT (ψf ) +
√

1− ‖PTψf‖2L2ψ1(T ) = ψf .

2.5 Generalization to higher regularities

The goal of this section is the proof of Theorem 2. The �rst step of the proof consists in
adapting Proposition 2.

Proposition 5 Let µ ∈ H5((0, 1),R), T > 0, ψ0 ∈ H5
(0)(0, 1), f ∈ H1

0 ((0, T ), H3 ∩H1
0 ) and

u ∈ H1
0 ((0, T ),R). There exists a unique function ψ ∈ C1([0, T ], H3

(0)) such that the equality

(21) holds in C1([0, T ], H3
(0)). Moreover, for every R > 0 there exists C = C(T, µ,R) > 0

such that, if ‖u‖H1
0 (0,T ) < R, then, this weak solution satis�es

‖ψ‖C1([0,T ],H3
(0)

) 6 C
(
‖ψ0‖H5

(0)
+ ‖f‖H1((0,T ),H3∩H1

0 )

)
. (35)

The proof of Proposition 5 is the same as the one of Proposition 2, except that we use
the following Lemma, instead of Lemma 1.

Lemma 2 Let T > 0, u0 ∈ H5 ∩H3
(0) and f ∈ H1((0, T ), H3 ∩H1

0 ) be such that −iAu0 +

f(0) ∈ H3
(0). The function G : t 7→ e−iAtu0 +

∫ t
0
e−iA(t−s)f(s)ds belongs to C1([0, T ], H3

(0)),
moreover

‖G‖C1([0,T ],H3
(0)

) 6 c1(T )
(
‖u0‖H3

(0)
+ ‖f‖H1((0,T ),H3∩H1

0 ) + ‖ − iAu0 + f(0)‖H3
(0)

)
where the constants c1(T ) are uniformly bounded for T lying in bounded intervals. We also
have

‖ − iAG(T ) + f(T )‖H3
(0)
6 c1(T )

(
‖u0‖H3

(0)
+ ‖f‖H1((0,T ),H3∩H1

0 ) + ‖ − iAu0 + f(0)‖H3
(0)

)
.

Proof of Lemma 2: We already know that G ∈ C0([0, T ], H3
(0)). First let us write

G(t) = e−iAtu0 +

∫ t

0

e−iAτf(t− τ)dτ.

Since u0 ∈ H4
(0) and f ∈ H1((0, T ), H2

(0)), we know that G ∈ C1([0, T ], H2
(0)) and the

following equality holds in H2
(0) for every t ∈ [0, T ],

∂G

∂t
(t) = −iAe−iAtu0 + e−iAtf(0) +

∫ t

0

e−iAτ
∂f

∂t
(t− τ)dτ

= e−iAt [−iAu0 + f(0)] +

∫ t

0

e−iA(t−s) ∂f

∂t
(s)ds

(the proof of this result involves classical technics). Thanks to this expression and Lemma
1, we get

∂G

∂t
∈ C0([0, T ], H3

(0)).
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Now, let us prove that G ∈ C1([0, T ], H3
(0)), i.e. for every t ∈ [0, T ],∥∥∥G(t+ h)−G(t)

h
− ∂G

∂t
(t)
∥∥∥
H3

(0)

→ 0 when h→ 0.

We have

G(t+h)−G(t)
h − ∂G

∂t (t) = e−iAt
[
e−iAh−Id

h u0 + iAu0 − f(0)
]

+ 1
h

∫ t+h
t

e−iAτf(t+ h− τ)dτ

+
∫ t

0
e−iAτ

[
f(t+h−τ)−f(t−τ)

h − ∂f
∂t (t− τ)

]
dτ.

(36)
By applying Lemma 1, we see that the H3

(0)(0, 1)-norm of the term on the second line of the

right hand side of (36) tends to zero when h→ 0 because f ∈ H1((0, T ), H3 ∩H1
0 ). Thanks

to several changes of variables, the term on the �rst line of the right hand side of (36) may
be decomposed in the following way

e−iAt
[
e−iAh−Id

h

(
u0 + iA−1f(0)

)
+ iA

(
u0 + iA−1f(0)

)]
+e−iAt 1

h

∫ h
0
e−iAs

(
f(h− s)− f(0)

)
ds.

(37)

The H3
(0)(0, 1)-norm of the �rst term of (37) tends to zero when h → 0 because u0 +

iA−1f(0) ∈ H5
(0)(0, 1). The H3

(0)(0, 1)-norm of the second term of (37) also tends to zero
when h→ 0 because, thanks to Lemma 1 and Cauchy-Schwarz inequality, it is bounded by∥∥∥ ∫ h0 eiAs

(
f(s)−f(0)

h

)
ds
∥∥∥
H3

(0)

6 c1(h)
∥∥∥ f(.)−f(0)

h

∥∥∥
L2((0,h),H3∩H1

0 )

6 c1(h)
h

∥∥∥ ∫ .0 ∂f
∂t (τ)dτ

∥∥∥
L2((0,h),H3∩H1

0 )
6 c1(h)

√
h

h

∥∥∥ ∫ .0 ∂f
∂t (τ)dτ

∥∥∥
L∞((0,h),H3∩H1

0 )

6 c1(h)
∥∥∥∂f∂t ∥∥∥

L2((0,h),H3∩H1
0 )
.

The estimate (24) of Lemma 1 gives the �rst inequality of Lemma 2. Moreover, by
integration by part in time, we get

−iAG(t) = −iAe−iAtu0 −
∫ t

0

iAe−iAτf(t− τ)dτ

= −iAe−iAtu0 + e−iAtf(0)− f(t) +

∫ t

0

e−iAτ
∂f

∂t
(t− τ)dτ.

We get the second estimate thanks to the identity

−iAG(t) + f(t) = e−iAt [−iAu0 + f(0)] +

∫ t

0

e−iA(t−τ) ∂f

∂t
(τ)dτ.�

The following statement is the appropriate adaptation of Propositon 3.

Proposition 6 Let T > 0 and µ ∈ H5((0, 1),R). The map ΘT de�ned by (27) is C1 from
H1

0 ((0, T ),R) to VT ∩H5
(0)(0, 1).

Proof of Proposition 6:
First step: we prove that ΘT maps H1

0 ((0, T ),R) into VT ∩ H5
(0)(0, 1). Let u ∈

H1
0 ((0, T ),R) and ψ be the weak solution of (1), (6). Then ψ ∈ C1([0, T ], H2

(0)) ∩
C0([0, T ], H4

(0)) and the �rst equality of (1) holds in H2
(0) for every t ∈ [0, T ] (the proof

of this result involves classical technics). In particular, we have

‖ψ(T )‖H5
(0)

= ‖ψ′′(T )‖H3
(0)

=
∥∥∥∂ψ∂t (T )

∥∥∥
H3

(0)

because u(T ) = 0

16



which is �nite, thanks to Proposition 5.

Second step: We prove that ΘT : H1
0 ((0, T ),R)→ VT ∩H5

(0) is di�erentiable. Let u, v ∈
H1

0 ((0, T ),R), ψ, Ψ, ψ̃ be the weak solutions of (1),(6), (29), (30). Then, ∆ := ψ̃ − ψ − Ψ
is the weak solution of (31). Let us prove that

‖∆(T )‖H5
(0)

= o(‖v‖H1
0
) when ‖v‖H1

0
→ 0,

which gives the conclusion. Let R > 0 be such that ‖u‖H1
0
< R and ‖u+v‖H1

0
< R. Thanks

to Proposition 5, there exists C = C(T, µ,R) > 0, C1 = C1(µ) > 0 such that

‖∆(T )‖H5
(0)

= ‖∆′′(T )‖H3
(0)

=
∥∥∥∂∆
∂t (T )

∥∥∥
H3

(0)

because u(T ) = v(T ) = 0

6 C‖vµΨ‖H1
0 ((0,T ),H3∩H1

0 )

6 CC1‖v‖H1
0
‖Ψ‖C1([0,T ],H3

(0)
)

6 C2C1‖v‖H1
0
‖vµψ‖H1

0 ((0,T ),H3∩H1
0 )

6 C2C2
1‖v‖2H1

0
‖ψ‖C1([0,T ],H3

(0)
).

The proof of the continuity of the map dΘT : H1
0 ((0, T ),R) → L(H1

0 , VT ∩ H5
(0)) involves

similar arguments. �

Remark 4 With the same kind of arguments, we could get that Aψ(t) − u(t)µψ(t) ∈
C0([0, T ], H3

(0)). Therefore, ψ(t) does not, in general, belong to H5
(0)(0, 1) for t ∈ (0, T ).

The following statement is the appropriate generalization of Proposition 4.

Proposition 7 Let T > 0, µ ∈ H5((0, 1),R) be such that (5) holds and ΘT be de�ned
by (27). The linear map dΘT (0) : H1

0 ((0, T ),R) → VT ∩ H5
(0)(0, 1) has a continuous right

inverse dΘT (0)−1 : VT ∩H5
(0)(0, 1)→ H1

0 ((0, T ),R).

Proof of Proposition 7: Let Ψf ∈ VT ∩H5
(0)(0, 1). If Ψ is the solution of (33) for some

v ∈ H1
0 ((0, T ),R, then, the equality Ψ(T ) = Ψf is equivalent to the trigonometric moment

problem (34), or equivalently∫ T
0
v̇(t)dt = 0,∫ T

0
(T − t)v̇(t)dt = 1

i〈µϕ1,ϕ1〉 〈Ψf , ϕ1〉eiλ1T ,∫ T
0
v̇(t)ei(λk−λ1)tdt = λ1−λk

〈µϕ1,ϕk〉 〈Ψf , ϕk〉eiλkT ,∀k > 2.

(38)

The conclusion comes from Corollary 2 (in Appendix B). �

Now, Theorem 2 may be proved exactly as Theorem 1.

2.6 Case of the three dimensional ball with radial data

The goal of this section is the proof of Theorem 3. This proof is very similar to the case
of the interval and we only give the necessary modi�cations. The equivalent of Lemma 1
is proved with a similar computation for f ∈ L2((0, T ), H3

rad ∩ H1
(0)). More precisely, for

almost every s ∈ (0, T ), we have

〈f(s), ϕk〉 =

∫
B3

f(s)ϕk =
1

λ2
k

∫
B3

f(s)∆2ϕk =
1

λ2
k

∫
B3

∆f(s)∆ϕk

= − 1

λ2
k

∫
B3

∇∆f(s) · ∇ϕk +
1

λ2
k

∫
S2

∆f(s)
∂ϕk
∂n

dσ.
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To bound the �rst term, we use ∇∆f ∈ L2((0, T ), L2(B3)3) and the fact that the functions
(∇ϕk/

√
λk)k∈N∗ form an orthonormal family of L2(B3)3 because∫

B3

∇ϕi · ∇ϕj = −
∫
B3

ϕi∆ϕj = λjδi,j .

For the second term, since f and ϕk are radial, we have

1

λ2
k

∫
S2

∆f(s)
∂ϕk
∂n

dσ =
23/2
√
π(−1)k

λ
3/2
k

∆f(s, r = 1).

We conclude as in Lemma 1 for this term since the eigenvalues are the same and Corollary
4 still applies. The genericity of assumption (10) is detailed in the Appendix A, Proposition
17.

Remark 5 It is very likely that the same analysis would work in any dimension n 6 5,
provided that H3 remains an algebra. However, this would require the analysis of the zeros
of the Bessel functions and we have chosen to present the simplest result.

3 Nonlinear Schrödinger equations

In this section, we study the nonlinear Schrödinger equation with Neumann boundary con-
ditions (12). The goal is the proof of Theorem 4

First, let us introduce the following notations, that will be valid in all the section 3. The
operator A is de�ned by

D(A) = H2
(0)(0, 1) := {ϕ ∈ H2(0, 1);ϕ′(0) = ϕ′(1) = 0}, Aϕ = −ϕ′′. (39)

Its eigenvectors (ϕk)k∈N and eigenvalues (λk)k∈N are

ϕ0 := 1, λ0 := 0

ϕk(x) :=
√

2 cos(kπx) λk := (kπ)2,∀k ∈ N∗. (40)

We introduce the spaces
Hs

(0)(0, 1) := D(As/2),∀s > 0 (41)

and the notation
k∗ := max{k, 1},∀k ∈ N. (42)

3.1 Well posedness of the Cauchy problem

The goal of this subsection is the proof of the following result.

Proposition 8 Let µ ∈ H2((0, 1),R) and T > 0. There exists δ > 0 such that, for every
u ∈ Bδ[L

2(0, T )], there exists a unique weak solution ψ ∈ C0([0, T ], H2
(0)) of (12), (14).

Moreover, we have
‖ψ(t)‖L2(0,1) = ‖ψ0‖L2(0,1),∀t ∈ [0, T ].

We search ψ in the form ψ(t, x) = e−it(1 + ζ(t, x)), where ζ is a weak solution of i∂ζ∂t = −ζ ′′ + (|1 + ζ|2 − 1)(1 + ζ)− uµ(1 + ζ),
ζ ′(t, 0) = ζ ′(t, 1) = 0,
ζ(0, x) = 0.

(43)
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Proposition 8 will be the consequence of the existence and uniqueness of a weak solution ζ
for (43) (the conservation of the L2-norm may be proved as in the linear case). In order to
precise the de�nition of such a weak solution, let us introduce the operator A de�ned by

D(A) := H2
(0)(0, 1), Aζ := −ζ ′′ + 2<(ζ).

Then for every ζ ∈ H2
(0)(0, 1) and every t ∈ R, we have

e−iAtζ =

∞∑
k=0

(ak(t) + ibk(t))ϕk

where
a0(t) := <(〈ζ, ϕ0〉); b0(t) := =(〈ζ, ϕ0〉)− 2t<(〈ζ, ϕ0〉),

ak(t) := <(〈ζ, ϕk〉) cos[
√
λk(λk + 2)t] +

√
λk

λk + 2
=(〈ζ, ϕk〉) sin[

√
λk(λk + 2)t],∀k ∈ N∗,

bk(t) := −
√
λk + 2

λk
<(〈ζ, ϕk〉) sin[

√
λk(λk + 2)t] + =(〈ζ, ϕk〉) cos[

√
λk(λk + 2)t],∀k ∈ N∗.

Remark that these formulae are only the result of the diagonalization of the matrix(
0 ∆

−∆ + 2 0

)
obtained by the decomposition in real and imaginary part. Then Propo-

sition 8 is equivalent to the following statement.

Proposition 9 Let µ ∈ H2((0, 1),R) and T > 0. There exists δ > 0 such that, for every
u ∈ Bδ[L

2((0, T ),R)], there exists a unique weak solution of (43), i.e. a function ζ ∈
C0([0, T ], H2

(0)) such that the following equality holds in H2
(0) for every t ∈ [0, T ]

ζ(t) =

∫ t

0

e−iA(t−s)
(

[|1 + ζ(s)|2 − 1][1 + ζ(s)]− 2<[ζ(s)]− u(s)µ[1 + ζ(s)]
)
ds. (44)

The proof of Proposition 9 relies on the following Lemma.

Lemma 3 Let T > 0 and f ∈ L2((0, T ), H2). The function G : t 7→
∫ t

0
e−iA(t−s)f(s)ds

belongs to C0([0, T ], H2
(0)), moreover

‖G‖L∞((0,T ),H2
(0)

) 6 c0(T )‖f‖L2((0,T ),H2)

where the constants c0(T ) are uniformly bounded for T lying in bounded intervals.

Proof of Lemma 3: The proof of this Lemma is similar to the one of Lemma 1. By
de�nition, we have

G(t) =

∞∑
k=0

4∑
a=1

(∫ t

0

yak(t, s)ds

)
ϕk

where
y1
k(t, s) := <(〈f(s), ϕk〉) cos[

√
λk(λk + 2)(t− s)],∀k ∈ N,

y2
k(t, s) :=

√
λk

λk + 2
=(〈f(s), ϕk〉) sin[

√
λk(λk + 2)(t− s)],∀k ∈ N∗,

y3
k(t, s) := −i

√
λk + 2

λk
<(〈f(s), ϕk〉) sin[

√
λk(λk + 2)(t− s)],∀k ∈ N∗,

y4
k(t, s) := i=(〈f(s), ϕk〉) cos[

√
λk(λk + 2)(t− s)],∀k ∈ N,

y2
0(t, s) := 0, y3

0(t, s) := −2t<(〈f(s), ϕk〉).
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We have

‖G(t)‖H2
(0)
6

4∑
a=1

( ∞∑
k=1

∣∣∣k2
∗

∫ t

0

yak(t, s)ds
∣∣∣2)1/2

.

Let us prove that there exists a constant c = c(t) > 0 (uniformly bounded on bounded
intervals of t) such that( ∞∑

k=1

∣∣∣k2
∗

∫ t

0

y1
k(t, s)ds

∣∣∣2)1/2

6 c(t)‖f‖L2((0,t),H2). (45)

(the other terms may be treated in the same way). Integrations by part give, for almost
every s ∈ (0, T ),

〈f(s), ϕk〉 =

√
2

(kπ)2

(
(−1)kf ′(s, 1)− f ′(s, 0)−

∫ 1

0

f ′′(s, x) cos(kπx)dx

)
,∀k ∈ N∗.

Thus, we have, for every k ∈ N∗,

k2
∫ t

0
y1
k(t, s)ds =

√
2(−1)k

(π)2

∫ t
0
f ′(s, 1) cos[

√
λk(λk + 2)(t− s)]ds

+
√

2
(π)2

∫ t
0
f ′(s, 0) cos[

√
λk(λk + 2)(t− s)]ds

−
√

2
(π)2

∫ t
0
〈f ′′(s), ϕk〉 cos[

√
λk(λk + 2)(t− s)]ds.

We get (45) thanks to Corollary 4, as in the proof of Lemma 1. �

Proof of Proposition 9: We introduce the function g : C→ C de�ned by

g(z) := [|1 + z|2 − 1][1 + z]. (46)

We have dg(0).ζ = 2<(ζ). Let c0 = c0(T ) be as in Lemma 3. Let c1, c2, c3 > 0 be such that

‖g(ζ)− dg(0).ζ‖H2 6 c1
(
‖ζ‖2H2

(0)
+ ‖ζ‖3H2

(0)

)
,∀ζ ∈ H2

(0), (47)

‖g(ζ̃)−g(ζ)−dg(0).(ζ̃−ζ)‖H2 6 c2‖ζ−ζ̃‖H2
(0)

max{‖ξ‖H2
(0)
, ‖ξ‖2H2

(0)
; ξ ∈ {ζ, ζ̃}},∀ζ, ζ̃ ∈ H2

(0),

(48)
‖µζ‖H2 6 c3‖ζ‖H2

(0)
,∀ζ ∈ H2

(0). (49)

Let R > 0 be small enough so that

c0c1
√
T (R2 +R3) <

R

2
and c0c2

√
T max{R,R2} < 1

4
. (50)

Let δ > 0 be small enough so that

c0δc3(1 +R) <
R

2
and c0δc3 <

1

4
. (51)

Let u ∈ L2((0, T ),R) be such that ‖u‖L2(0,T ) < δ. We consider the map

F : BR[C0([0, T ], H2
(0))] → BR[C0([0, T ], H2

(0))]

ζ 7→ ξ

where ξ := F (ζ) is de�ned by

ξ(t) = −i
∫ t

0

e−iA(t−s)
(

[g(ζ(s))− dg(0).ζ(s)− u(s)µ[1 + ζ(s)]
)
ds.
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For ζ ∈ BR[C0([0, T ], H2
(0))], the function g(ζ) − dg(0).ζ − uµ[1 + ζ] belongs to

L2((0, T ), H2), thus ξ belongs to C0([0, T ], H2
(0)) thanks to Lemma 3. Moreover, using

(47), (49), (50), (51), we get

‖ξ‖L∞((0,T ),H2
(0)

) 6 c0
∥∥∥g(ζ)− dg(0).ζ − uµ[1 + ζ]

∥∥∥
L2((0,T ),H2)

6 c0
[√

T‖g(ζ)− dg(0).ζ‖L∞((0,T ),H2) + ‖u‖L2(0,T )‖µ[1 + ζ]‖L∞((0,T ),H2)

]
6 c0

[√
Tc1(R2 +R3) + δc3(1 +R)

]
6 R.

Thus, F takes values in BR[C0([0, T ], H2
(0))].

For ζ, ζ̃ ∈ BR[C0([0, T ], H2
(0))], using (48), (49), (50), (51), we get

‖ξ − ξ̃‖L∞((0,T ),H2
(0)

)

6 c0

∥∥∥g(ζ)− g(ζ̃)− dg(0).(ζ − ζ̃)− uµ(ζ − ζ̃)
∥∥∥
L2((0,T ),H2)

6 c0

[√
Tc2‖ζ − ζ̃‖L∞((0,T ),H2

(0)
) max{R,R2}+ δc3‖ζ − ζ̃‖L∞((0,T ),H2

(0)
)

]
6 1

2‖ζ − ζ̃‖L∞((0,T ),H2
(0)

).

Thus F is a contraction. �

3.2 C1-regularity of the end-point map

Let T > 0 and δ > 0 be as in Proposition 8. Let

VT :=

{
ϕ ∈ L2(0, 1);<

(
eiT
∫ 1

0

ϕ(x)dx

)
= 0

}
,

and PT : L2(0, 1) → VT be the associated orthogonal projection. Then, the following map
is well de�ned

ΘT : Bδ[L
2((0, T ),R)] → H2

(0)(0, 1)

u 7→ PT [ψ(T )],
(52)

where ψ solves (12), (14). We want to prove that the map ΘT is C1 on a neighborhood of
zero. We have seen that ψ(t) = e−it(1 + ζ(t)), where ζ solves (43). Thus, it is su�cient to
prove the following statement.

Proposition 10 Let µ ∈ H2((0, 1),R), T > 0, δ be as in Proposition 9, and

Θ̃T : Bδ[L
2((0, T ),R)] → H2

(0)(0, 1)

u 7→ ζ(T ),

where ζ solves (43). There exists δ′ ∈ (0, δ) such that the map ΘT is C1 on Bδ′ [L
2((0, T ),R)].

Moreover, for every u ∈ Bδ′ [L2((0, T ),R)] and v ∈ L2((0, T ),R) we have

dΘ̃T (u).v = ξ(T ) (53)

where ξ solves  i∂ξ∂t = −ξ′′ + dg(ζ).ξ − uµξ − vµ(1 + ζ),
ξ′(t, 0) = ξ′(t, 1) = 0,
ξ(0, x) = 0,

(54)

g is de�ned by (46) and ζ solves (43).
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Proof of Proposition 10: We use the same notations c0, c1, c2, c3, R, δ as in the proof
of Proposition 9, in particular, the relations (47), (48), (49), (50), (51) are satis�ed. We
introduce constants c4, c5 > 0 such that

‖[dg(ζ)− dg(0)].h‖H2 6 c4‖h‖H2
(0)

max{‖ζ‖H2
(0)
, ‖ζ‖2H2

(0)
},∀ζ, h ∈ H2

(0), (55)

‖g(ζ̃)−g(ζ)−dg(0).(ζ̃−ζ)‖H2 6 c5‖ζ̃−ζ‖H2
(0)

max{‖ξ‖H2
(0)
, ‖ξ‖2H2

(0)
; ξ ∈ {ζ, ζ̃}},∀ζ, ζ̃ ∈ H2

(0).

(56)
Moreover, we assume that

c0
√
T max{c4, c5}max{R,R2} < 1

4
(57)

(this additional assumption may change δ into a smaller value δ′).

Let u, v ∈ Bδ[L2((0, T ),R)] be such that (u + v) ∈ Bδ[L2(0, T )]. Let ζ, ξ and ζ̃ be the
solutions of (43), (54) and

i∂ζ̃∂t = −ζ̃ ′′ + (|1 + ζ̃|2 − 1)(1 + ζ̃)− (u+ v)µ(1 + ζ̃),

ζ̃ ′(t, 0) = ζ̃ ′(t, 1) = 0,

ζ̃(0, x) = 0.

The existence of ξ may be proved in a similar way as the existence of ζ.

First step: Let us prove that

‖ζ̃ − ζ‖L∞((0,T ),H2
(0)

) 6 2c0c3‖1 + ζ‖L∞((0,T ),H2
(0)

)‖v‖L2 . (58)

Thanks to Lemma 3, (56),(49), (57) and (51), we have

‖ζ − ζ̃‖L∞((0,T ),H2
(0)

)

6 c0

∥∥∥g(ζ̃)− g(ζ)− dg(0).(ζ̃ − ζ)− (u+ v)µ(ζ̃ − ζ)− vµ(1 + ζ)
∥∥∥
L2((0,T ),H2)

6 c0

[√
Tc5‖ζ̃ − ζ‖L∞((0,T ),H2

(0)
) max{R,R2}+ δc3‖ζ̃ − ζ‖L∞((0,T ),H2

(0)
)

+‖v‖L2c3‖1 + ζ‖L∞((0,T ),H2
(0)

)

]
6 1

2‖ζ − ζ̃‖L∞((0,T ),H2
(0)

) + c0‖v‖L2c3‖1 + ζ‖L∞((0,T ),H2
(0)

)

which gives (58).

Second step: Let us prove that the linear map

L2(0, T ) → H2
(0)(0, 1)

v 7→ ξ(T )

is continuous. Thanks to Lemma 3, (55), (49), (57) and (51), we have

‖ξ‖L∞((0,T ),H2
(0)

) 6 c0
∥∥∥[dg(ζ)− dg(0)].ξ − uµξ − vµ(1 + ζ)

∥∥∥
L2((0,T ),H2)

6 c0
[√

Tc4‖ξ‖L∞((0,T ),H2
(0)

) max{R,R2}+ δc3‖ξ‖L∞((0,T ),H2
(0)

)

+‖v‖L2c3‖1 + ζ‖L∞((0,T ),H2
(0)

)

]
6 1

2‖ξ‖L∞((0,T ),H2
(0)

) + c0‖v‖L2c3‖1 + ζ‖L∞((0,T ),H2
(0)

),

which gives
‖ξ‖L∞((0,T ),H2

(0)
) 6 2c0c3‖v‖L2‖1 + ζ‖L∞((0,T ),H2

(0)
). (59)
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Third step: Let us prove that Θ̃T is di�erentiable and that (53) holds. Let ∆ := ζ̃−ζ−ξ.
We want to prove that

‖∆(T )‖H2
(0)

= o(‖v‖L2) when ‖v‖L2 → 0.

Let ε > 0. There exists η > 0 such that, for every f ∈ L∞((0, T ), H2
(0)) with

‖f − ζ‖L∞((0,T ),H2
(0)

) < η, we have

‖g(f)− g(ζ)− dg(ζ).(f − ζ)‖L∞((0,T ),H2
(0)

) < ε‖f − ζ‖L∞((0,T ),H2
(0)

).

Let us assume that v is small enough so that

2c0c3‖1 + ζ‖L∞((0,T ),H2
(0)

)‖v‖L2 < η.

Then, thanks to Lemma 3 and (58), (55) and (49), we have

‖∆‖L∞((0,T ),H2
(0)

)

6 c0

∥∥∥g(ζ̃)− g(ζ)− dg(ζ).(ζ̃ − ζ) + [dg(ζ)− dg(0)].∆− (u+ v)µ∆− vµξ
∥∥∥
L2((0,T ),H2)

6 c0

[√
Tε‖ζ̃ − ζ‖L∞((0,T ),H2

(0)
) +
√
Tc4(R+R2)‖∆‖L∞((0,T ),H2

(0)
)

+δc3‖∆‖L∞((0,T ),H2
(0)

) + ‖v‖L2c3‖ξ‖L∞((0,T ),H2
(0)

)

]
.

Thanks to (57) and (49), we get

‖∆‖L∞((0,T ),H2
(0)

) 6 2c0

[√
Tε‖ζ̃ − ζ‖L∞((0,T ),H2

(0)
) + ‖v‖L2c3‖ξ‖L∞((0,T ),H2

(0)
)

]
,

which gives the conclusion, thanks to (58) and (59).

The continuity of the map dΘ̃T may be proved with similar arguments. �

3.3 Controllability of the linearized system

The goal of this section is the proof of the following result.

Proposition 11 Let T > 0 and µ ∈ H2((0, 1),R) be such that (13) holds. Let δ > 0 be
as in Proposition 8 and ΘT be de�ned by (52). The linear map dΘT (0) : L2((0, T ),R) →
VT ∩H2

(0)(0, 1) has a continuous right inverse dΘT (0)−1 : VT ∩H2
(0)(0, 1)→ L2((0, T ),R).

Proof of Proposition 11: It is equivalent to prove that the continuous linear map dΘ̃T (0) :
L2((0, T ),R)→ Ṽ ∩H2

(0)(0, 1) has a continuous right inverse, where

Ṽ :=

{
ϕ ∈ L2(0, 1);<

∫ 1

0

ϕ(x)dx = 0

}
.

We have dΘ̃T (0).v = ξ(T ) where ξ is the weak solution of i∂ξ∂t = −ξ′′ + 2<(ξ)− v(t)µ(x), x ∈ (0, 1), t ∈ (0, T ),
ξ′(t, 0) = ξ′(t, 1) = 0,
ξ(0, x) = 0.

In particular, we have

ξ(T ) = i

∫ T

0

e−iA(T−s)v(s)µds = i

∞∑
k=0

[ak(T ) + ibk(T )]ϕk
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where

a0(T ) = 〈µ, ϕ0〉
∫ T

0

v(s)ds,

b0(T ) = −2〈µ, ϕ0〉
∫ T

0

(T − t)v(s)ds,

ak(T ) = 〈µ, ϕk〉
∫ T

0

v(s) cos[
√
λk(λk + 2)(T − s)]ds,∀k ∈ N∗,

bk(T ) = −
√
λk + 2

λk
〈µ, ϕk〉

∫ T

0

v(s) sin[
√
λk(λk + 2)(T − s)]ds,∀k ∈ N∗.

For ξf ∈ Ṽ ∩H2
(0)(0, 1), the equality ξ(T ) = ξf is equivalent to the following trigonometric

moment problem
∫ T

0
v(s)ds = d0(ξf ) := = 〈ξf ,ϕ0〉

〈µ,ϕ0〉 ,∫ T
0
v(s)e−i

√
λk(λk+2)sds = dk(ξf ) := e−i

√
λk(λk+2)T

〈µ,ϕk〉

(
=〈ξf , ϕk〉+ i

√
λk
λk+2<〈ξf , ϕk〉

)
,∀k ∈ N∗,∫ T

0
sv(s)ds = d̃(ξf ) := Td0(ξf ).

We conclude thanks to Corollary 2 (in Appendix B). �

The proof of Theorem 4 is completed using the same arguments as in Section 2.4 using
the inverse mapping theorem and the conservation of the L2 norm.

Remark 6 With the same method, one may prove the local exact controllability of the
focusing nonlinear Schrödinger equation{

i∂ψ∂t (t, x) = −∂
2ψ
∂x2 (t, x)− |ψ|2ψ(t, x)− u(t)µ(x)ψ(t, x), x ∈ (0, 1), t ∈ (0, T ),

∂ψ
∂x (t, 0) = ∂ψ

∂x (t, 1) = 0,

around the reference trajectory (ψref (t, x) = eit, uref (t) = 0). The only di�erence in the

proof is that we get the frequencies
√
λk(λk − 2) (instead of

√
λk(λk + 2)) in the moment

problem. When the space domain is the interval (0, 1), then all the quantities λk(λk−2), for
k ∈ N∗, are positive (because λk = (kπ)2), thus there is no additional di�culty. When the
space domain is di�erent, for instance (0, a) with a large, then λk = (kπ/a)2, thus a �nite
number of the quantities λk(λk−2) are negative: we get a new moment problem with a �nite
number of moments with real valued exponentials, and an in�nite number of trigonometric
moments, that can be easily solved by adapting the tools used in this article.

4 Nonlinear wave equations

In this section, we study the nonlinear wave equation with Neumann boundary conditions
(15). The goal is the proof of Theorem 5. In all this section, we use the notations de�ned
in (39), (40), (41), (42) and all the functions are real valued.

First, let us check that the Cauchy problem is well posed in H3
(0) × H2

(0)(0, 1), when

u ∈ L2(0, T ). In order to write the system (15) in �rst order form, let us introduce

D(A) := H2
(0) ×H

1(0, 1), A :=

(
0 Id
−A 0

)
,

D(B) := L2 × L2(0, 1), B := µ(x)

(
0 0
Id Id

) (60)
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and F : R2 → R2 de�ned by F (y1, y2) := (0, f(y1, y2)). The operator A generates a C0-
group of bounded operators of H2

(0) ×H
1(0, 1) de�ned by

eAt
(
w0

ẇ0

)
=

(
w(t)
ẇ(t)

)
,

where

w(t) = (〈w0, ϕ0〉+ 〈ẇ0, ϕ0〉t)ϕ0 +

∞∑
k=1

(
〈w0, ϕk〉 cos(

√
λkt) +

1√
λk
〈ẇ0, ϕk〉 sin(

√
λkt)

)
ϕk,

ẇ(t) = 〈ẇ0, ϕ0〉ϕ0 +

∞∑
k=1

(
−
√
λk〈w0, ϕk〉 sin(

√
λkt) + 〈ẇ0, ϕk〉 cos(

√
λkt)

)
ϕk.

With the notation

W :=

(
w
∂w
∂t

)
, W0 :=

(
1
0

)
,

the equation (15) may be written

∂W
∂t

(t, x) = AW(t, x) + F (W) + u(t)BW(t, x), x ∈ (0, 1). (61)

Proposition 12 Let µ ∈ H2(0, 1), T > 0, f ∈ C3(R2,R) be such that f(1, 0) = 0 and
∇f(1, 0) = 0. There exists δ > 0 such that, for every u ∈ Bδ[L

2(0, T )], there exists a
unique weak solution of (61), (16), i.e. a function W ∈ C0([0, T ], H3

(0)×H
2
(0)) such that the

following equality holds in H3
(0) ×H

2
(0)(0, 1), for every t ∈ [0, T ],

W(t) = eAtW0 +

∫ t

0

eA(t−τ)
(
F (W(τ)) + u(τ)BW(τ) + F(τ)

)
dτ. (62)

The proof of this proposition relies on the following Lemma.

Proposition 13 Let T > 0 and g ∈ L2((0, T ), H2). The function G de�ned by

G(t) :=

∫ t

0

eAs
(

0
g(s)

)
ds

belongs to C0([0, T ], H3
(0) × H

2
(0)). Moreover, there exists a constant c0(T ) > 0, uniformly

bounded for T lying in bounded intervals, such that, for every g ∈ L2((0, T ), H2),

‖G‖L∞((0,T ),H3
(0)
×H2

(0)
) 6 c0(T )‖g‖L2((0,T ),H2). (63)

Proof of Proposition 13: We have, for every t ∈ [0, T ],

G(t) =

∫ t

0

 〈g(s), ϕ0〉sϕ0 +
∞∑
k=1

〈g(s),ϕk〉√
λk

sin(
√
λks)ϕk

〈g(s), ϕ0〉ϕ0 +
∞∑
k=1

〈g(s), ϕk〉 cos(
√
λks)ϕk

 ds.

Thus, there exists C > 0 such that

‖G(t)‖H3
(0)
×H2

(0)
6 C

[ ∞∑
k=0

∣∣∣k2
∗

∫ t

0

〈g(s), ϕk〉eikπsds
∣∣∣2 +

∣∣∣ ∫ t

0

s〈g(s), ϕ0〉ds
∣∣∣2] .

We get the conclusion as in the previous sections. �
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Proof of Proposition 12: Let us introduce the constants c1, c2, c3 such that

‖f(w,wt)‖H2 6 c1‖(w − 1, wt)‖2H3
(0)
×H2

(0)
,∀(w,wt) ∈ (1, 0) +B1[H3

(0) ×H
2
(0)], (64)

‖f(w,wt)− f(w̃, w̃t)‖H2

6 c2‖(w − w̃, wt − w̃t)‖H3
(0)
×H2

(0)
max{‖(w − 1, wt)‖H3

(0)
×H2

(0)
, ‖(w̃ − 1, w̃t)‖H3

(0)
×H2

(0)
},

∀(w,wt), (w̃, w̃t) ∈ (1, 0) +B1[H3
(0) ×H

2
(0)],

(65)
and (49) holds. Let R ∈ (0, 1) be small enough so that

√
Tc0c1R

2 6 R
2 ,
√
Tc0c2R 6 1

4
(66)

Let δ > 0 be small enough so that

δc0c3 <
1

4
, δc0c3(1 +R) <

R

2
. (67)

Let u ∈ Bδ[L2(0, T )]. We consider the map

F : (1, 0) +BR[C0([0, T ], H3
(0) ×H

2
(0))] → (1, 0) +BR[C0([0, T ], H3

(0) ×H
2
(0))]

ζ 7→ ξ

where

ξ(t) = eAtW0 +

∫ t

0

eA(t−τ)
(
F (ζ(τ)) + u(τ)Bζ(τ)

)
dτ,∀t ∈ [0, T ].

For ζ = (w,wt) ∈ (1, 0)+BR[C0([0, T ], H3
(0)×H

2
(0))], the second component of F (ζ)+uBζ

belongs to L2((0, T ), H2), thus ξ belongs to C0([0, T ], H3
(0) × H

2
(0)) thanks to Proposition

13. Moreover, thanks to (63), (64), (49), (66), and (67), we have, for every t ∈ [0, T ],

‖ξ(t)− (1, 0)‖H3
(0)
×H2

(0)
6 c0‖f(w,wt) + uµ[w + wt]‖L2((0,T ),H2)

6 c0
(√

T‖f(w,wt)‖L∞((0,T ),H2) + ‖u‖L2(0,T )‖µ[w + wt]‖L∞((0,T ),H2)

)
6 c0(

√
Tc1R

2 + δc3(R+ 1))
6 R.

Thus, F takes values in (1, 0) +BR[C0([0, T ], H3
(0) ×H

2
(0))].

For ζ = (w,wt), ζ̃ = (w̃, w̃t) ∈ (1, 0) + BR[C0([0, T ], H3
(0) ×H

2
(0))], thanks to (65), (49),

(66) and (67), we have

‖F(ζ)−F(ζ̃)‖L∞((0,T ),H3
(0)
×H2

(0)
)

6 c0‖f(w,wt)− f(w̃, w̃t) + uµ[w − w̃ + wt − w̃t]‖L2((0,T ),H2)

6 c0

[√
T‖f(w,wt)− f(w̃, w̃t)‖L∞((0,T ),H2) + δc3‖ζ − ζ̃‖L∞((0,T ),H3

(0)
×H2

(0)
)

]
6 c0

[√
Tc2R‖ζ − ζ̃‖L∞((0,T ),H3

(0)
×H2

(0)
) + δc3‖ζ − ζ̃‖L∞((0,T ),H3

(0)
×H2

(0)
)

]
6 1

2‖ζ − ζ̃‖L∞((0,T ),H2
(0)

)

Thus F is a contraction. �

Let T > 0, µ ∈ H2(0, 1), f ∈ C3(R2,R) be such that f(1, 0) = 0, ∇f(1, 0) = 0 and δ > 0
be as in Proposition 12. Then, the following map is well de�ned

ΘT : Bδ[L
2(0, T )] → H3

(0) ×H
2
(0)

u 7→ (w,wt)(T )
(68)

where (w,wt) is the weak solution of (15), (16). Working as in the previous section, one
may prove the following statements.
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Proposition 14 Let µ ∈ H2(0, 1), T > 0, f ∈ C3(R2,R) be such that f(1, 0) = 0,
∇f(1, 0) = 0 and δ > 0 be as in Proposition 12. The map ΘT de�ned by (68) is C1.
Moreover, for every u ∈ Bδ[L2(0, T )] and v ∈ L2(0, T ), we have dΘT (u).v = (W,Wt)(T ),
where (W,Wt) is the weak solution of

Wtt = Wxx + ∂f
∂y1

(w,wt).W + ∂f
∂y2

(w,wt).Wt + u(t)µ[W +Wt] + v(t)µ(x)[w + wt],

Wx(t, 0) = Wx(t, 1) = 0,
(W,Wt)(0, x) = 0,

(69)
and (w,wt) is the weak solution of (15), (16).

Proposition 15 Let T > 2, µ ∈ H2(0, 1) be such that (13) holds and f ∈ C3(R2,R) be
such that f(1, 0) = 0, ∇f(1, 0) = 0. The linear map dΘT (0) : L2(0, T )→ H3

(0) ×H
2
(0) has a

continuous right inverse dΘT (0)−1 : H3
(0) ×H

2
(0) → L2(0, T ).

The proof is the same except that the gap between the eigenvalues does not tend to
in�nity and we use Corollary 3.

5 Conclusion, open problems, perspectives

In this article, we have proposed a method for the proof of the local exact controllability for
linear and nonlinear bilinear systems. We have applied it to Schrödinger and wave equa-
tions, showing it works for a wide range of problems. It also works on other equations (for
instance it may prove an optimal version of the controllability result proved in [16] for a 1D
Beam equation).

In this article, we have presented various examples of application of the method. How-
ever, they all have in common that the linearized system ful�lls a gap condition on the
eigenvalues of the operator. This condition is not necessarily realized for the Schrödinger
equation in higher space dimensions. Even in two dimension, we do not know any example
of domain where it is true. So, one challenging question is the extension (or the impossibility
to do it) of these results to other dimensions.

A Genericity of the assumption on µ

The goal of this section is the proof of the following result.

Proposition 16 The set {µ ∈ H3((0, 1),R); (5) holds} is dense in H3((0, 1),R).

Proof: First, let us notice that

V := {µ ∈ H3((0, 1),R);µ′(1)± µ′(0) 6= 0}

is a dense open subset of H3((0, 1),R). Now, let us prove that the set

U := {µ ∈ V; 〈µϕ1, ϕk〉 6= 0,∀k ∈ N∗}

is dense in H3((0, 1),R). It is su�cient to prove that this set is dense in V. For n ∈ N, we
introduce the set

Un := {µ ∈ V; 〈µϕ1, ϕk〉 6= 0,∀k ∈ {1, ..., n}},

with the convention U0 := V. Then the sequence (Un)n∈N is decreasing and

U =

∞⋂
n=0

Un.
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Thanks to Baire Lemma, it is su�cient to check that, for every n ∈ N, Un+1 is dense in Un
for the H3((0, 1),R)-topology. Let n ∈ N and let µ ∈ Un−Un+1. Then µ ∈ V, 〈µϕ1, ϕk〉 6= 0
for k = 1, ..., n and 〈µϕ1, ϕn+1〉 = 0. Thanks to (7), µ + εx2 ∈ Un+1 for every ε ∈ R such
that

ε 6= − 〈µϕ1, ϕj〉
〈x2ϕ1, ϕj〉

,∀j ∈ {1, ..., n}.

Thus Un+1 is dense in Un.
Finally, thanks to (8), we have

U ⊂ {µ ∈ H3((0, 1),R); (5) holds},

which gives the conclusion. �

Proposition 17 The set {µ ∈ H3
rad(B

3,R); (10) holds} is dense in H3(B3,R).

Proof: We make the same proof. We use the formula

〈µϕ1, ϕk〉 =
4π(−1)k+1

λ
3/2
k

∂rµ(1)− 1

λ2
k

∫
B3

∇∆(µϕ1) · ∇ϕk

instead of (8). Moreover, we can �nd one µ(r) = r2 that ful�lls (10). �

B Moment problems

In this section, we recall classical results about moment problems (see, for instance [9]). The
proofs are given for sake of completeness.

B.0.1 Families of vectors in Hilbert spaces

Let H be a separable Hilbert vector space over K = R or C and Θ := (ξj)j∈Z be a family of
vectors of H with ξj 6= 0,∀j ∈ Z.

De�nition 1 The family Θ is minimal in H if, for every j ∈ Z, ξj /∈ Span{ξi; i ∈ Z− {j}}.

Proposition 18 The family Θ is minimal in H if and only if there exists a biorthogonal
family Θ′ = (ξ′j)j∈Z, i.e. Θ′ is a family of vectors of H such that

〈ξi, ξ′j〉 = δi,j ,∀i, j ∈ Z. (70)

Proof of Proposition 18 : We assume Θ is minimal. For j ∈ Z, let vj be the orthogonal
projection of ξj over the closed vector space Span{ξi, i 6= j} i.e.

vj ∈ Span{ξi, i 6= j} and 〈ξj − vj , ξi〉 = 0,∀i 6= j.

Let

ξ′j :=
ξj − vj
‖ξj − vj‖2

,∀j ∈ Z.

Then, the families (ξj) and (ξ′j) are biorthogonal.
Now, we assume that there exists a biorthogonal family Θ′ = (ξ′j)j∈Z. Let us assume

that there exists j ∈ Z such that ξj ∈ Span{ξi; i ∈ Z− {j}}. Then (70) implies 〈ξj , ξ′j〉 = 1
which is a contradiction. �

Remark 7 If Θ is minimal, then there exists a unique biorthogonal family Θ′ such that
Θ′ ⊂ Span{ξi; i ∈ Z}. In the end of this appendix, the expression �the�biorthogonal family
of Θ, refers to this unique biorthogonal family in Span{ξi; i ∈ Z}.
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De�nition 2 The family Θ is a Riesz basis of SpanΘ if Θ is the image of some orthonormal
family by an isomorphism.

Remark 8 It is clear that, if Θ is a Riesz basis of SpanΘ, then Θ is minimal in H.

Proposition 19 (1) If Θ is a Riesz basis of SpanΘ, then its biorthogonal family Θ′ is also
a Riesz basis of SpanΘ.

(2) Θ is a Riesz basis of SpanΘ if and only if there exists C1, C2 ∈ (0,+∞) such that,
for every scalar sequence (cj)j∈Z with �nite support,

C1

 ∞∑
j=−∞

|cj |2
1/2

6
∥∥∥ ∞∑
j=−∞

cjξj

∥∥∥ 6 C1

 ∞∑
j=−∞

|cj |2
1/2

. (71)

(3) If Θ is a Riesz basis of SpanΘ then there exists C > 0 such that, for every f ∈ H,
we have ∑

j∈Z
|〈f, ξj〉|2

1/2

6 C‖f‖.

Proof of Proposition 19 :
(1) We assume Θ is a Riesz basis of SpanΘ. Let H be an Hilbert space, (ζj)j∈Z be an

orthonormal family of H, V : H → SpanΘ an isomorphism such that ξj = V (ζj),∀j ∈ Z.
Then the adjoint operator V ∗ : SpanΘ → H is also an isomorphism and we have ξ′j =

(V ∗)−1(ζj),∀j ∈ Z. Indeed, for every j, k ∈ Z,

δj,k = 〈ξj , ξ′k〉H = 〈V (ζj), ξ
′
k〉H = 〈ζj , V ∗(ξ′k)〉H.

Thus Θ′ is a Riesz basis of SpanΘ.
(2) We assume Θ is a Riesz basis of SpanΘ. Let H be an Hilbert space, (ζj)j∈Z be an

orthonormal family of H, V : H → SpanΘ an isomorphism such that ξj = V (ζj),∀j ∈ Z
and (cj)j∈Z a scalar sequence with �nite support. We have

∥∥∥ ∞∑
j=−∞

cjξj

∥∥∥ =
∥∥∥V [ ∞∑

j=−∞
cjζj

]∥∥∥ 6 ‖V ‖∥∥∥ ∞∑
j=−∞

cjζj

∥∥∥ = ‖V ‖

 ∞∑
j=−∞

|cj |2
1/2

and  ∞∑
j=−∞

|cj |2
1/2

=
∥∥∥ ∞∑
j=−∞

cjζj

∥∥∥ =
∥∥∥V −1

[ ∞∑
j=−∞

cjξj

]∥∥∥ 6 ‖V −1‖
∥∥∥ ∞∑
j=−∞

cjξj

∥∥∥,
thus, we have (71) with C1 = 1/‖V −1‖ and C2 = ‖V ‖.

Now, we assume that (71) holds. Then the linear map V : l2(Z,K) → SpanΘ de�ned
by V [(cj)j∈Z] =

∑∞
j=−∞ cjξj is well de�ned and injective. Let h ∈ SpanΘ. There exists

(hN )N∈N such that hN → h in H when N → +∞ and for every N ∈ N, there exists

a sequence c(N) = (c
(N)
j )j∈Z with �nite support such that hN =

∑∞
j=−∞ c

(N)
j ξj . Then

(hN )N∈N is a Cauchy sequence in H, thus, thanks to (71), (c(N))N∈N is a Cauchy sequence
in l2(Z) and there exists c = (cj)j∈Z ∈ l2(N) such that cN → c in l2(Z). Then, (71) proves

that
∑∞
j=−∞(cj − c(N)

j )ξj → 0 in H, i.e. h =
∑∞
j=−∞ cjξj . We have proved that V is an

isomorphism, thus Θ is a Riesz basis of SpanΘ.
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(3) SpanΘ is a close vector subspace of H thus we have the orthogonal decomposition

H = SpanΘ + SpanΘ
⊥

and the associated orthogonal projection P : H → SpanΘ. For
f ∈ H, we have (∑

j∈Z
|〈f, ξj〉|2

)1/2

=

(∑
j∈Z
|〈Pf, ξj〉|2

)1/2

6 1
C1

∥∥∥ ∑
j∈Z
〈Pf, ξj〉ξ′j

∥∥∥
= 1

C1
‖Pf‖H 6 1

C1
‖f‖.�

Remark 9 We have proved that, if Θ is a Riesz basis of SpanΘ, then, for every h ∈ SpanΘ
there exists c = (cj)j∈Z ∈ l2(Z,K) such that h =

∑∞
j=−∞ cjξj. Moreover, if Θ′ and Θ are

biorthogonal families, then necessarily cj = 〈h, ξ′j〉,∀j ∈ Z. Thus, every h ∈ SpanΘ can be
decomposed in the following way

h =

∞∑
j=−∞

〈h, ξ′j〉ξj =

∞∑
j=−∞

〈h, ξj〉ξ′j (72)

where the series converge in H and the coe�cients (〈h, ξ′j〉)j∈Z, (〈h, ξj〉)j∈Z, belong to

l2(Z,K).

B.0.2 Abstract moment problems

Now, we move to the investigation of abstract moment problems: given a scalar sequence
(dj)j∈Z is it possible to �nd f ∈ H such that

〈f, ξj〉 = dj ,∀j ∈ Z.

Let us introduce the operator

JΘ : H → l2(Z,K)
f 7→ (〈f, ξj〉)j∈Z

with domain DΘ := {f ∈ H; JΘ(f) ∈ l2(Z)}. It is clear that, if the family Θ is not

complete in H, then the operator JΘ has a non trivial null space SpanΘ
⊥
. This motivates

the introduction of the operator J0
Θ := JΘ

∣∣∣
SpanΘ

.

Proposition 20 The operator J0
Θ : SpanΘ → l2(Z,K) is an isomorphism if and only if Θ

is a Riesz basis of SpanΘ.

Proof of Proposition 20 : We assume J0
Θ : SpanΘ → l2(Z,K) is an isomorphism. Let

(ζj)j∈Z be the canonical orthonormal basis of l2(Z). Then, the family(
(J0

Θ)−1(ζj)
)
j∈Z

is a Riesz basis of SpanΘ. Moreover, it is the biorthogonal family to Θ in SpanΘ. Thanks
to Proposition 19 (1), Θ is also a Riesz basis of SpanΘ.

We assume Θ is a Riesz basis of SpanΘ. Thanks to the Remark 9, it is clear that
J0

Θ : SpanΘ→ l2(Z,K) is an isomorphism. �
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B.0.3 Trigonometric moment problems

In this section, we recall important results on trigonometric moment problems. The following
Ingham inequality is due to Haraux [37].

Theorem 6 Let N ∈ N, (ωk)k∈Z be an increasing sequence of real numbers such that

ωk+1 − ωk > γ > 0,∀k ∈ Z, |k| > N,

ωk+1 − ωk > ρ > 0,∀k ∈ Z,

and T > 2π/γ. There exists C1 = C1(γ, ρ,N, T ), C2 = C2(γ, ρ,N, T ) ∈ (0,+∞) such that,
for every sequence (ck)k∈Z ∈ CZ with �nite support, we have

C1

∑
k∈Z
|ck|2 6

∫ T

0

∣∣∣ +∞∑
k=−∞

cke
−iωkt

∣∣∣2dt 6 C2

∑
k∈Z
|ck|2.

Let us introduce the space

l2r(N,C) := {(dk)k∈N ∈ l2(N,C); d0 ∈ R}.

Thanks to Proposition 19 and Theorem 6, we have the following statement, which is used
in the proof of Proposition 4.

Corollary 1 Let T > 0 and (ωk)k∈N be an increasing sequence of [0,+∞) such that ω0 = 0
and

ωk+1 − ωk → +∞ when k → +∞.

There exists a continuous linear map

L : l2r(N,C) → L2((0, T ),R)
d 7→ L(d)

such that, for every d = (dk)k∈N ∈ l2r(N,C), the function v := L(d) solves∫ T

0

v(t)eiωktdt = dk,∀k ∈ N.

Proof of Corollary 1: We de�ne ω−k := −ωk,∀k ∈ N∗. Theorem 6 ensures that the family
(eiωkt)k∈Z is a Riesz basis of F := AdhL2(0,T )(Span{eiωkt; k ∈ Z}). Thanks to Proposition
20, the map

J : F → l2(Z,C)

v 7→
(∫ T

0
v(t)eiωktdt

)
k∈Z

is an isomorphism. For d = (dk)k∈N ∈ l2r(N,C), we de�ne d̃ := (d̃k)k∈Z ∈ l2(Z,C) by
d̃k := dk if k > 0 and d−k if k < 0. Now, we de�ne L : l2r(N,C) → L2((0, T ),R) by

L(d) = J−1(d̃). The map L takes values in real valued functions because d̃−k = d̃k,∀k ∈ N
for every d ∈ l2r(N,C). �

Theorem 6 is also crucial in the proof of the following statement, used in the proof of
Proposition 7.

Corollary 2 Let T > 0 and (ωk)k∈N be an increasing sequence of [0,+∞) such that ω0 = 0
and

ωk+1 − ωk → +∞ when k → +∞. (73)
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There exists a continuous linear map

L : R× l2r(N,C) → L2((0, T ),R)

(d̃, d) 7→ L(d̃, d)

such that, for every d̃ ∈ R, d = (dk)k∈N ∈ l2r(N,C), the function v := L(d̃, d) solves∫ T
0
v(t)eiωktdt = dk,∀k ∈ N,∫ T

0
tv(t)dt = d̃.

(74)

Proof of Corollary 2: Let ωk := −ω−k, for every k ∈ Z with k < 0. From Proposition 6,
Θ := (eiωkt)k∈Z is a Riesz basis of AdhL2(0,T )(SpanΘ).

First step: We prove that the family Θ̃ := {t, eiωkt; k ∈ Z} is minimal in L2(0, T ).

Working by contradiction, we assume that Θ̃ is not minimal in L2(0, T ). Then, neces-
sarily

t ∈ AdhL2(0,T )SpanΘ. (75)

With successive integrations, we get

tj ∈ AdhC0[0,T ]

(
SpanΘ̃

)
,∀j ∈ N with j > 2.

The Stone Weierstrass theorem ensures that {1, tj ; j ∈ N, j > 2} is dense in C0([0, T ],C),
thus, it is also dense in L2(0, T ). From (75), we deduce that SpanΘ is dense in L2(0, T ).
This is a contradiction, because, thanks to Theorem 6, for every ω ∈ R − {ωk, k ∈ Z}, the
family {eiωt, eiωkt; k ∈ Z} is minimal, i.e.

eiωt /∈ AdhL2(0,T )

(
SpanΘ

)
.

Second step: We conclude.
For k < 0, we de�ne dk := d−k. Let {ξ̃, ξk; k ∈ Z} be the biorthogonal fam-

ily to {t, eiωkt; k ∈ Z}. From Theorem 6, there exists C > 0 and a unique solution
v ∈ AdhL2(0,T )(SpanΘ) of ∫ T

0

v(t)eiωktdt = dk,∀k ∈ Z

and it satis�es

‖v‖L2(0,T ) 6 C

(∑
k∈Z
|dk|2

)1/2

.

The uniqueness guarantees that v is real valued. Let us de�ne

L(d̃, d) := u := v +
(
d̃−

∫ T

0

tv(t)dt
)
ξ̃.

Then, u is real valued (because v and ξ̃ are), u solves (74) and

‖u‖L2 6 ‖v‖L2 +
(
|d̃|+

∣∣∣ ∫ T0 tv(t)dt
∣∣∣)‖ξ̃‖L2

6 ‖v‖L2

(
1 +

√
T 3

3 ‖ξ̃‖L2

)
+ |d̃|‖ξ̃‖L2

6

(
C
(

1 +
√

T 3

3 ‖ξ̃‖L2

)
+ ‖ξ̃‖L2

)(
|d̃|2 +

∑
k∈Z |dk|2

)1/2

.�

For the wave equation, the gap between two successive frequencies does not tend to
in�nity, so we will need the following Corollary which is proved similarly.
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Corollary 3 Let T > 2. We make the same assumptions as in Corollary 2 except that we
assume

ωk+1 − ωk > π

instead of (73). Then, we have the same conclusion as Corollary 2.

Corollary 4 Let (ωk)k∈N be an increasing sequence of [0,+∞) such that ω0 = 0 and

ωk+1 − ωk > γ > 0.

There exists a nondecreasing function

C : [0,+∞) → R∗+
T 7→ C(T )

such that, for every T > 0 and for every g ∈ L2(0, T ), we have( ∞∑
k=0

∣∣∣ ∫ T

0

g(t)eiωktdt
∣∣∣2)1/2

6 C(T )‖g‖L2(0,T ).

Proof of Corollary 4: The existence of C(T ), for large T > 2π/γ + 1, is a consequence of
Theorem 6 and Proposition 19 (3). Let us choose for C(T ) the smallest value possible for
this constant. For T ≤ 2π/γ + 1, we choose C(T ) = C(2π/γ + 1). Let 0 < T1 < T2 < +∞,
g ∈ L2(0, T1) and g̃ ∈ L2(0, T2) be de�ned by g̃ = g on (0, T1) and 0 on (T1, T2). By applying
the inequality on g̃, we get C(T1) 6 C(T2). �
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