Local controllability of 1D linear and nonlinear
Schrodinger equations with bilinear control
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Abstract

We consider a linear Schrédinger equation, on a bounded interval, with bilinear
control, that represents a quantum particle in an electric field (the control). We prove
the exact controllability of this system, in any positive time, locally around the ground
state.

Similar results were proved for particular models [14, 15, 17|, in non optimal spaces,
in long time and the proof relied on the Nash-Moser implicit function theorem in order
to deal with an a priori loss of regularity.

In this article, the model is more general, the spaces are optimal, there is no re-
striction on the time and the proof relies on the classical inverse mapping theorem. A
hidden regularizing effect is emphasized, showing there is actually no loss of regularity.

Then, the same strategy is applied to nonlinear Schrédinger equations and nonlinear
wave equations, showing that the method works for a wide range of bilinear control
systems.

Résumé

On considére une équation de Schrodinger linéaire, sur un intervalle borné, avec
controle bilinéaire, représentant une particule quantique dans un champ électrique (le
controle). On démontre la controlabilité exacte locale de ce systéme, en tout temps
positif, localement au voisinage de I’état fondamental.

Des résultats similaires ont déja été établis [14, 15, 17|, mais dans des espaces non
optimaux, en temps long et leur preuve reposait sur le théoréme de Nash-Moser, pour
gérer une apparente perte de régularité.

Dans cet article, le modéle étudié est plus général, les espaces sont optimaux, il n’y
a pas de restriction sur le temps et la preuve repose sur le théoréme d’inversion locale
classique. Un effet régularisant est exhibé, montrant qu’il n’y a finalement pas de perte
de régularité.

La méme stratégie est ensuite utilisée sur des équations de Schrédinger nonlinéaires
et des équations des ondes nonlinéaires, montrant qu’elle s’applique de fagon assez
générale aux systémes de contréle bilinéaires.

Keywords: control of partial differential equations; bilinear control; Schrédinger equa-
tion; wave equation.
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1 Introduction

1.1 Main result

Following [57], we consider a quantum particle, in a 1D infinite square potential well, sub-
jected to an electric field. It is represented by the following Schrédinger equation

{i%vno——iwam—u@u@Wﬁw»xe@JLM%&T» )
'@[J(tvo) = w(tv 1) =0,

where 9 is the wave function of the particle, u is the amplitude of the electric field and
p € H3((0,1),R) is the dipolar moment of the particle. The system (1) is a bilinear control
system, in which

e the state is v, with |[¢(t)||12¢0,1) = 1, V£ € (0,T),

e the control is the real valued function « : [0,7] — R.
Let us introduce some notations. The operator A is defined by
D(A) := H2N HY((0,1),C), Ap:=—%2. (2)
Its eigenvalues and eigenvectors are
A o= (km)?, o (x) := V2sin(krz), Vk € N*. (3)
The family (¢x)ren+ is an orthonormal basis of L2((0,1),C) and
Ut ) = op(x)e ! Vi € N*

is a solution of (1) with u = 0 called eigenstate, or ground state, when k = 1. We define the

spaces
H{y((0,1),C) := D(A*/?),¥s > 0 (4)

equipped with the norm

~ 1/2
el g, = (Z |k‘s<%<ﬁk>|2> -
k=1

We denote by (.,.) the L((0,1),C) scalar product

mmzlfwﬂﬁm

and by S the unit L2((0,1),C)-sphere. The first goal of this article is the proof of the
following result.

Theorem 1 Let T >0 and pn € H3((0,1),R) be such that
¢

de > 0 such that 3

< [{per, or)], vk € N, (5)

There ezists 6 > 0 and a C' map
r: vr — L*(0,7),R)
where
Vr = {¢y € SN Hip)((0,1),C); [y — 91(T)l| s < 8},
such that, T'(¢1(T)) = 0 and for every ¥y € Vr, the solution of (1) with initial condition
$(0) = ¢ (6)
and control w =T'(v5) satisfies (T = 5.



Remark 1 Thanks to the time reversibility of the system, Theorem 1 ensures the local
controllability of the system (1) around the ground state: for every T > 0, there exists 6 > 0
such that, for every 1o,y € SN H) ((0,1),C) with [0 — ¥1(0) | ms + [y — 1 (T)l[ms < 9,
there exists a control u € L*(0,T) such that the solution of (1) with initial condition ¥(0) =
o satisfies Y(T') = 5.

Remark 2 The assumption (5) holds, for ezample, with u(x) = 22, because

1 (“DHI8k ey
(x2p1, pp) = / 222 sin(krx) sin(mz)dz = { =i k=2
0

2
_3647'3” if k= 1.

(7)

But it does not hold when (up1,pr) = 0, for some k € N*, or when p has a symmetry
with respect to * = 1/2. However, the assumption (5) holds generically with respect to
€ H3((0,1),R) because

_1\k+1,/ o 1
(L1, or) = 4= klég) WOl (];7{2)3/0 (up1)"” (x) cos(krz)dz, Vk € N*.  (8)

(see Appendiz A for a proof). Thus, Theorem 1 is very general.

1.2 A simpler proof

The local exact controllability of 1D Schrédinger equations, with bilinear control, has already
been investigated in [14, 15, 17], (see also [16] for a similar result on a 1D beam equation). In
these articles, three different models are studied. The local controllability of the nonlinear
system is proved thanks to the linearization principle:

e first, we prove the controllability of a linearized system,

e then, we prove the local controllability of the nonlinear system, by applying an inverse
mapping theorem.

This strategy is coupled with the return method and quasi-static deformations in [14, 17]
and with power series expansions in [15, 17] (see [30, 32] by Coron for a presentation of
these technics). In these articles, the most difficult part of the proof is the application of
the inverse mapping theorem. Indeed, because of an a priori loss of regularity, we were led
to apply the Nash-Moser implicit function theorem (see, for instance [6] by Alinhac, Gérard
and [38] by Hérmander), instead of the classical inverse mapping theorem. The Nash-Moser
theorem requires, in particular, the controllability of an infinite number of linearized systems,
and tame estimates on the corresponding controls. These two points are difficult to prove
and lead to long technical developments in [14, 15, 17].

In this article, we propose a simpler proof, that uses only the classical inverse mapping
theorem (needing the controllability of only one linearized system), because we emphasize
a hidden regularizing effect (see Proposition 2).

Therefore, the controllability result of Theorem 1 enters the classical framework of local
controllability results for nonlinear systems, proved with fixed point arguments (see, for
instance, [55] by Rosier, [28] by Cerpa and Crépeau, [58] by Russell and Zhang, [63] by
Zhang, [64] by Zuazua; this list is not exhaustive).

1.3 Additionnal results

The proof we developed for Theorem 1 is quite robust, thus we could apply it to other
situations: other linear PDEs and also nonlinear PDEs, that are presented in the next
subsections. This shows that the strategy proposed in this article works for a wide range of
bilinear systems.



1.3.1 Generalization to higher regularities

The first situation is the analogue result of Theorem 1, but with higher regularities: we
prove the local exact controllability of (1) in smoother spaces and with smoother controls.
Namely, we prove the following result.

Theorem 2 Let T > 0 and p € H5((0,1),R) be such that (5) holds. There exists § > 0
and a C! map
r: Vr — H(0,T),R)
vy = T(¥y)
where
Vr = {¢y € SN Hp)((0,1),C); [y — u(T)llus < 6},

such that, T(¢¥1(T)) = 0 and for every ¢y € Vp, the solution of (1), (6) with control
u=T(¢y) satisfies Y(T') = ¢y.

Of course, the strategy may be used to go further and prove the local exact controllability
of (1) around the ground state

e in H(70)(0, 1) with controls in HZ((0,T),R),

e in H{;)(0,1) with controls in H((0,T),R), etc.

1.3.2 On the 3D ball with radial data

The second situation is the analogue result of Theorem 1, but for the Schrédinger equation
posed on the three dimensional unit ball B? for radial data. In polar coordinates, the
Laplacian for radial data can be written

Au(r) = 0%u(r) + %&u(r).

In particular, we have A (@) = M. The eigenfunctions of the Dirichlet operator
A = —A with domain D(A) := H? ,.., N H}(B?) are o = % with eigenvalues
A = (km)?2. Thus, we study the Schrédinger equation
82 (1,) = —A(t,) — ulp()E(E ). 7 € (0,1, o
P(t,1) = 0.

The theorem we obtain is very similar to Theorem 1.
Theorem 3 Let T > 0 and pn € H3(B3,R) radial be such that

C *
Jde > 0 such that W < [{per, pr)l, Yk € N*. (10)

There ezists § > 0 and a C* map
r: vr — L*(0,7),R)
where
Vr = {5 € SN Hfp) 0a(B*,C); [ = ¥1(T) |12 < 3},
such that, I'(¢1(T')) = 0 and for every ¢y € Vr, the solution of (9) with initial condition
¥(0) = ¢ (11)
and control uw =T'(¢¢) satisfies Y(T) = y.

The analysis is very close to the 1D case since for this particular data, the Laplacian
behaves as in dimension 1. We refer to Appendix A for the proof of the genericity of the
assumption (10). Note that this simpler situation has also been used by Anton for proving
global existence for the nonlinear Schrédinger equation [8].



1.3.3 Nonlinear Schrédinger equations

The third situation concerns nonlinear Schrodinger equations. More precisely we study the
following nonlinear Schrédinger equation with Neumann boundary conditions

{ i9(1,) = —?,ifé’()t,m) Pl 2) — u(Ou)e( o), € 0.0,0€ 0.T),
t t,1) = 0.

It is a nonlinear control system where
e the state is ¢, with [|1)(¢)| z2(0,1) = 1,Vt € [0, T7,
e the control is the real valued function u : [0,T] — R.

We study its local controllability around the reference trajectory

(res(t,x) == e i, Ures(t) = 0).

More precisely, we prove the following result.

Theorem 4 Let T > 0 and p € H?(0,1) be such that

1
de > 0 such that ‘/ w(z) cos(kmx)dx| > Vk e N. (13)
0

¢
max {1, k}?
There exists 1 > 0 and a C*-map
I':Vr — L*((0,7),R)
where
Vr = {py € SN H?(0,1);94(0) = ¢5(1) = 0 and |[oy — e || > <}
such that, for every vy € Vr, the solution of (12) with initial condition
¥(0,z) =1,Vz € (0,1) (14)
and control uw :=T'(5) is defined on [0,T] and satisfies (T) = 1y.
Remark 3 The assumption (13) holds generically in H?(0,1). Indeed, integrations by part

give

1 1
1
/ p(x) cos(kmx)dr = ) ((1)’““,1/(1) + 1/(0) +/ W' () cos(/mrx)dx) ,Vk e N™.

0 0

Other versions of this result, with higher regularities may be proved: the system is
exactly controllable, locally around the reference trajectory

e in H%(0,1) with controls in H}(0,T),

e in H5(0,1) with controls in HZ(0,T), etc.

Focusing nonlinearities may also be considered.



1.3.4 Nonlinear wave equations

The third situation concerns nonlinear wave equations. More precisely we study the following
wave equation with Neumann boundary conditions

{ Wit = Weg + f(w; wt) + u(t)ﬂ(x)(w + wt)a T e (O’ l)at € (O’T)7

wy(t,0) = wy(t,1) =0, (15)

where f is an appropriate nonlinearity, that satisfies, in particular, f(1,0) = 0. It is a
nonlinear control system where
e the state is (w, wy),
e the control is the real valued function w : [0,7] — R.
We study its exact controllability, locally around the reference trajectory
(Wrep(t, ) = 1, upep(t) = 0).

More precisely, we prove the following result.

Theorem 5 Let T > 2, u € H?((0,1),R) be such that (18) holds and f € C3(R?,R) be
such that f(1,0) =0 and V£(1,0) = 0. There exists n > 0 and a C'-map

I':Vr — L*(0,T),R)

where

Vr = {(wy,ty) € B x H((0,1),R); w}(0) = wj(1) = /(0) = y(1) = 0
and |lwy — 1| gs + [[dg | a2 < n}

such that T'(1,0) = 0 and for every (wy,wy) € Vr, the solution of (15) with initial condition
(w,we)(0,z) = (1,0),Vz € (0,1) (16)
and control u :=T'(wy,wy) is defined on [0,T] and satisfies (w,ws)(T) = (wyg,wy).

Other versions of this result, with higher regularities may be proved: the system is
exactly controllable, locally around the reference trajectory

e in H* x H3(0,1) with controls in H}(0,7),
e in H® x H*(0,1) with controls in H2(0,T), etc.

1.4 A brief bibliography
1.4.1 A previous negative result

First, let us recall an important negative controllability result, for the equation (1), proved
by Turinici [61]. It is a corollary of a more general result due to Ball, Marsden and Slemrod
[10].

Proposition 1 Let 1) € SN H(Qo)((O, 1),C) and U[T;u,vq] be the value at time T of the
solution of (1) with initial condition 1(0) = vy. The set of attainable states from 1y,

{U[T;u,v0); T > 0,u € L*((0,T),R)}

has an empty interior in SI’WH(QO)((O7 1),C). Thus (1) is not controllable in SQHEO)((O, 1),C)
with controls in L?. ([0, +00), R).

loc



Proposition 1 is a rather weak negative controllability result, because it does not prevent
from positive controllability results, in different spaces. This had already been emphasized
for the particular cases studied in [14, 15, 17], in which the reachable set is proved to contain
H (70) or H (55 . In this article, we prove that the reachable set (at least locally, with small

controls in L2((0,T),R)), coincides with SN H(?’O), (which has, indeed, an empty interior in
SNH (20)). Therefore, sometimes, Ball, Marsden and Slemrod’s negative result is only due to
an 'unfortunate’ choice of functional spaces, that does not allow the controllability. It may
not be due to a deep non controllability (such as, for example, when a subsystem evolves

independently of the control).

1.4.2 Iterated Lie brackets

Now, let us quote some articles about the controllability of quantum systems.
First, the controllability of finite dimensional quantum systems (i.e. modelled by an
ordinary differential equation) is well understood. Let us consider the quantum system

ax
where X € C" is the state, Hy, H; are n * n hermitian matrices, and ¢ — u(t) € R is the
control. The controllability of (17) is linked to the rank of the Lie algebra spanned by Hy
and H; (see for instance [5] by Albertini and D’Alessandro, [7] by Altafini, [26] by Brockett,
see also [3] by Agrachev and Sachkov, [32] by Coron for a more general discussion).

In infinite dimension, there are cases where the iterated Lie brackets provide the right
intuition. For instance, it holds for the non controllability of the harmonic oscillator (see [49]
by Mirrahimi and Rouchon). However, the Lie brackets are often less powerful in infinite
dimension than in finite dimension. It is precisely the case of our system. Indeed, let us
define the operators

D(fo) == H?> N H(0,1), fo(¥) :=—9",
D(fl) = L2(071)7 f1(1/)) = waa

which correspond to u(x) = z2. Let us compute the iterated Lie brackets at the point

¢1(x) = V2sin(mz). Since ¢ € D(fy), we can compute

[fo, f1l(p1) = —dapy — 2¢1,
[f1, [fo, Aill(®) = 82201 = 81 (1)

Notice that [fo, f1](¢1) does not belong to D(fo) because [fo, f1](¢1)(1) = 4v/27 # 0. Thus,
in order to give a sense to the Lie bracket [fo, [fo, f1]], one needs to extend the definition of
fo to functions that do not vanish at = 0,1. A natural choice is

fo() == =" +1p(0)d5 — (1)dy (18)
because, with this choice, we have
(fo(), %) = (¥, fo(¥))), Vo € D(fo), ¥4 € H*(0, 1),

in the sense

— [ W'(@)¢(x)dz = —/O Y(@))" (x)dx — 4/ (1) (1) + 4/ (0)$(0).

0

With the definition (18), we get

[fo; [fo, full(¥) = =80 () + 44'(1)8]



But then, again, [fo, [fo, [fo, f1]]] is not well defined. Moreover, even if we could give a sense
to any iterated Lie bracket, because of the presence of Dirac masses, it would not be clear
which space the Lie algebra should generate in case of local controllability. Therefore, the
way the Lie algebra rank condition could be used directly in infinite dimension is not clear
(see also [32] for the same discussion on other examples). This is why we develop completely
analytic methods in this article.

Finally, let us quote important articles about the controllability of PDEs, in which pos-
itive results are proved by applying geometric control methods to the (finite dimensional)
Galerkin approximations of the equation. In [4] by Sarychev and Agrachev and [59] by
Shirikyan, the authors prove exact controllability results for dissipative equations. In [29],
by Boscain, Chambrion, Mason and Sigalotti, the authors prove the approximate controlla-
bility in L2, for bilinear Schrédinger equations such as (1).

We also refer to the following works about the controllability of finite dimensional quan-
tum systems [2, 20, 21, 22, 23, 24, 25], by Agrachev, Boscain, Chambrion, Charlot, Gauthier,
Gueérin, Jauslin and Mason, [40] by Khaneja, Glaser and Brockett, [53] by Ramakrishna,
Salapaka, Dahleh, Rabitz, [60] by Sussmann and Jurdjevic, [62] by Turinici and Rabitz. Let
us also mention [50] by Mirrahimi, Rouchon, Turinici and [18] for explicit feedback controls,
inspired by Lyapunov technics.

1.4.3 Controllability results for Schrédinger and wave equations

The controllability of Schrédinger equations with distributed and boundary controls, that
act linearly on the state, is studied since a long time.

For linear equations, the controllability is equivalent to an observability inequality that
may be proved with different technics: multiplier methods (see [36] by Fabre, [47] by
Machtyngier), microlocal analysis (see [46] by Lebeau, [27] by Burq), Carleman estimates
(see [42, 43] by Lasiecka, Triggiani, Zhang), or number theory (see [54] by Ramdani, Taka-
hashi, Tenenbaum and Tucsnak).

For nonlinear equations, we refer to [33] by Dehman, Gérard, Lebeau, [41] by Lange
Teismann, [44, 45] by Laurent, [56] by Rosier, Zhang.

1.4.4 Other results about bilinear quantum systems

The study of the controllability of Schréodinger PDEs with bilinear controls started later.

The first result is negative and it is due to Turinici (see [61] and Proposition 1). It is
a corollary of a more general result by Ball, Marsden and Slemrod [10]. Because of this
noncontrollability result, such equations have been considered as non controllable for a long
time. However, important progress have been made in the last years and this question is
now better understood (see section 1.4.1). Let us also mention that this negative result has
been adapted to nonlinear Schrédinger equations in [39] by Ilner, Lange and Teismann.

Concerning exact controllability issues, local results for 1D models have been proved
in [14, 15] by Beauchard; almost global results have been proved in [17], by Coron and
Beauchard. In [31], Coron proved that a positive minimal time was required for the local
controllability of the 1D model (1) with p(z) =z —1/2.

Now, let us quote some approximate controllability results. In [19] Mirrahimi and
Beauchard proved the global approximate controllability, in infinite time, for a 1D model
and in [48] Mirrahimi proved a similar result for equations involving a continuous spectrum.
Approximate controllability, in finite time, has been proved for particular models by Boscain
and Adami in [1], by using adiabatic theory and intersection of the eigenvalues in the space
of controls. Approximate controllability, in finite time, for more general models, have been
studied by 3 teams, with different tools: by Boscain, Chambrion, Mason, Sigalotti [29], with



geometric control methods; by Nersesyan [52, 51] with feedback controls and variational
methods; and by Ervedoza and Puel [35] thanks to a simplified model.

Let us emphasize that the local exact controllability result of this article and the global
approximate controllability of [52, 51] can be put together in order to get the global exact
controllability of 1D models (see [51]).

Optimal control techniques have also been investigated for Schrédinger equations with
a non linearity of Hartee type in [11, 12] by Baudouin, Kavian, Puel and in [34] by Cances,
Le Bris, Pilot. An algorithm for the computation of such optimal controls is studied in [13]
by Baudouin and Salomon.

1.5 Structure of this article

This article is organized as follows.

Section 2 aims at proving the controllability for the linear Schrodinger equations. The
Subsections 2.1, 2.2, 2.3 and 2.4 are dedicated to the different steps of the proof of Theorem
1, where the equation is posed on a bounded interval. The Subsection 2.5 is dedicated to
the proof of the same result with higher regularities, i.e. Theorem 2. The Subsection 2.6 is
dedicated to the Schrodinger equation for radial data on the three dimensional ball, i.e. the
proof of Theorem 3.

In Section 3, we prove Theorem 4 concerning the nonlinear Schrédinger equation (12).

In Section 4, we prove Theorem 5 concerning the nonlinear wave equation (15).

Finally, in Section 5, we state some conclusions, open problems and perspectives.

1.6 Notations

Let us introduce some conventions and notations that are valid in all this article. Unless
otherwise specified, the functions considered are complex valued and, for example, we write
H}(0,1) for H}((0,1),C). When the functions considered are real valued, we specify it and
we write, for example, L2((0,T),R). We use the spaces

he(N*,C) := {a = (ar)ren € CV5 ) |KPar]® < +oo}

k=1

equipped with the norm

> 1/2
lalle = (3 weauf?) .
k=1
The same letter C' denotes a positive constant, that can change from one line to another
one. If (X,||.]|) is a normed vector space and R > 0, Br[X] denotes the open ball {z €
X:|lz|]| < R} and Br[X] denotes the closed ball {z € X;||z| < R}.

2 Linear Schrodinger equations

The goal of this section is the proof of controllability results for linear Schrédinger equations,
with bilinear controls.

The Subsections 2.1, 2.2, 2.3 and 2.4 are dedicated to the different steps of the proof of
Theorem 1, where the equation is posed on a bounded interval. In Subsection 2.1, we prove
existence, uniqueness, regularity results and bounds on the solution of the Cauchy problem
(1), (6). In Subsection 2.2, we prove the C'l-regularity of the end-point map associated to
our control problem. In Subsection 2.3, we prove the controllability of the linearized system
around the ground state. Finally, in Subsection 2.4, we deduce Theorem 1 by applying the
inverse mapping theorem.

The Subsection 2.5 is dedicated to the proof of the same result with higher regularities,
i.e. Theorem 2.



The Subsection 2.6 is dedicated to the Schrddinger equation for radial data on the three
dimensional ball, i.e. the proof of Theorem 3.

In all this section (except in Subsection 2.6), the operator A is defined by (2), the spaces

Hfo)(O, 1) are defined by (4) and e~*4* denotes the group of isometries of Hfo)(O, 1), Vs 20

generated by —iA,

e o = (o, p)e” Moy, Y € L*(0,1). (19)

We use few classical results concerning trigonometric moment problems that are recalled in
Appendix B.

2.1 Well posedness of the Cauchy problem

This subsection is dedicated to the statement of existence, uniqueness, regularity results,
and bounds for the weak solutions of the Cauchy problem

i%=-2 () ( ) — [t x), x € (0,1),t € Ry,
1//(75 0) = (t, ) = (20)
$(0,2) = tho().

Proposition 2 Let p € H3((0,1),R), T > 0, ¢y € H} 0(0,1), f € L2((0,T),H® N HY)
and u € L?((0,T),R). There exists a unique weak solutwn of (20), i.e. a function 1) €
C°([o,T), H(go)) such that the following equality holds in H(30)(O, 1) for every t € (0,71,

Bt) = Aty + i / A [u(r)up(r) + f(r)]dr. (21)

Moreover, for every R > 0, there exists C = C(T, pu, R) > 0 such that, if ||ul[z20,1) < R,
then this weak solution satisfies

lelloogorym3,y < C(Iolla, + 120, mronm) ) (22)

If f =0 then
1Y)l L2(0,1) = 1ol L2(0,1), VE € [0, T1. (23)

The main difficulty of the proof of this result is that f(s) is not assumed to belong to
Hf’o)( 1) (i.e. f"(s,.) may not vanish at x = 0 and « = 1), and p is not assumed to satisfy

1 (0) = /(1) = 0 (and thus the operator ¢ — pp does not preserve H(30) (0,1) because for
Y E H(?’O) (0,1), we have (up)” = 2p'¢" at = 0 and = 1). The argument for proving
Proposition 2 comes from the following Lemma.

Lemma 1 Let T > 0 and f € L*((0,T),H® N H}). The function G : t — fot e s f(s)ds
belongs to CO([O,T],H(‘O’O)), moreover

|Gl Lo ((0,1), 1 cr(T) fllzz(o,1),m3nm2) (24)

<0>)
where the constants c1(T) are uniformly bounded for T lying in bounded intervals.
Proof of Lemma 1: By definition, we have

_ kil </Ot<f(s),<pk>ei)"*‘sd5) o

10



For almost every s € (0,T), f(s) € H® N H, and we have
(f(s),n) = 5 (Af
= X2 Jo f"(s,2)sin(knz)dz
= 225 (0475, 1) = 11(5,0)) = 7B
Thus, we have

16O, = [ Jtfe)enewas| |
2 Hfo £ eveds| o+ | Jy 5 (s, 0)N0ds )
fo (f"(s),V2cos(krzx))e Z’\’“SdsHl2

! 1" (s, x) cos(kmx)dx.

N

44
3

The family (v/2 cos(knz))gen- is orthonormal in L2(0, 1), thus
- o 1/2
Hfo (f"(s), V2 cos(kmz))e ”‘“dsH = (E ’fg(f’”(s),\/icos(kﬂm»e”‘k‘sds‘ )
k=1

0o 1/2
< (i 107 VEcostimaoas )

1/2
VE(Jy 177 (5) 12245
\[”f”L?( (0,t),H3)-
Thanks to Corollary 4 (in Appendix B), we get

16N, < 252 (1 0zao + 17 D20 ) + F 2o,
< ( WA z2(0,0), 53 nH)

<
<

where ¢;(t) is uniformly bounded for ¢ lying in bounded intervals. This bound shows
that G(t) belongs to H(?’O)(O,l) for every t € [0,T] and that the map ¢ € [0,7] —
G(t) € H(o) is continuous at ¢ = 0 (because ¢;(t) is uniformly bounded when ¢ — 0 and

[ flz2 0,0y, 3nm2) — O when ¢ — 0, thanks to the dominated convergence theorem). The
continuity of G at any ¢ € (0,7) can be proved similarly. (]

Proof of Proposition 2: Let u € H3((0,1),R), T > 0, ¢ € HE’O)(O, 1), f € L*((0,7),H*N
H}) and u € L%((0,T),R). We consider the map

F: CO([OvT]vH?O)) — CO([OvT]vHEQ))
= 3

where € := F(¢) is defined by

t

£(t) = e~y +i/ e A0 (U(S)M/}(S) + f(S))d&Vt € [0,T]. (25)
0

We have assumed that f € L%((0,7),H® N H}) and u € L*(0,T), thus, for every ¢ €

([0, 17, HE’O)) the map (uuy) + f) belongs to L?((0,7), H> N H}) and Lemma 1 ensures

that F takes values in C°([0,T], H,). We have also used that in dimension 1, H® is an

algebra.

Thanks to (24), we get, for every t € [O, T,
3

[1EW1)(t) = F(@2) ()]l eou(s)p(vr — ¢2)(8)d8‘
(0)

)
<a (UHUM(% — V)|l L2((0,0), 13 1)
< ar®)llull2 0,0 l(br — Y2)llLoe ((0,0), B3AHD)
< er(®)llull 20,0 C ()11 — Yol oo ((0,0), 1

(0))
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thus

|F(¢1) — (¢2)||Loo ((0,7),H3)) X < 2T, M)HUHLZ(O,T)le ¢2||L<>° ((0,7),H, (26)

(0) (0))

If ||u| L2¢o,r) is small enough, then F'is a contraction. Thanks to the Banach fixed point

theorem, there exists ¢ € C°([0,T], H(30)) such that F(y) = ¢. The previous arguments
show that, for this fixed point, we have

191 oo 0,1y, 13, ) < ||T/JOHH§0)+C2(T7M)HU||L2(0,T)||1/JHLO<>((0,T) yred (D fllzz 0,1y, m30H)-

3
(0)) <0)

Thus, if co(T, p)[|ul|L2(0,7) < 1/2, then, we get (22).

We have proved Proposition 2 when ||u(|2(o,r) is small enough. If it is not the case, one
may consider 0 = Ty < Ty < ... < Ty = T such that [|ul|z>(7; 1,,,) is small and apply the
previous result on [Ty, T1], ..., [Tn—1,Tn] in order to get the conclusion. Since our constant
¢1(t) is uniform on bounded sets, we easily get that N only depends on R, so that the
constant in Proposition 2 does only depend on 7', 1 and R as claimed.

Now, let us prove that (23) holds when f = 0. Classical arguments allow to prove that,
when u € C°([0,T],R), then ¢ € C1([0,T], L?) and the first equality of (1) holds in L? for
every t € [0,7]. Thus, when v € C°([0,7],R), we can take the L?-scalar product of this
equation with ; and the imaginary part of the resulting equality gives

Hw( M- =

Thus, we have (23) when u € CO([O,T],R). A density argument allows to prove (23) when
u only belongs to L2((0,T),R). O

2.2 (Cl-regularity of the end-point map
For T > 0 we introduce the tangent space of S at 11 (T")

= {€ € L*(0,1): R(&, ¥u (1)) = 0}

and the orthogonal projection
Pr: L*(0,1) — Vr.

Proposition 2 allows to consider the map

Or: L2((0,T),R) — VTmH3 ,(0,1)

w e P(D) @7)

where 1) is the solution of (1), (6). The goal of this section is the proof of the following
result.

Proposition 3 Let T > 0 and p € H3((0,1),R). The map Or defined by (27) is C*.
Moreover, for every u,v € L*((0,T),R), we have

d@T (U)’U = PT [\I/(T)] (28)
where U is the weak solution of the linearized system

i% =~V —u()p(@)¥ —v(t)u(x)p,x € (0,1),t € (0,T),
W(t,0)=U(t,1) =0, (29)
U(0,7) =0,

and v is the solution of (1),(6).

12



Proof of Proposition 3: Let T > 0, u € H3((0,1),R) and u € L%((0,T),R). First, let
us emphasize that the linear map v — W(T') is continuous from L2((0,7),R) to H?o) (O, 1)
thanks to Proposition 2.

First step: We prove that O is differentiable and that (28) holds. Let 1) be the weak
solution of (1),(6), ¥ solution of (29) and 1 solution of

90— 3 — (u+ o)) € (0,1),¢ € (0,T),
zﬁ(tv 0) = 1/)(75, 1) =0, (30)
P(0,z) = p1.
Then A := J — 1 — ¥ is the weak solution of
192 = — A" — (u+0)(t)u(z)A — v(t)p¥, z € (0,1),t € (0,7),
A(t,0) = A(t, 1) = 0, (31)
A(0,z) = 0.

Let us prove that

1Al eoqory s, ) = ollolz=) when Jol]z — 0, (32)

which gives the conclusion. Let R > 0 be such that ||u||z2(0,7) < R and ||u+v| 20,7y < R.
Thanks to Proposition 2, there exists C; = C;(T, u, R) > 0 for j = 0,1 such that

||AHCO([O,T],H(30)) < CO||UM‘I/||L2((0,T),H30H1 Cl||”||L2||‘I’||CO([0 T),H},)

H‘I’HCO([O,T],H?O)) X CO”W“/’HH ((0,7),H3NH})
< Cilvllzz[$lleogo,r, 13,
< CoOi oz ol -

which proves (32).

Second step: We prove that dOr is continuous. Actually, we prove that this map is
locally Lipschitz. Let u,u € L*((0,7),R) and v € L?((0,T),R). Let ¢ be the solution of
(1),(6), ¥ solution of (29) and v, ¥ solution of

—" — () (), 90 = —0" — Ut ()T — v(t)u(z)P,
1/}(15 0) Wh(t, 1) =0, U(t,0) =¥(t,1) =0,
h(0,2) = ¢, ¥(0,z) =0,
We have B
[dO7(u) — dOr(w)].v = Pr[¥(T) — ¥(T)] = Pr[E(T)]

where = is the weak solution of

i%2 = 8% —u(t)uE — (u—W)p¥ — op(y — ¥),
E(t,0) =E(t,1) =0,
=(0) = 0.

Let R > 0 be such that ||u||z2(0,7) < R, |[t][z2(0,r) < R. Let us prove that

1Ellcoqo.m,mz,) < Cllollczllu —ull 2

where C = C(T, 1, R) > 0, which gives the conclusion. Thanks to Proposition 2, we have

C2||(U*"~L)H‘T’+UH(¢*1Z)”L2 (0,7, H3NH})
(= Plosqoymy )+ ol 9 = Fleogon, )

)
IZllcoqo,m,m3,) <
<
< 4l s lomdlssom oy + 1ol — wilzoom, oo )
<C
<

(0))

s (Jlu = @l 2 ol 21l oogo 3, ) + 10122 = wll 2 1Bl cogo,r s, )
Collu —ul| g2 |v] 2,
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where C; = C;(T,pu, R) > 0 for j =2,...,6. O

2.3 Controllability of the linearized system
The goal of this section is the proof of the following result.

Proposition 4 Let T > 0 and p € H3((0,1),R) be such that (5) holds. The linear map
dOr(0) : L2((0,7),R) — Vr N H(30) (0,1) has a continuous right inverse dOr(0)~% : Vp N
H(BO)(O, 1) — L*((0,7),R).

The proof of Proposition 4 relies on an Ingham inequality, due to Haraux (see [37] and
Appendix B).

Proof of Proposition 4: We have dOr(0).v = ¥(T) where

i%—‘f = —0" —o(t) iy,
U(t,0) =U(t,1) =0, (33)
¥(0) =0,

thus
o T
W(T) =) i{uer, or) (/ v(t)E’(“Al)tdt> e oy,
k=1 0
Let Uy € Vp N H3, (0,1). If W is the solution of (33) for some v € L?((0,T),R), then, the

(0)
equality ¥(T') = U, is equivalent to the trigonometric moment problem

ixgT

T
i U
/ WD) N = dyy () i= L PRI

: ,Vk € N*. 34
0 {11, Pr) (34)

Now, we apply Corollary 1 (see Appendix B) with wy := Ag+1 — A1, Vk € N, and we get the
conclusion with
dO7(0)~(Wy) := L[d(¥y)],

where d(¥¢) := (di(Vf))ren. Indeed, for ¥y € VN H(SO) (0,1), the sequence d(¥y) belongs
to 12(N, C) thanks to the assumption (5). O

2.4 Proof of Theorem 1

Let T > 0 and pu € H3((0,1),R) be such that (5) holds. Let R; > 0 and &; > 0 be such
that,

Yu € Bg,[L*((0,T),R)], the solution of (1), (6) satisfies R(x(T),v1(T)) > 0,
(see Proposition 2) and

Vi € 8N Hy)(0,1) with [|¢5 — Y1(T) |z, < 61, we have R(3y, 91 (T)) > 0.

The spaces Bg,[L*((0,T),R)] and Vy N H(30) (0,1) are Banach spaces. The map Or :

B, [L*((0,T),R)] — Vo N H, (0,1) is C* (see Proposition 3), its differential at 0 has

a continuous right inverse dO7(0)~! : Vp N H?o) (0,1) — L%((0,T),R) (see Proposition 4).
Thanks to the inverse mapping theorem, there exists € (0,d1) and a C! map

©7' : Bs[Vr N H{}) (0,1)] = B, [L*((0,T), R)]

such that @T(Q;l@})) = ’L//J\} for every &f € Bs[Vr N HE’O)(O, 1)].
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For ¢y € SN HO)(O, 1) with ||y — ¢1(T)HH§'0) < 0, we have ||Pwa||H(30) < 0, thus we
can define
T(¢y) = O7' [Pripy].

Thanks to the choice of Ry and 4; we know that the solution of (1), (6) with v = I'(¢5)
satisfies

W(T) = Pr((T)) + /1 = [[Pr(T)[[7241(T)

= Pr(¢g) + /1 = [|Props]|7.91(T) = ;.

2.5 Generalization to higher regularities

The goal of this section is the proof of Theorem 2. The first step of the proof consists in
adapting Proposition 2.

Proposition 5 Let p € H5((0,1),R), T > 0, ¢o € H} 0(0.1), f€ H}((0,T),H*NHY) and
u € HE((0,T),R). There exists a unique function v € C’l([O,T},H?O)) such that the equality

(21) holds in C’l([O,T],H?O)). Moreover, for every R > 0 there exists C = C(T,u,R) > 0
such that, if [|ull g3 0,7y < R, then, this weak solution satisfies

lellos o3, ) < C(Iolls

o T Il o T),HSmHé))- (35)

The proof of Proposition 5 is the same as the one of Proposition 2, except that we use
the following Lemma, instead of Lemma 1.

Lemma 2 Let T > 0, ug € H° ﬁH (o) ond f € HY((0,T), H* N H}) be such that —iAug +

f(0) € Hy). The function G : t e —iAty + fo e~ "A1=3) f(s)ds belongs to C([0,T], Hy)s
moreover

1G o,y < el (ol + 11 e o) sroramyy + 1| = iAuo + F(O)3, )

where the constants c¢1(T) are uniformly bounded for T lying in bounded intervals. We also
have

| = AG(T) + F(D)lls, < ex(T) (Nollmg, + 1l oz, mrommy) + 1| = iAuo + FO)ll, ) -

Proof of Lemma 2: We already know that G € C°([0, T, H(?’O)). First let us write

G(t) = u+/0 AT f(t — r)dr

Since ug € Hf, and f € H'((0,T),Hy,), we know that G € C'([0,T], Hf,) and the
following equality holds in H, (20) for every ¢ € [0, T,

% _ —1 At —1 At /t —1 AT af
5 (t) = —ithde ™ Mug+e " f(0) + | g (t —7)dr
t
— 71At[ ZAU0+f( )]+/ eszt 8)%( )dS
) a1

(the proof of this result involves classical technics). Thanks to this expression and Lemma
1, we get

oG

o € CU(0.T], Hy))-
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Now, let us prove that G € C1([0, 7], HE”O)), i.e. for every t € [0, 7],

H G(t+h)—G{l) 090G

N 5 (t)H , — 0when h—0.

H{oy
We have

GUAN-G() _ 0G (1) — -iAt {7‘7“,:*1%0 +iAug — f(O)] + Lk [ TRt + h—T)dr
t AT h—1)—f(t—T
+ Jye A [—f(tJr })Lf(t )7%@77')}(17'.
(36)
By applying Lemma 1, we see that the H(O)(O, 1)-norm of the term on the second line of the

right hand side of (36) tends to zero when h — 0 because f € H'((0,T), H*> N H}). Thanks
to several changes of variables, the term on the first line of the right hand side of (36) may
be decomposed in the following way

o—iAt [e*“hﬂ (UO + iA*lf(O)) + z'A(uo + iA*lf(O))}
o—iAt1 f e—zAs( —5) — f(O))ds

The H(o)( 1)-norm of the first term of (37) tends to zero when h — 0 because ug +

iATLF(0) € (0)(0, 1). The H?o) (0, 1)-norm of the second term of (37) also tends to zero
when h — 0 because, thanks to Lemma 1 and Cauchy-Schwarz inequality, it is bounded by

fhems(w)ds”m <a(n)
mmeo oy,

)5

The estimate (24) of Lemma 1 gives the first inequality of Lemma 2. Moreover, by
integration by part in time, we get

(37)

f(.>—f(0) ‘

L2((O h) H3mHg)
cl(h)fo ar
0 t

N

L2((0,h), H*NH}) S ‘Lm((07h),H3ﬂH5)

L2((0,h),H3NHE)

t
—iAG(t) = —iAe "y, —/ iAe” AT f(t — T)dr
0

of
ot

—iAe" Mty + e_iAtf(O) —ft)+ /t e AT (t —7)dr.
0

We get the second estimate thanks to the identity

—iAG(t) + f(t) = e [—iAug + f(0)] + / i) %(r)dm

0

The following statement is the appropriate adaptation of Propositon 3.

Proposition 6 Let T > 0 and p € H5((0,1),R). The map O defined by (27) is C* from
HY(0,T),R) to VrN H(O)( 1).

Proof of Proposition 6:

First step: we prove that O maps H}((0,T),R) into Vr N H(50)(O,1) Let v €
Hy((0,T),R) and ¢ be the weak solution of (1), (6). Then ¢ € C'([0,T],Hf,) N
([0, 17, HE‘O)) and the first equality of (1) holds in H(QO) for every ¢t € [0,T] (the proof
of this result involves classical technics). In particular, we have

1O(M)rs, = 19" (D)3

(0) 0)
= H%(T)HH(SO) because u(T) =0



which is finite, thanks to Proposition 5.

Second step: We prove that O : H}((0,T),R) — Vo N H?O) is differentiable. Let u,v €

HY(0,T),R), ¥, ¥, ¥ be the weak solutions of (1),(6), (29), (30). Then, A := ¢ —1p — ¥
is the weak solution of (31). Let us prove that

AT, = ol[vllz) when [[v]z3 — 0,

which gives the conclusion. Let R > 0 be such that |ul| g < R and |lu+v|/z; < R. Thanks
to Proposition 5, there exists C = C(T, u, R) > 0, C1 = C1(u) > 0 such that

1A 1z, = IIA"(T )||H<30)

= H H ) because u(T) =v(T) =0

C||’UH‘I’HH1 OT) H3NH})
< CClHUHHlH‘I’Hm (10.7),H3,))
< C*Ch vl g lvpd | g o,y 13008

< C*C} ||U||H1 W)”Cl([o T),H})

The proof of the continuity of the map dOr : H}((0,T),R) — L(HZ,Vr N H(o)) involves
similar arguments. [J

Remark 4 With the same kind of arguments, we could get that Ay(t) — u(t)u(t) €

(o, 1], Hfo)) Therefore, 1 (t) does not, in general, belong to H(0 (0,1) fort e (0,7).

The following statement is the appropriate generalization of Proposition 4.

Proposition 7 Let T > 0, u € H®((0,1),R) be such that (5) holds and O be defined
by (27). The linear map dO7(0) : H}((0,T),R) — Vr N H(50) (0,1) has a continuous right
inverse dO7(0)~ 1 : Vp N Hy, (0,1) — Hy((0,7),R).

Proof of Proposition 7: Let Uy € Vpr N H(50) (0,1). If ¥ is the solution of (33) for some

v € HY((0,T),R, then, the equality ¥(T) = ¥ is equivalent to the trigonometric moment
problem (34), or equivalently

fQT t)dt =0,
o (T =8)0(t)dt = o (Uy, pr)e™ T, (38)
foT o(t)etPe =AMt = <2$:1,$'L> (U, pp)e™T Vi > 2.

The conclusion comes from Corollary 2 (in Appendix B). O

Now, Theorem 2 may be proved exactly as Theorem 1.

2.6 Case of the three dimensional ball with radial data

The goal of this section is the proof of Theorem 3. This proof is very similar to the case
of the interval and we only give the necessary modifications. The equivalent of Lemma 1
is proved with a similar computation for f € L*((0,T),H3 ;N H(o))- More precisely, for
almost every s € (0,7T), we have

ered = [ roe=g [ 5 32 [, Areae
1

_ 5%
= 5 [, vAs@): wﬁv/ AF(s) 2k do
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To bound the first term, we use VAf € L2((0,T), L?(B?)3) and the fact that the functions
(Vor/vVAk)ken+ form an orthonormal family of L?(B3)3 because

/ Vi -V = —/ Pilpj = Ajdi ;.
B3 B3
For the second term, since f and ¢y are radial, we have

1 5 9%k 232 /m(-1)*

We conclude as in Lemma 1 for this term since the eigenvalues are the same and Corollary
4 still applies. The genericity of assumption (10) is detailed in the Appendix A, Proposition
17.

Remark 5 It is very likely that the same analysis would work in any dimension n < 5,
provided that H? remains an algebra. However, this would require the analysis of the zeros
of the Bessel functions and we have chosen to present the simplest result.

3 Nonlinear Schrodinger equations

In this section, we study the nonlinear Schrédinger equation with Neumann boundary con-
ditions (12). The goal is the proof of Theorem 4

First, let us introduce the following notations, that will be valid in all the section 3. The
operator A is defined by

D(A) = H?O)(O, 1) :={p € H*0,1); ' (0) = ¢'(1) = 0}, Ap=—¢". (39)

Its eigenvectors (pp)ren and eigenvalues (Ag)gen are

wo =1, A :=0 (40)
or(x) :=V2cos(kmz) A := (km)?,Vk € N*.
We introduce the spaces
H{y,(0,1) := D(A*?),¥s > 0 (41)
and the notation
ky := max{k,1},Vk € N. (42)

3.1 Well posedness of the Cauchy problem
The goal of this subsection is the proof of the following result.

Proposition 8 Let yu € H?((0,1),R) and T > 0. There exists § > 0 such that, for every
u € Bs[L*(0,T)], there exists a unique weak solution ¢ € C°([0,T], H ) of (12), (14).
Moreover, we have

V() 20,1y = ol L2(0,1), ¥t € [0, T7.
We search 9 in the form (¢, ) = e~ (1 + ((t,x)), where ( is a weak solution of

P98 = —¢" + (|1 +¢2 = 1)(1+¢) —up(1+¢),
C’( 0) = ( 1) =0, (43)
¢(0,z) =

18



Proposition 8 will be the consequence of the existence and uniqueness of a weak solution ¢
for (43) (the conservation of the L?-norm may be proved as in the linear case). In order to
precise the definition of such a weak solution, let us introduce the operator A defined by

D(A) := Hfg, (0,1),  AC:= ="+ 2R(C).

Then for every ¢ € H{, (0,1) and every ¢ € R, we have

_z.AtC Z ak + ’Lbk )

where

ao(t) = R(((, p0));  bo(t) := (¢, o)) — 2tR((C, o)),

ak(t) = §R(<C, gﬁk>) COS[ >\k()\k =+ 2)t] + h\ Ak %(<<, g0k>) Sin[ )\k(/\k + Q)t],Vk € N*,
kT2
ba(t) == — A’“A;L 2R((C, o0)) sin[y/Ae O+ 2] + S((C, 0r)) cos| /IO + 2)1], Yk € N*.

Remark that these formulae are only the result of the diagonalization of the matrix

-A+2 0
sition 8 is equivalent to the following statement.

( 0 A ) obtained by the decomposition in real and imaginary part. Then Propo-

Proposition 9 Let u € H?((0,1),R) and T > 0. There exists 6 > 0 such that, for every
u € Bs[L%*((0,T),R)], there exists a unique weak solution of (43), i.e. a function ( €
([0, 1], H(QO)) such that the following equality holds in H(QO) for every t € [0,T]

t
¢ = / A (14 ¢(3)]2 — 1[4+ C(5)] = 2RIC(s)] — u(s)ull +C(s)])ds. (44)
The proof of Proposition 9 relies on the following Lemma.

Lemma 3 Let T > 0 and f € L?((0,T), H?). The function G : t — fg e HAU=9) f(5)ds
belongs to CO([O,T],H?O)), moreover

Gl (07,12, < co(D fllL2(0.1).52)

where the constants co(T) are uniformly bounded for T lying in bounded intervals.

Proof of Lemma 3: The proof of this Lemma is similar to the one of Lemma 1. By

definition, we have
Z Z ( / ye(t,s ds)

k=0a=1

where

yr(t, s) := R((f(5), o)) cos[y/ Ae(Ag + 2)(t — 5)],Vk € N,
Al W) sin[y/ MO + 2)(¢ — )], Vk € N7,

(
yg(t»é’) 0,% ( 5) = —2tR((f (), ¥k))-
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We have

4 o . ) 1/2
HH Z( /o y,‘i(t,s)ds’ > )

a=1

Let us prove that there exists a constant ¢ = ¢(¢t) > 0 (uniformly bounded on bounded
intervals of ¢) such that

1/2
( [ utesias ) < Ol (45)

k=1

(the other terms may be treated in the same way). Integrations by part give, for almost
every s € (0,7,

(f(s), 1) = \/52 ((—1)kf’(s, 1) — f'(s,0) — /o 1" (s, ) cos(k:mc)dx) ,VE € N*.

(k)
Thus, we have, for every k € N*|

k2 N yk(t s)ds = (7‘_)2 fo (s,1) cos[\/ Ak (A + 2)(t — 5)]ds
+(ﬂ)2 I3 F/(5,0) cos[y/ ANk + 2)(t — 5)]ds

2 [0 (5), on) cos[y/ Ak + 2)(¢ — 5)]ds.

We get (45) thanks to Corollary 4, as in the proof of Lemma 1. [J
Proof of Proposition 9: We introduce the function g : C — C defined by
g(z) =14 2> = 1][1 + 2]. (46)

We have dg(0).¢ = 2R({). Let ¢o = ¢o(T') be as in Lemma 3. Let ¢1, ¢a,c3 > 0 be such that

l9(¢) = dg(0).Claz < ex (IClZ, + Iz, ). V6 € HE, (47)
19(0)=9(¢) =dg(0)-(C=ll > < callc=Cllzzz, max{li€llzsz, , €157, 5€ € {¢, (1, ¥C, C € HE,
(48)
il < eslClle, V¢ € B, (49)
Let R > 0 be small enough so that
1
coclVT(R* 4+ R?) < ? and coco VT max{R, R*} < T (50)
Let 6 > 0 be small enough so that
R 1
codcs(l1+ R) < Bl and cpdcy < 1 (51)

Let u € L*((0,T),R) be such that ||u|z2(0,r) < d. We consider the map

F: BglC[0,T],H))] — Br[C([0.T], Hf,))]
¢ —

where € := F(¢) is defined by



For ( € Bg[C°([0,T],H,)], the function g(¢) — dg(0).¢ — up[l + ¢] belongs to

L?((0,T), H?), thus ¢ belongs to CO([O,T],H?O)) thanks to Lemma 3. Moreover, using
(47), (49), (50), (51), we get

el < eol|oQ) = dg(@)-C w4,

co|VT9(¢) = dg(0).Cll o= ((0,7),72) + lull 220, |1 + C]||Loo((o,T),H2)]

Co \/Tcl(RQ + Rg) + 583(1 + R)}
R.

VA/ANV/AN

Thus, F' takes values in Br[C([0, T], H{))].

For Caé € ER[CO([OvT]v H(zo))]v using (48)7 (49)7 (50)7 (51)7 we get

€ — £HL°°((O,T),H(20))

< = 9(0) — dg(0)-(¢ = ) —uu(¢ = O)

co|l9(¢) — 9(¢) = dg(0).(¢ — ¢) — up(¢ = ¢) L2((0,T),H?)
< o [ﬁ@HC = (e (o), m2,) max{R, R} + desl|¢ — <||L°°((0,T)7H(20))}
< 5l = Cllo=qom) a2, )-

Thus F' is a contraction. [J

3.2 ('-regularity of the end-point map
Let T > 0 and § > 0 be as in Proposition 8. Let

Vi = {90 € L*0,1); R <eiT /01 cp(:c)d:z:) = o} ,

and Pr : L?(0,1) — Vr be the associated orthogonal projection. Then, the following map
is well defined

Or: Bs[L*((0,T),R)] — HZ (0,1) (52)
u = Prp(T)],

where 1 solves (12), (14). We want to prove that the map ©r is C' on a neighborhood of
zero. We have seen that ¢(t) = e~%(1 + ((t)), where ( solves (43). Thus, it is sufficient to
prove the following statement.

Proposition 10 Let u € H?((0,1),R), T > 0, § be as in Proposition 9, and

©r: Bs[L*((0,T),R)] — Hg,(0,1)

u = (1),

where ¢ solves (43). There exists &' € (0,6) such that the map Or is C* on By [L*((0,T),R)].
Moreover, for every u € Bs/[L?((0,T),R)] and v € L*((0,T),R) we have

dOr(u).v = &(T) (53)

where & solves

£I(t7 0) = f/(t, 1) =0, (54)
f(ovx) =0,

g is defined by (46) and C solves (43).

{ %8 = —¢" +dg(¢).€ — up& —vp(l + ),

21



Proof of Proposition 10: We use the same notations cg, ¢, co,c3, R, as in the proof
of Proposition 9, in particular, the relations (47), (48), (49), (50), (51) are satisfied. We
introduce constants c4, c5 > 0 such that

I1dg(€) — da(@)Lhls < exllil s mac(icles Il JVCh € HRy (59)

19(6) ()~ da(0).E~CV s < cslE—Clms, max{l€ls, - €1, <€ € {C. 11,9 € 3y,
Moreover, we assume that 0
cov/Tmax{cs, e} max{ R, R2} < i (57)

(this additional assumption may change § into a smaller value ¢§').

Let u,v € Bs[L2((0,T),R)] be such that (u+v) € Bs[L*(0,T)]. Let ¢, ¢ and C be the
solutions of (43), (54) and

The existence of £ may be proved in a similar way as the existence of (.

First step: Let us prove that
¢ — C”LOQ((O,T),H(QO)) < 2cpe31 + C”LOO((O,T),H(QO))”v”L?' (58)
Thanks to Lemma 3, (56),(49), (57) and (51), we have

16 = Cllos o1y,

2
)
(0)
< eof[o(O) = 9(Q) = dg(0) () — (w0~ )~ O L
S G [\/TCSHQ: - C||Lm((o,T),H(20)) max{R, R?} + dc5||C — CHLoc((o,T),H(QO))
+H[vllz2esl|1 + <||L°°((0,T),H(20))
< 5lic— Cllzoeo,m).m2)) + collvllzzesll1 + Clle(o.r).m2))

which gives (58).

Second step: Let us prove that the linear map

(0) (07 1)

L2(0,T) — H?
v > &(T)

is continuous. Thanks to Lemma 3, (55), (49), (57) and (51), we have

1€l Lo 0.y, 12,)) < COH[dg(C) —dg(0)].£ — up& —op(l + C)’ L2((0.T).H?)

< o [VTeallél L~ 1), 13, max{ R, B2} + des€l] L o1y 12

+lvllpzes|1 + CHLOO((O,T),H(zo))

< %H§||Loo((o,T),H(20)) + col|v|Lze3|1 + C||L°°((O,T),H(20))v

which gives

€]l (0,1), 12,y < 2¢0¢s [0l L2 (1T + Cll Lo (0,19, 12, )- (59)

(0)
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Third step: Let us prove that Or is differentiable and that (53) holds. Let A := (—C—¢.
We want to prove that

IAT) |z, = of[oll2) when [vl]= — 0.

Let ¢ > 0. There exists n > 0 such that, for every f € LOO((O,T),HEO)) with

Hf C”Loo (0,7), H(20)) <nmn, we have

1g(f) = 9(¢) = dg(C)-(f = OllLee 0,1, HZ) < ellf — CHLOC((O,T),H(ZO))-
Let us assume that v is small enough so that
2coes|1+ Cll oo (0,1 H<0))HU||L2 <n.

Then, thanks to Lemma 3 and (58), (55) and (49), we have

HAHLoo (0,7),H2,)

< eof[9) = 9(0) = dg(0)-( ~ ©) + [ag () — dg(0)]-A — (u+v)ud o
< Co[\FGHC C||Loo(0T)H )+\FC4(R+R2)HA||LOO 0,7),Hz,)
+ocsl| Al o,m).m2,)) + 0ll2eslléllL=o.r).12,) |-
Thanks to (57) and (49), we get
||AHL°°((0T) HZ)) S 200[\/T5||C C||L°o ((0,7),HZ,) +||U||L203||5HL<>°((0,T),H<20)) )

which gives the conclusion, thanks to (58) and (59).

The continuity of the map dO may be proved with similar arguments. [
3.3 Controllability of the linearized system
The goal of this section is the proof of the following result.
Proposition 11 Let T > 0 and p € H?((0,1),R) be such that (13) holds. Let § > 0 be
as in Proposition 8 and Ot be defined by (52). The linear map dO(0) : L*((0,T),R) —
Vrn H(QO) (0,1) has a continuous right inverse dO(0)~! : Vr N H(QO) (0,1) = L2((0,7),R).

Proof of Proposition 11: It is equivalent to prove that the continuous linear map déT(O) :
L2((0,7),R) = VN H(O)(O, 1) has a continuous right inverse, where

V—{chLz()l a%/ dm—O}

We have dO7(0).v = £(T) where € is the weak solution of
%8 = —€" +2R(€) — v(Hu(x),z € (0,1),t € (0,T),

¢'(t,0) =¢'(t,1) =0,
£(0,2) = 0.

In particular, we have

T o)
(1) =i /O ATy (5)puds = i' S [a(T) + b (T

k=0
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where

T
aolT) = o) [ o(s)ds,
T
(T) = =2{pen) [ (T = tyu(s)as,
T
an(T) = (u, m/o o(s) cosly/ A0 + 2)(T — s)]ds, vk € N*,
A+ 2

bi(T) = — " <u,<pk>/0 v(s)sin[v/ Ak (A + 2)(T — s)]ds, Vk € N*.

For &5 € VN H(zo) (0,1), the equality £(T') = & is equivalent to the following trigonometric
moment problem

T
Jo v(s)ds =do(&f) == %<2’f0°>>,

Jy vls)em VIO ds = dy (&) 1= <RI (S on) + i/ 3245 R(Es o0) ) VR €N,
fOT sv(s)ds = d(&y) := T'do(&f).

We conclude thanks to Corollary 2 (in Appendix B). O

The proof of Theorem 4 is completed using the same arguments as in Section 2.4 using
the inverse mapping theorem and the conservation of the L? norm.

Remark 6 With the same method, one may prove the local exact controllability of the
focusing nonlinear Schrédinger equation

00 (8, 2) = — 2% (t,x) — [0t 2) — u(t)u(@)e(t o),z € (0,1),t € (0,T),
Y(t,0) = 92(t,1) =0,

Qv‘w@

around the reference trajectory (Vres(t,z) = €', urer(t) = 0). The only difference in the
proof is that we get the frequencies \/Ax(Ar —2) (instead of \/ (Mg + 2)) in the moment
problem. When the space domain is the interval (0,1), then all the quantities \i,(\i, —2), for
k € N*, are positive (because N\, = (km)?), thus there is no additional difficulty. When the
space domain is different, for instance (0,a) with a large, then N\, = (kw/a)?, thus a finite
number of the quantities A\ (Ax —2) are negative: we get a new moment problem with a finite
number of moments with real valued exponentials, and an infinite number of trigonometric
moments, that can be easily solved by adapting the tools used in this article.

4 Nonlinear wave equations

In this section, we study the nonlinear wave equation with Neumann boundary conditions
(15). The goal is the proof of Theorem 5. In all this section, we use the notations defined
n (39), (40), (41), (42) and all the functions are real valued.

First, let us check that the Cauchy problem is well posed in H(?’o) X H(QO)( 1), when
u € L%(0,T). In order to write the system (15) in first order form, let us introduce

D(A) := H(QO) x H1(0,1), A:= ( Iod ) (60)
D(B) := L? x L*(0,1),  B:=p(x )< Iod 10d>
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and F : R? — R? defined by F(yl,yg) := (0, f(y1,%2)). The operator A generates a C°-
group of bounded operators of H(QO) H'(0,1) defined by
At [ Wo ) _ w(t)
wWo w(t) ’

where

oo
w(t) = ((wo, po) + (o, Yo)t) Yo + Z ( wo, @) cos(v/ Akt) wo,gok sin(v/ Axt) ) Ok,

k=1

w(t) = (wo, Po)po + Z( VA (wo, k) sin(v/Axt) + w0,¢k>005(mt)) Pk

k=1

we(5) me(4)
ot

the equation (15) may be written

ow
o )

With the notation

= AW(t, ) + FOW) + ut)BW(t,z),z € (0,1). (61)

Proposition 12 Let y € H?(0,1), T > 0, f € C3(R%R) be such that f(1,0) = 0 and
Vf(1,0) = 0. There exists 6 > 0 such that, for every u € B(;[LQ(O T)], there ezists a
unique weak solution of (61), (16), i.e. a function W € C°([0,T], H (0) X H(O)) such that the

following equality holds in H(o) X H(QO)( , 1), for every t € [0,T],

W(t) = e Wy + /0 ' An) (F(W(T)) +u(r)BW(r) + f(T))dT. (62)

The proof of this proposition relies on the following Lemma.

Proposition 13 Let T > 0 and g € L?((0,T), H?). The function G defined by

Gt) = /Ot A ( g?s) )ds

belongs to C°([0,T], H(?’) X H(20)). Moreover, there exists a constant co(T) > 0, uniformly
bounded for T lying in bounded intervals, such that, for every g € L?((0,T), H?),
Gl Lo ((0,1), H3) xHZ)) S < co(T)gll 20,7y, m52)- (63)

Proof of Proposition 13: We have, for every ¢ € [0,T],

e[ (9(s), po)se +z $96h2n) gin (v Ags) i
G(t):/o v e ds.

(9(s), p0)wo + ];1@ 5), k) cos(VArS) @k

Thus, there exists C' > 0 such that

ICGWlas, iz, < C [

/<()80k “”Sds +‘/ <p0dsw.

We get the conclusion as in the previous sections. [

k=0
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Proof of Proposition 12: Let us introduce the constants ¢y, cs, c3 such that

1f (w,wi) [z < enll(w = Twn)lls oz > V(w,we) € (1,0) + Bi[Hiyy < Hyl,  (64)

1f (w, wt)~— f(@, w¢)| a2
< coll(w =@, we = 0|y <z, max{|[(w = 1wl gy w2

V(w, wy), (@, 0¢) € (1,0) + Bi[H,, x Hy,

2

0 = 180) s, e,
(65)
and (49) holds. Let R € (0,1) be small enough so that

VTege, R? < % VTeoeaR < i (66)
Let 6 > 0 be small enough so that

1
56063 < Z’ (50063(1 + R) g (67)

Let u € Bs[L?*(0,T)]. We consider the map

F: (1,00 + BglC[0,T], HY)) x Hy))l —  (1,0) + Br[C°((0,T], H,, x HE)]
¢ = ¢

where

£(t) = MW + /0 A (P(C(r)) + u(r)BE(r) )dr, vt € (0,7

For ¢ = (w,w;) € (1,0)+Br[C([0, T}, H,)) x H{, )], the second component of F(¢)+uB(

belongs to L?((0,T), H?), thus ¢ belongs to C°([0, TLH(?’) X H(QO)) thanks to Proposition

13. Moreover, thanks to (63), (64), (49), (66), and (67), we have, for every ¢ € [0,T],
1€(t) = (1,0)l[ 3, <22

s x2S ool f(w,we) +uplw + w22 0.7).52)
CO(\F||f(w,wt)HLoo(m,T),Hz) + [ull L2 0.1y [l 2w + wt]HLoo((O,T>,H2>)

Co(\/TClRQ + 603(R + 1))
< R.

NN

/

Thus, F takes values in (1,0) + Br[C°([0,T], H,) x Hf))]-
For ¢ = (w,w;),{ = (,10) € (1,0) + Bg[C°([0,T), H}

(o) ¥ H(O))], thanks to (65), (49),
(66) and (67), we have

17 ) = Fl e (o,r),1 8 xH,)
col| f(w, wy) — f(,10;) + uplw — @ + wy — Di]|| L2 (0,1, 12)
co [VT || f (w, wi) — f (i, @) || Loe 0.1y, 12) + Fes|C — C”LOO((O,T),H?O)XH?O))}

co |[VTe2R||¢ = Cll e (0,7, 1, x 12,y + 0¢slIC = Clloe 0,7, 13, 2, )

INCINININ

) 5
50¢— CHLoc((o,T),H(ZO))

Thus F is a contraction. [

Let T > 0, un € H*(0,1), f € C3(R2,R) be such that f(1,0) =0, Vf(1,0) =0and § > 0
be as in Proposition 12. Then, the following map is well defined

Or: Bs[L*(0,T)] — H(g) X H(z)
v o (e @) o

where (w,w;) is the weak solution of (15), (16). Working as in the previous section, one
may prove the following statements.
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Proposition 14 Let p € H?(0,1), T > 0, f € C3(R%R) be such that f(1,0) = 0,
Vf(1,0) = 0 and § > 0 be as in Proposition 12. The map O7 defined by (68) is C*.
Moreover, for every u € Bs[L*(0,T)] and v € L?*(0,T), we have dOr(u).v = (W, W;)(T),
where (W, W,) is the weak solution of

Wit = Wee + %(w, wy). W + %(w, we) Wi + u(t)u[W 4+ W] + o(t) p(x)[w + wy),
W, (t,0) = Wa(t,1) =0,
(W, W4)(0,z) = 0,
(69)
and (w,wy) is the weak solution of (15), (16).

Proposition 15 Let T > 2, u € H?(0,1) be such that (18) holds and f € C3(R? R) be
such that f(1,0) =0, Vf(1,0) = 0. The linear map dOr(0) : L*>(0,T) — H(?)o) X H(QO) has a
continuous right inverse dO(0)~! : H?O) X H(ZO) — L%(0,T).

The proof is the same except that the gap between the eigenvalues does not tend to
infinity and we use Corollary 3.

5 Conclusion, open problems, perspectives

In this article, we have proposed a method for the proof of the local exact controllability for
linear and nonlinear bilinear systems. We have applied it to Schrédinger and wave equa-
tions, showing it works for a wide range of problems. It also works on other equations (for
instance it may prove an optimal version of the controllability result proved in [16] for a 1D
Beam equation).

In this article, we have presented various examples of application of the method. How-
ever, they all have in common that the linearized system fulfills a gap condition on the
eigenvalues of the operator. This condition is not necessarily realized for the Schrédinger
equation in higher space dimensions. Even in two dimension, we do not know any example
of domain where it is true. So, one challenging question is the extension (or the impossibility
to do it) of these results to other dimensions.

A Genericity of the assumption on u

The goal of this section is the proof of the following result.
Proposition 16 The set {;n € H3((0,1),R); (5) holds} is dense in H3((0,1),R).
Proof: First, let us notice that
V= {u e H*((0,1),R); 4(1) £ 4/ (0) # 0}
is a dense open subset of H3((0,1),R). Now, let us prove that the set
U= {p € V;i{upr, ) #0,Vk € N*}

is dense in H3((0,1),R). It is sufficient to prove that this set is dense in V. For n € N, we
introduce the set

Up :={p € V; (w1, ox) # 0,k € {1,...,n}},

with the convention Uy := V. Then the sequence (U, )nen is decreasing and



Thanks to Baire Lemma, it is sufficient to check that, for every n € N, U,, 1 is dense in U,
for the H3((0,1),R)-topology. Let n € N and let u € Uy, —Uy,11. Then p € V, (e, or) # 0
for k = 1,...,n and (@1, ny1) = 0. Thanks to (7), u + ex?® € U, 41 for every e € R such
that

(o1, 05) .
€# —————-,Vje{l,..,n}.
7& <-’172§017§0j> J { }

Thus U, 41 is dense in U,.
Finally, thanks to (8), we have

U C {ue H*((0,1),R); (5) holds},
which gives the conclusion. O
Proposition 17 The set {u € H3 ,(B3 R);(10) holds} is dense in H3(B3,R).

Proof: We make the same proof. We use the formula

47r(_1)k+1

1
(e, o) = T@M(l) Yy VA(up1) - Vo,

instead of (8). Moreover, we can find one p(r) = r? that fulfills (10). O

B Moment problems

In this section, we recall classical results about moment problems (see, for instance [9]). The
proofs are given for sake of completeness.
B.0.1 Families of vectors in Hilbert spaces

Let H be a separable Hilbert vector space over K =R or C and © := ({;) ez be a family of
vectors of H with &; # 0,Vj € Z.

Definition 1 The family © is minimal in H if, for every j € Z, §; ¢ Span{&;;i € Z — {j}}.

Proposition 18 The family © is minimal in H if and only if there exists a biorthogonal
family ©" = (&) ez, i.e. © is a family of vectors of H such that

<£1,§ ) =0:,,Vi,j € L. (70)

Proof of Proposition 18 : We assume O is minimal. For j € Z, let v; be the orthogonal
projection of §; over the closed vector space Span{¢;,i # j} i.e.

vj € Span{§;,i # j} and (& —v;,&) = 0,Vi # j.

Let ¢
&= 2,
TG - J||2
Then, the families (¢;) and (£}) are biorthogonal.
Now, we assume that there exists a biorthogonal family ©" = ({});jez. Let us assume
that there exists j € Z such that {; € Span{{;;i € Z — {j}}. Then (70) implies ({;,&}) =1

which is a contradiction. [J

Vi € Z.

Remark 7 If © is minimal, then there exists a unique biorthogonal family ©' such that
©' C Span{&;;i € Z}. In the end of this appendiz, the expression “the’biorthogonal family
of ©, refers to this unique biorthogonal family in Span{&;;i € Z}.
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Definition 2 The family © is a Riesz basis of Span® if © is the image of some orthonormal
family by an isomorphism.

Remark 8 It is clear that, if © is a Riesz basis of Span®©, then O is minimal in H.

Proposition 19 (1) If © is a Riesz basis of Span®, then its biorthogonal family © is also
a Riesz basis of Span®©.

(2) © is a Riesz basis of Span© if and only if there exists C1,Cs € (0,+00) such that,
for every scalar sequence (Cj)jez with finite support,

1/2 1/2

ol Ylel] < X esl<a | X )| (71)
j=—00 j=—00 j=—00

(8) If © is a Riesz basis of Span© then there exists C > 0 such that, for every f € H,

we have
1/2

LG <Clfl
jEZ
Proof of Proposition 19 :

(1) We assume © is a Riesz basis of Span©. Let H be an Hilbert space, ((;);cz be an
orthonormal family of H, V : X — Span® an isomorphism such that &; = V((;),Vj € Z.
Then the adjoint operator V* : Span® — H is also an isomorphism and we have f; =
(V*)71(¢;),Vj € Z. Indeed, for every j,k € Z,

5j»k = <€j?£;€>H = <V(CJ)7£]/€>H = <ijV*(£;g)>H

Thus ©’ is a Riesz basis of Span®©.

(2) We assume O is a Riesz basis of Span®. Let H be an Hilbert space, ({;)jez be an
orthonormal family of #, V' : H — Span® an isomorphism such that & = V({;),Vj € Z
and (c;) ez a scalar sequence with finite support. We have

oo oo . o 1/2
| 32 s =l X eo]|<vi] X es|=mvi| X tep
J=—x J=—00 J=—00 J=—0
and
Z (1% = H Z CjCjH = HV_I[} Cjﬁj]H < HV_1||H Z ciéil|s
J=— J=—0 J=—0 J=—

thus, we have (71) with C; = 1/||V"!|| and Cy = ||V]].

Now, we assume that (71) holds. Then the linear map V : [?(Z,K) — Span© defined
by Vi(¢j)jez) = Z?‘;_Oo ¢;&; is well defined and injective. Let h € Span©. There exists
(hn)Nen such that hy — h in H when N — +oo and for every N € N, there exists

a sequence ¢V = (CEN))jGZ with finite support such that hy = 3°7° c;N)gj. Then
(hn)nen is a Cauchy sequence in H, thus, thanks to (71), (¢¥))yey is a Cauchy sequence

in [?(Z) and there exists ¢ = (¢j) ez € [?(N) such that ¢ — ¢ in [?(Z). Then, (71) proves
that Y70 (¢j — C;N))gj — 0in H,ie h=3"" _ ;. We have proved that V is an

j=—oc0

isomorphism, thus © is a Riesz basis of Span®.

29



(3) Span® is a close vector subspace of H thus we have the orthogonal decomposition

H = Span® + Span@L and the associated orthogonal projection P : H — Span®. For

f € H, we have
1/2 1/2
(_Z |<f7£j>|2> (Z |<Pf,£j>l2>
JEZ

JEZ

> (Pf.&)E]
JEZ

IPfller < & IfI1.0

N

1
C
1
C
Remark 9 We have proved that, if © is a Riesz basis of Span©, then, for every h € Span©
there ezists ¢ = (c;j)jez € 1*(Z,K) such that h = Z;’i_oo c;€;. Moreover, if ©' and © are

biorthogonal families, then necessarily c; = (h,f;»),Vj € Z. Thus, every h € Span®© can be
decomposed in the following way

oo oo

h= Y (&g =Y (h&)E (72)

P~ j=—o0

where the series converge in H and the coefficients ((h,}))jez, ((h,§;))jez, belong to
12(Z,K).

B.0.2 Abstract moment problems

Now, we move to the investigation of abstract moment problems: given a scalar sequence
(d;)jez is it possible to find f € H such that

<f, §J> = dj,Vj € 7.
Let us introduce the operator

Jo: H — [X(Z,K)
f = (<f7£j>)j€Z

with domain Deg := {f € H;Jo(f) € I?>(Z)}. It is clear that, if the family © is not
complete in H, then the operator Jg has a non trivial null space Span@)L. This motivates
the introduction of the operator Jg := Jg .

Span®©

Proposition 20 The operator JQ : Span® — 1>(Z,K) is an isomorphism if and only if ©
is a Riesz basis of Span®©.

Proof of Proposition 20 : We assume J2 : Span®© — [?(Z,K) is an isomorphism. Let
(¢;)jez be the canonical orthonormal basis of [?(Z). Then, the family

JO -1/, )
(8)7@)
is a Riesz basis of Span®. Moreover, it is the biorthogonal family to © in Span©®. Thanks
to Proposition 19 (1), © is also a Riesz basis of Span®©.

We assume © is a Riesz basis of Span®. Thanks to the Remark 9, it is clear that
J3 : Span® — 1%(Z,K) is an isomorphism. [J
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B.0.3 Trigonometric moment problems

In this section, we recall important results on trigonometric moment problems. The following
Ingham inequality is due to Haraux [37].

Theorem 6 Let N € N, (wi)kez be an increasing sequence of real numbers such that
Wet1 —wi =7 >0,k € Z,|k| > N,

Wiyl —wg = p > 0,Vk € Z,

and T > 2w /~. There exists C1 = C1(vy,p, N, T),Cy = Ca(~,p,N,T) € (0,400) such that,
for every sequence (cy)rez € CZ with finite support, we have

T +oo ] 9
Gy lal< [ | X acfa<aY ol
0

keZ k=—o00 kEZ

Let us introduce the space
I2(N,C) := {(di)ren € I*(N,C);dy € R}.

Thanks to Proposition 19 and Theorem 6, we have the following statement, which is used
in the proof of Proposition 4.

Corollary 1 Let T > 0 and (wi)ren be an increasing sequence of [0, +00) such that wy = 0
and
Wi4+1 — Wi — +0o when k — 400.

There exists a continuous linear map

L: I3(N,C) — L*/(0,7),R)
d — L(d)

such that, for every d = (dy)ren € (2(N,C), the function v := L(d) solves
T .
/ v(t)e™rtdt = dy, Yk € N.
0

Proof of Corollary 1: We define w_j, := —wy, Vk € N*. Theorem 6 ensures that the family
(e"*) ez is a Riesz basis of F:= Adhyz2(o 1) (Span{e™**; k € Z}). Thanks to Proposition
20, the map

J: F — 1*(z,C)

v (fOTv(t)ei‘*”"tdt>

is an isomorphism. For d = (dy)ren € I2(N,C), we define d = (Jk)kez €
dp == dy if k > 0 and d_j, if k < 0. Now, we define L : I2(N,C) — L*((
L(d) = J~'(d). The map L takes values in real valued functions because d_;, = dj,Vk € N
for every d € I2(N,C). O

kEZ

Theorem 6 is also crucial in the proof of the following statement, used in the proof of
Proposition 7.

Corollary 2 Let T > 0 and (wi)ren be an increasing sequence of [0, +00) such that wy = 0
and

Wrt1 — Wi — +00 when k — +oo. (73)
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There exists a continuous linear map

L: RxI2N,C)
(d,d)

%
d
such that, for every d € R, d = (di)ken € 12(N,C), the function v := L(cz7 d) solves

T iwkt —
forz)(t)e dt = dy,Vk € N, (74)
v

(t)dt = d.

Proof of Corollary 2: Let wy := —w_g, for every k € Z with k < 0. From Proposition 6,
O := (e"*" )¢z is a Riesz basis of Adhpz2 (g r)(Span®).
First step: We prove that the family O := {t, etk € Z} is minimal in L?(0,T).
Working by contradiction, we assume that © is not minimal in L2(0,T). Then, neces-

sarily
t € AdhL2 (0,7) Span@. (75)

With successive integrations, we get
t/ € Adhcopo,7) (Span®),vj € N with j > 2.

The Stone Weierstrass theorem ensures that {1,#/;5 € N,j > 2} is dense in C°([0,77],C),
thus, it is also dense in L?(0,7). From (75), we deduce that Span® is dense in L?(0,T).
This is a contradiction, because, thanks to Theorem 6, for every w € R — {wy, k € Z}, the
family {e'“! ei*rt; k € Z} is minimal, i.e.

¢ ¢ Adhpz(o,7) (Span®).

Second step: We conclude.

For k < 0, we define dy := d_j. Let {£,&;k € Z} be the biorthogonal fam-
ily to {t,e™**;k € Z}. From Theorem 6, there exists C > 0 and a unique solution
v e AdhL2(07T) (Span@) of

T
/ v(t)e™rtdt = dy, Yk € Z
0

and it satisfies

1/2
[vll 20,7y < C'(ji:ldk2> :

kEZ

The uniqueness guarantees that v is real valued. Let us define

~ T ~
L(d,d) = u:=v+ (d - / tv(t)dt)g.
0
Then, u is real valued (because v and € are), u solves (74) and

lullee < llollze + (1] + | fo to@at) ) 18112
<ol (14 /5112 ) + 1d1E] 22
T3 | & & 712 2 1/2
< (C(1+ 51N ) + 102 ) (112 + Shez lsl?) 0

For the wave equation, the gap between two successive frequencies does not tend to
infinity, so we will need the following Corollary which is proved similarly.
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Corollary 3 Let T > 2. We make the same assumptions as in Corollary 2 except that we
assume
Wg1 — Wk 2T

instead of (73). Then, we have the same conclusion as Corollary 2.

Corollary 4 Let (wy)ren be an increasing sequence of [0,4+00) such that wy =0 and
Wrt1 — wi > 77 > 0.
There exists a nondecreasing function

C: [0,400) — R%
T — C(T)

such that, for every T > 0 and for every g € L?(0,T), we have

o L\ /2
(Z ’ / g(t)eiwktdt’ > < C(T)||g||L2(O,T)~
k=0 70

Proof of Corollary 4: The existence of C(T'), for large T' > 27/~ + 1, is a consequence of
Theorem 6 and Proposition 19 (3). Let us choose for C(T) the smallest value possible for
this constant. For T' < 27/y + 1, we choose C(T) = C(2rw/v+1). Let 0 < Ty < Ty < 400,
g € L?(0,Ty) and g € L?(0,T3) be defined by § = g on (0,T}) and 0 on (T3, T»). By applying
the inequality on g, we get C'(T1) < C(Tz). O
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