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Abstract. In this article, we �rst prove quantitative estimates associated to the unique continuation
theorems for operators with partially analytic coe�cients of Tataru [Tat95, Tat99b], Robbiano-Zuily [RZ98]
and Hörmander [Hör97]. We provide local stability estimates that can be propagated, leading to global
ones.

Then, we specify the previous results to the wave operator on a Riemannian manifoldM with boundary.
For this operator, we also prove Carleman estimates and local quantitative unique continuation from and
up to the boundary ∂M. This allows us to obtain a global stability estimate from any open set Γ ofM
or ∂M, with the optimal time and dependence on the observation.

This provides the cost of approximate controllability: for any T > 2 supx∈M(dist(x,Γ)), we can drive
any data of H1

0 × L2 in time T to an ε-neighborhood of zero in L2 ×H−1, with a control located in Γ, at
cost eC/ε.

We also obtain similar results for the Schrödinger equation.
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1 Introduction and main results

In this article, we are interested in the quanti�cation of global unique continuation results of the following
form: given a di�erential operator P on an open set Ω ⊂ Rn, and given a small subset U of Ω, having

Pu = 0 in Ω, u|U = 0 =⇒ u = 0 on Ω. (1.1)

More generally, in cases where (1.1) is known to hold, we are interested in proving a quantitative version
of

Pu small in Ω, u small in U =⇒ u small in Ω.

A more tractable problem than (1.1) is the so called local unique continuation problem: given x0 ∈ Rn
and S an oriented local hypersurface containing x0, do we have the following implication:

There is a neighborhood Ω of x0, such that Pu = 0 in Ω, u|Ω∩S− = 0 =⇒ x0 /∈ supp(u). (1.2)

It turns out that proving (1.2) for a suitable class of hypersurface (with regards to the operator P ) is
in general a key step in the proof of properties of the type (1.1). The �rst general unique continuation
result of the form (1.2) is the Holmgren Theorem, stating that, for operators with analytic coe�cients,
unique continuation holds across any noncharacteristic hypersurface S. This local unique continuation
result enjoys a global version proved by John [Joh49], where uniqueness is propagated through a family of
noncharateristic hypersurfaces.

When focusing on operators with (only) smooth coe�cients, the most general results was proved by
Hörmander [Hör63], [Hör94, Chapter XXVIII]. Uniqueness across a hypersurface holds assuming a strict
pseudoconvexity condition (see e.g. De�nition 1.6 below). This result uses as a key tools Carleman
estimates, which were introduced in [Car39] and developed at �rst for elliptic operators in [Cal58]. We
also refer to [Zui83] for a general presentation of these problems.

A particular motivation arises both from geoseismics [Sym83] and control theory [Lio88a, Lio88b]: in
these contexts, one is interested in recovering the data/energy of a wave from the observation on a small
part of the domain along a time interval. As well, unique continuation results for waves have been useful
tools to solve inverse problems, for instance using the boundary control method [Bel87] (see also the review
article [Bel07] and the book [KKL01]).

More precisely, consider the wave operator P = ∂2
t − ∆g on Ω = (−T, T ) × M, where (M, g) is

a Riemannian manifold (with or without boundary) and ∆g the associated (negative) Laplace-Beltrami
operator. A central question raised by the above applications is that of global unique continuation from
sets of the form (−T, T )× ω, where ω ⊂M (resp. ω ⊂ ∂M) is an observation region.

In this setting and in the context of control theory, the unique continuation property (1.1) is equivalent
to approximate controllability (from (−T, T )× ω); and an associated quantitative estimate (as proved in
the present paper) is equivalent of estimating the cost of approximate controls.
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IfM is analytic (and connected), the Holmgren theorem applies, which together with the argument of
John [Joh49], allows to prove unique continuation from (−T, T )× ω for any nonempty open set ω as soon
as T > L(M, ω), where, for E ⊂M, we have set

L(M, E) := sup
x1∈M

(
inf
x0∈E

dist(x0, x1)
)
, dist(x0, x1) = inf

γ∈C0([0,1];M),γ(0)=x0,γ(1)=x1

length(γ). (1.3)

Due to �nite speed of propagation, it is also not hard to prove that unique continuation from (−T, T )×ω
does not hold if T < L(M, ω), so that the result is sharp.

Removing the analyticity condition onM has lead to a considerable di�culty, since Hörmander general
uniqueness result does not apply in this setting: time-like surfaces, as {x1 = 0}, do not satisfy the
pseudoconvexity assumption for the wave operator. The local unique continuation can even fail when
adding some smooth lower order terms to the wave operator, as proved by Alinhac-Baouendi [AB79,
Ali83, AB95].

This uniqueness problem in the C∞ setting was �rst solved by Rauch-Taylor [RT73] and Lerner [Ler88]
in the case T = ∞, and M = Rd (under di�erent assumptions at in�nity). Then, a result of Rob-
biano [Rob91] shows that it holds in any domainM for T su�ciently large. Hörmander [Hör92] improved

this result down to T >
√

27
23L(M, ω). That these two results fail to hold in time L translates the fact

that the local uniqueness results of these two authors are not valid across any noncharacteristic surface.

The proof of local uniqueness results across any noncharacteristic surface for ∂2
t −∆g was reached by

Tataru in [Tat95], leading to the global unique continuation result in optimal time T > L(M, ω). The
result of Tataru was not restricted to the wave operator: he considered operators with coe�cients that
are analytic in part of the variables, interpolating between the Holmgren theorem and the Hörmander
theorem. Technical assumptions of this article were successively removed by Robbiano-Zuily [RZ98],
Hörmander [Hör97] and Tataru [Tat99b], leading to a very general local unique continuation result for
operators with partially analytic coe�cients (containing as particular cases both Holmgren and Hörmander
theorems).

Concerning quantitative estimates of unique continuation, when (1.1) holds, one may expect to have
an estimate of the form

‖u‖Ω ≤ ϕ
(
‖u‖U , ‖Pu‖Ω̃ , ‖u‖Ω̃

)
, with ϕ(a, b, c)→ 0 when (a, b)→ 0 with c bounded, (1.4)

where U ⊂ Ω ⊂ Ω̃ are nonempty, and for appropriate norms. In this context, much less seems to be known.
Two additional di�culties arise: one needs �rst to quantify the local unique continuation property (1.2),
and then to �propagate� the local estimates obtained towards a global one.

In the setting of the Holmgren theorem, local estimates of unique continuation of the form (1.4) were
proved by John [Joh60]: they are of Hölder type, i.e. ϕ(a, b, c) = (a+ b)δc1−δ, in the case P is elliptic, and

of logarithmic type, i.e. ϕ(a, b, c) = c
(

log(1 + c
a+b )

)−1

, in the general case.

In the situation of the Hörmander theorem, it is proved by Bahouri [Bah87] that Hölder stability
always holds locally. Such local estimates were propagated, leading to global ones (in the case of elliptic
operators P of order two, even with low regularity assumptions) by Lebeau and Robbiano [Rob95, LR95].
They can also be improved to ϕ(a, b, c) = a+ b if boundary conditions are added [Rob95, LR95].

The global problem for the wave operator in the analytic setting was tackled by Lebeau in [Leb92]. For
Ω = Ω̃ = (−T, T )×M and U = (−T, T )×ω with ω ⊂M (or more precisely Γ ⊂ ∂M), he proved that the

stability estimate (1.4) with ϕ(a, b, c) = c
(

log(1 + c
a+b )

)−1

holds for any T > L(M, ω). He also proved

that this inequality is optimal if there exists a ray of geometric optic that does not intersect (−T, T )× ω
(and only has transverse intersection with ∂M). Under this assumption the (stronger) geometric control
estimate (i.e. (1.4) with ϕ(a, b, c) = a + b) of the Bardos-Lebeau-Rauch-Taylor Theorem [RT74, BLR92]
is not satis�ed. When considering the C∞ situation for this problem, the �rst result is due to Rob-

biano [Rob95], who proved the result for T su�ently large with ϕ(a, b, c) = c
(

log(1 + c
a+b )

)− 1
2

. The

result was improved by Phung [Phu10] to ϕ(a, b, c) = c
(

log(1 + c
a+b )

)−(1−ε)
(still in large time). In his

3



unpublished lecture notes [Tat99a], Tataru proposes a strategy to obtain estimates of the form (1.4) with

ϕε = c
(

log(1 + c
a+b )

)−(1−ε)
in the general context of the uniqueness theorem for operators with partially

analytic coe�cients.

In this article, we develop a systematic approach both to quantify the local uniqueness Theorem
of Tataru, Robbiano-Zuily and Hörmander, and to propagate the quantitative local uniqueness results

towards a global one (with optimal dependence ϕ = c
(

log(1 + c
a+b )

)−1

). When doing so, we face both

di�culties of producing quantitative and global estimates. Then, we specify the previous results to the wave
operator on M. For this operator, we also prove appropriate Carleman estimates and local quantitative
unique continuation results from and up to the boundary ∂M. This allows us to obtain a global stability
estimate from any open set of M or ∂M, with the optimal time (T > L(M, ω)) and dependence on the
observation. This generalizes the result of Lebeau [Leb92] to non-analytic manifolds, and provides the cost
of approximate controllability. We also treat the case of the Schrödinger operator.

In the present introduction, we �rst discuss the case of the wave and Schrödinger equations: in this
particular setting, the results are simpler to state and more precise. Moreover, in this context, we are able
to deal with the boundary value problem as well. Second, we state the general quantitative uniqueness
result for operators with partially analytic coe�cients in the setting of Tataru [Tat95, Tat99b], Robbiano-
Zuily [RZ98] and Hörmander [Hör97] (used in the proof for the wave equation).

1.1 The wave and Schrödinger equations

In this section, we describe the motivating applications of our main result, i.e. to the wave equation.
In this very particular setting, we are also able to tackle the boundary value problem. We also state an
analogous result for the Schrödinger equation.

Theorem 1.1 (Quantitative unique continuation for waves). Let M be a compact Riemannian manifold
with (or without) boundary. For any nonempty open subset ω of M and any T > 2L(M, ω), there exist
C, κ, µ0 > 0 such that for any (u0, u1) ∈ H1

0 (M)× L2(M) and associated solution u of ∂2
t u−∆gu = 0 in [0, T ]×M,

u|∂M = 0 in [0, T ]× ∂M,
(u, ∂tu)|t=0 = (u0, u1) inM,

(1.5)

we have, for any µ ≥ µ0,

‖(u0, u1)‖L2×H−1 ≤ Ceκµ ‖u‖L2((0,T );H1(ω)) +
1

µ
‖(u0, u1)‖H1×L2 .

If ∂M 6= ∅ and Γ is a non empty open subset of ∂M, for any T > 2L(M,Γ), there exist C, κ, µ0 > 0 such
that for any (u0, u1) ∈ H1

0 (M)× L2(M) and associated solution u of (1.5), we have

‖(u0, u1)‖L2×H−1 ≤ Ceκµ ‖∂νu‖L2((0,T )×Γ) +
1

µ
‖(u0, u1)‖H1×L2 .

Theorem 1.1 remains valid if ∆g is perturbated by lower order terms that are analytic in time. In
the special case where they are time independent, the constants in the previous estimates may be chosen
uniformly with respect to these perturbations (in the appropiate norms). We refer to Theorem 6.1 for a
precise statement. This result can also be formulated in the following way, closer to the formulation (1.4)
(see Lemma A.3). We only give the boundary observation case.

Corollary 1.2. Assume ∂M 6= ∅ and Γ is a non empty open subset of ∂M. Then, for any T > 2L(M,Γ),
there exists C > 0 such that for any (u0, u1) ∈ H1

0 (M) × L2(M) and associated solution u of (1.5), we
have

‖(u0, u1)‖L2×H−1 ≤ C
‖(u0, u1)‖H1×L2

log
(
‖(u0,u1)‖H1×L2

‖∂νu‖L2(]0,T [×Γ)
+ 1
) ,
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‖(u0, u1)‖H1×L2 ≤ CeCΛ ‖∂νu‖L2(]0,T [×Γ) , with Λ =
‖(u0, u1)‖H1×L2

‖(u0, u1)‖L2×H−1

.

In the previous estimate, Λ has to be considered as the typical frequency of the initial data. So, the
estimate states a cost of observability of the order of an exponential of the typical frequency.

As proved by Lebeau [Leb92] in the analytic case, this exponential dependence is sharp in the general
case.

As a consequence of the previous Theorem, we can obtain some approximate controllability results as
follows. For the sake of brevity, we only state the case of a boundary control.

Theorem 1.3 (Cost of boundary approximate control). For any T > 2L(M,Γ), there exist C, c > 0 such
that for any ε > 0 and any (u0, u1) ∈ H1

0 (M)× L2(M), there exists g ∈ L2((0, T )× Γ) with

‖g‖L2((0,T )×Γ) ≤ Ce
c
ε ‖(u0, u1)‖H1

0 (M)×L2(M) ,

such that the solution of  (∂2
t −∆)u = 0 in (0, T )×M,
u|∂M = 1Γg in (0, T )× ∂M,

(u, ∂tu)|t=0 = (u0, u1), inM,

satis�es
∥∥(u, ∂tu)|t=T

∥∥
L2(M)×H−1(M)

≤ ε ‖(u0, u1)‖H1
0 (M)×L2(M).

That this result is a consequence of Theorem 1.1 is proved in [Rob95, Proof of Theorem 2, Section 3].
The solution of the nonhomogeneous boundary value problem are de�ned in the sense of transposition, see
[Lio88a].

We also obtain similar results for the Schrödinger equation. We only state here the counterpart of
Theorem 1.1 in this setting.

Theorem 1.4. LetM be a compact Riemannian manifold with (or without) boundary. For any nonempty
open subset ω ofM and any T > 0, there exist C, κ, µ0 > 0 such that for any u0 ∈ H2∩H1

0 and associated
solution u of  i∂tu+ ∆gu = 0 in (0, T )×M,

u|∂M = 0 in (0, T )× ∂M,
u(0) = u0 inM,

(1.6)

we have, for any µ ≥ µ0,

‖u0‖L2 ≤ Ceκµ ‖u‖L2((−T,T );H1(ω)) +
1

µ
‖u0‖H2 .

If ∂M 6= ∅ and Γ is a non empty open subset of ∂M, then for any T > 0, there exist C, κ, µ0 > 0 such
that for any u0 ∈ H2 ∩H1

0 and associated solution u of (1.6), we have

‖u0‖L2 ≤ Ceκµ ‖∂νu‖L2((−T,T )×Γ) +
1

µ
‖u0‖H2 .

As well, this result still holds with some lower order perturbations, analytic in t, see Theorem 6.5 for
a more precise statement.

Note that some related results have already been proven in the internal case by Phung [Phu01] with

eκµ replaced by eκµ
2

.

1.2 Quantitative unique continuation for operators with partially analytic co-

e�cients

Let us now turn to the general stability result and present the class of partial di�erential operators we
deal with. We consider domains Ω ⊂ Rn = Rna × Rnb , where na + nb = n. We denote by x = (xa, xb)
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the global variables and ξ = (ξa, ξb) the associated dual variables. The variables xa will denote the set of
variables in which the considered operator is analytic.

We recall that, given a bounded domain Ω ⊂ Rn = Rna ×Rnb , a smooth function f : Ω→ R is analytic
with respect to xa if, for any point x0 = (x0

a, x
0
b) ∈ Ω, f is equal to its partial Taylor expansion at x0

a

with respect to the variable xa in a neighborhood of x0 in Ω. Such a function extends as a holomorphic
function in the variable xa in B(x0

a, ε) + iB(0, ε)×B(x0
b , ε) for some ε > 0.

The folowing de�nition is due to Tataru [Tat99b, De�nition 2.2].

De�nition 1.5 (analytically principally normal operator). Let P be a partial di�erential operator on an
open set Ω ⊂ Rna × Rnb of order m ∈ N∗ with smooth coe�cients and principal symbol p(xa, xb, ξa, ξb).
We say that P is an analytically principally normal operator in {ξa = 0} inside Ω if the coe�cients of
P are real-analytic in the variable xa and for any x0 ∈ Ω there exist Ωa ⊂ Rna , Ωb ⊂ Rnb , such that
x0 ∈ Ωa × Ωb, Ωa × Ωb ⊂ Ω and there exists a complex neighborhood ΩC

a of Ωa in Cna and a constant
C > 0 such that for all za, z̃a ∈ ΩC

a and all (xb, ξb) ∈ Ωb × Rnb , ξb 6= 0, we have

|{p(za, ·, 0, ·), p(z̃a, ·, 0, ·)} (xb, ξb)|+
∣∣∣{p(za, ·, 0, ·), p(z̃a, ·, 0, ·)} (xb, ξb)

∣∣∣ ≤ C|p(za, xb, 0, ξb)||ξb|m−1, (1.7)

|∂zap(za, xb, 0, ξb)| ≤ C|p(za, xb, 0, ξb)|. (1.8)

Note that in this de�nition, the Poisson brackets are taken only with respect to the (xb, ξb) variables.
Yet, the combination of the two conditions (1.7) and (1.8) implies that such operators are in particular
principally normal in {ξa = 0} in the usual sense (see [RZ98], [Hör97] or [Tat99b, De�nition 2.1]), that is

|{p, p} (xa, xb, 0, ξb)| ≤ C|p(xa, xb, 0, ξb)||ξb|m−1, (1.9)

where this time, {p, p} is computed with respect to all the variables.
Two interesting cases of operators P being analytically principally normal in {ξa = 0}, considered

in [RZ98] and [Hör97], are operators with analytic coe�cients in xa satisfying one of the following two
assumptions:

(E) transversal ellipticity: p(xa, xb, 0, ξb) ≥ c|ξb|m for (xa, xb) ∈ Ω, ξb ∈ Rnb ;

(H) principal normality and invariance with respect to the null bicharacteristic �ow in {ξa = 0}:

|{p, p} (xa, xb, 0, ξb)| ≤ C|p(xa, xb, 0, ξb)||ξb|m−1 and ∂xap(xa, xb, 0, ξb) = 0.

We now formulate the de�nition of strongly pseudoconvex surfaces for an operator P , see [Hör94, De�ni-
tion 28.3.1], [Tat99b, De�nitions 2.3 and 2.4] and [Tat99a, Section 1.2].

De�nition 1.6 (Strongly pseudoconvex oriented surface). Let Ω ⊂ Rn, Γ be a closed conic subset of T ∗Ω,
and let P be principally normal in Γ inside Ω (in the sense of (1.9)) with principal symbol p. Let S be a
C2 oriented hypersurface of Ω and x0 ∈ S ∩ Ω. We say that S is strongly pseudoconvex in Γ at x0 for P
if there exists φ ∈ C2(Ω;R) such that S = {φ = 0}, ∇φ(x0) 6= 0, satisfying:

Re {p, {p, φ}} (x0, ξ) > 0, if p(x0, ξ) = {p, φ}(x0, ξ) = 0 and ξ ∈ Γx0 , ξ 6= 0; (1.10)

1

iτ
{pφ, pφ}(x0, ξ) > 0, if pφ(x0, ξ) = {pφ, φ}(x0, ξ) = 0 and ξ ∈ Γx0 , τ > 0, (1.11)

where pφ(x, ξ) = p(x, ξ + iτ∇φ).

Note that this is a property of the oriented surface S solely, and not of the de�ning function φ
(see [Hör94], beginning of Section 28.3). If Γ = T ∗Ω, it is the usual condition of the Hörmander Theorem
(see [Hör94, Section 28.3]), that is, under which uniqueness holds for P at x0 across the hypersurface S,
i.e. from φ > 0 to φ < 0.

Below, this condition will always be used for Γ = {ξa = 0}. In this case, and using the homogeneity of
p in ξ, Assumption (1.11) may be rephrased as:

1

i
{p(x, ξ − i∇φ), p(x, ξ + i∇φ)}(x0, 0, ξb) > 0, if p(ζ) = {p, φ}(ζ) = 0, ξb ∈ Rnb ,
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where ζ = (x0, i∇aφ(x0), ξb + i∇bφ(x0)). An important feature of this de�nition is that it is invariant by
changes of coordinates.

Note also that in the case Γ = {ξa = 0}, the condition (1.10) is the limit as τ → 0+ of (1.11) on
the subset

{
pφ(x0, ξ) = {pφ, φ}(x0, ξ) = 0

}
∩ Γx0 , thanks to the principal normality assumption (1.9), see

Remark 3.5 below.

Before stating our main result, let us discuss some cases of operators of particular interest.

Remark 1.7 (Hörmander case). If na = 0, there is no analytic variable. In this case, De�nition 1.5
coincides with the de�nition of principally normal operators [Hör94, Chapter XXVIII] and De�nition 1.6
with Γ = T ∗Ω that of strictly pseudoconvex functions. The unique continuation result under consideration
is the classical Hörmander theorem [Hör94, Chapter XXVIII].

Remark 1.8 (Holmgren case). If na = n, that is the operator is analytic in all the variables, we have
xa = x, ξa = ξ, and hence Γ = Ω × {ξa = 0} = Ω × {ξ = 0}. In this situation, conditions (1.7), (1.8) are
empty since all the terms vanish.

Next, concerning the conditions on the surface {φ = 0}, notice that (1.10) is also empty since Γx0 ∩
{ξ 6= 0} = ∅. For (1.11), if ξ ∈ Γx0 , that is ξ = 0, we have pφ(x0, ξ) = p(x0, iτ∇φ) = (iτ)mp(x0,∇φ): any
noncharacteristic surface is a strongly pseudoconvex oriented surface.

Note that, in the case na = n, the results presented here hold under the condition:

p(x0,∇φ(x0)) = {p, φ}(x0,∇φ(x0)) = 0 =⇒ 1

i
{p(x, ξ − i∇φ), p(x, ξ + i∇φ)}(x0, 0) > 0,

which is weaker than the noncharactericity condition p(x0,∇φ(x0)) 6= 0 of the Holmgren theorem.

Remark 1.9 (Wave type and Schrödinger type operators). Let us now consider the case of operators P
of principal symbol of the form p2(x, ξ) = Qx(ξ), where Qx is a smooth family of real quadratic forms,
such that Qx(0, ξb) is de�nite on Rnb . This is the case of the wave operator or Schrödinger type operators.
First, condition (E) is ful�lled thanks to the positiveness of Qx(0, ξb). Then, Assumption (1.10) holds
(uniformly with respect to x ∈ Ω) according to the de�niteness of Qx((0, ξb)). It is indeed empty since
p2(x, (0, ξb)) does not vanish for ξb 6= 0. Moreover, we have {p2, φ}(x, ξ) = 2Q̃x(ξ,∇φ), where Q̃x is the
polar form of Qx, and

{p2, φ}(x, ξ + i∇φ) = 2Q̃x(ξ,∇φ) + 2iQx(∇φ).

As a consequence, Im{p2, φ}(x, ξ + i∇φ) = 2Qx(∇φ) so that (1.11) is also empty (and thus satis�ed) for
any noncharacteristic hypersurface.

In conclusion, for real quadratic forms which are de�nite on Rnb at ξa = 0, any noncharacteristic
hypersurface is strongly pseudoconvex in the sense of De�nition 1.6. In the case na = 1, this includes the
following operators of particular interest:

� P = D2
xa −

∑n−1
i,j=1 αij(x)Dxjb

Dxib
(wave operator) with p = ξ2

a −
∑n−1
i,j=1 αij(x)ξjbξ

i
b;

� P = Dxa −
∑n−1
i,j=1 αij(x)Dxjb

Dxib
(Schrödinger operator) with p = −

∑n−1
i,j=1 αij(x)ξjbξ

i
b.

where the quadratic form with coe�cients αi,j is positive de�nite.

We are now prepared to formulate our main Theorem in the general framework. We �rst describe the
geometric context and then state the Theorem.

Geometric setting: (see Figure 1) We �rst �x two splittings of Rn as Rn = Rn−1
x′ × Rxn and

Rn = Rnaxa ×Rnbxb , possibly in two di�erent basis. We let D be a bounded open subset of Rn−1 with smooth

boundary and G = G(x′, ε) ∈ C1(D × [0, 1 + η)), for some η > 0, such that

� For all ε ∈ (0, 1], we have {x′ ∈ Rn−1, G(x′, ε) ≥ 0} = D;

� for all x′ ∈ D, the function ε 7→ G(x′, ε) is strictly increasing;

� for all ε ∈ (0, 1], we have {x′ ∈ Rn−1, G(x′, ε) = 0} = ∂D.

7



We set G(x′, 0) = 0, S0 = D × {0} and, for ε ∈ (0, 1],

Sε = {(x′, xn) ∈ Rn, xn ≥ 0 and G(x′, ε) = xn} = (D × R) ∩ {(x′, xn) ∈ Rn, G(x′, ε) = xn};
K = {x ∈ Rn, 0 ≤ xn ≤ G(x′, 1)}.

K

xa

xb

x′

xn

S1

S0

Ω

ω̃

Figure 1: Geometric setting of Theorem 1.10

Theorem 1.10. In the above geometric setting, we moreover let Ω be a neighborhood of K, and P be a
di�erential operator of order m, analytically principally normal operator on Ω in {ξa = 0}.

Assume also that, for any ε ∈ [0, 1 + η), the oriented surfaces Sε = {φε = 0} with φε(x
′, xn) :=

G(x′, ε)− xn are strictly pseudoconvex in {ξa = 0} for P on the whole Sε, in the sense of De�nition 1.6.
Then, for any open neighborhood ω̃ ⊂ Ω of S0, there exists a neighborhood U of K, and constants

κ,C, µ0 > 0 such that for all µ ≥ µ0 and u ∈ C∞0 (Rn), we have

‖u‖L2(U) ≤ Ce
κµ
(
‖u‖Hm−1

b (ω̃) + ‖Pu‖L2(Ω)

)
+

C

µm−1
‖u‖Hm−1(Ω) ,

where we have denoted ‖u‖Hm−1
b (ω̃) =

∑
|β|≤m−1

∥∥∥Dβ
b u
∥∥∥
L2(ω̃)

.

If na = n (Holmgren case), we get also for some ϕ̃ ∈ C∞0 (ω̃) and for any s ∈ R, the existence of
κ,C, µ0 > 0 such that for all µ ≥ µ0 and u ∈ C∞0 (Rn), we have

‖u‖L2(U) ≤ Ce
κµ
(
‖ϕ̃u‖H−s(Rn) + ‖Pu‖L2(Ω)

)
+

C

µm−1
‖u‖Hm−1(Ω) .

If na = 0 (Hörmander case), there is c, κ, C, µ0 > 0 such that for all µ ≥ µ0 and u ∈ C∞0 (Rn), we have

‖u‖Hm−1(U) ≤ Ce
κµ
(
‖u‖Hm−1(ω̃) + ‖Pu‖L2(Ω)

)
+ Ce−cµ ‖u‖Hm−1(Ω)

Note that in the �rst two cases, we obtain a result of the type (1.4) with a logarithmic function ϕ,
whereas in the framework of the Hörmander theorem, we obtain the stronger Hölder-type dependence:

‖u‖Hm−1(U) ≤ C
(
‖u‖Hm−1(ω̃) + ‖Pu‖L2(Ω)

)δ
‖u‖1−δHm−1(Ω)

for some δ ∈ (0, 1).
The formulation of the above result using a foliation by hypersurfaces is inspired by that of [Joh49,

Theorem p. 224] in the context of the Holmgren theorem. The statement describing the hypersurfaces by
graph could look rigid. We will give later in Theorem 4.11 a slight variant where the partial analyticity
and the foliation by graphs can be described in di�erent coordinates (i.e. the linear change of coordinates
between the two di�erent splittings Rn = Rn−1

x′ × Rxn and Rn = Rna × Rnb may be replaced by a
di�eomorphism). We chose not to present this more general result here for the sake of the exposition.
Most of global Theorems for the wave and Schrödinger equations on a manifold are proved in that setting,
after some suitable change of coordinates.
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1.3 Idea of the proof

As already mentioned, unique continuation theorems (e.g. the Hörmander theorem) are often proved
with Carleman estimates. Such inequalities are already quantitative, and hence furnish a good starting
point towards local quantitative unique continuation results. This strategy has already been followed
in [Rob95, LR95] in the case of elliptic operators, see also [Bah87]. Starting from the Carleman inequality,
the idea is to apply the estimates to some function χ(x)u where χ is a well chosen cuto� function. The
exponential weight eτψ(x) (where ψ is an appropriate weight function) in the Carleman estimate naturally
leads to some inequality of the form

‖u‖V2
≤ eκµ

(
‖u‖V1

+ ‖Pu‖V3

)
+ e−κµ ‖u‖V3

, (1.12)

uniformly for µ ≥ µ0 and for some small open sets V1 ⊂ V2 ⊂ V3 depending on the local geometry.
Optimizing in µ (see [Rob95] or [LRL12, Lemma 5.2]) this can then be written as an interpolation estimate

‖u‖V2
≤
(
‖u‖V1

+ ‖Pu‖V3

)δ ‖u‖1−δV3
,

for some δ ∈ (0, 1). The interest of these interpolation estimates is that they can be easily iterated, leading
to some global ones. It ends up with some Hölder type dependence, i.e. (1.4) with ϕ = (a + b)δc1−δ. We
refer for instance to the survey article [LRL12] for a description of these estimates in the elliptic case, with
application to spectral estimates and control results for the heat equation.

Yet, in the context of the unique continuation theorem for partially analytic operators, the Carleman es-
timates proved in [Tat95, RZ98, Hör97, Tat99b] contain a "microlocal" weight of the form e−

ε
2τ |Da|

2

eτψ(x).
As for usual Carleman estimates, the term eτψ(x) (loosely speaking) gives some strength to the set where

ψ is positive, but the additional term e−
ε
2τ |Da|

2

localizes in the low frequencies in the variable xa. In
this context, the proof of unique continuation proceeds with a (qualitative) complex analytic argument
(maximum principle). This additional argument in the proof of unique continuation also requires to be
quanti�ed. As in [Rob95], this procedure naturally leads to local logarithmic (instead of Hölder) stability
estimates. The main issue one then has to face when quantifying unique continuation is that such esti-
mate cannot be iterated (or would yield dependence estimates of the type (1.4) with a function ϕ being a
composition of as many log as steps needed in the iteration).

One idea to overcome this di�culty, proposed by Tataru in his unpublished notes [Tat99a], was to
propagate some low frequency estimates of the form{

‖u‖Hm−1 = 1∥∥∥m(Daµ )σ( xR )Pu
∥∥∥
L2
≤ e−µ

α =⇒
∥∥∥∥m(Da

τ

)
σ(
x

r
)u

∥∥∥∥
Hm−1

≤ e−τ , ∀τ < c µα

and for all u supported in {φ < φ(x0)}, for some apropriate compactly supported cuto� functions σ and
m(ξ) in the Gevrey class 1/α, α < 1, and for some r < R. This kind of estimates can be propagated and

led to some global stability estimates of the form (1.4) with ϕε = c
(

log(1 + c
a+b )

)−(1−ε)
.

The loss 1− ε in the power of log is due to the use of functions Gevrey α with compact support. The
optimal case α = 1 would correspond to analytic functions. Yet, analytic functions cannot have compact
support, which is a key ingredient in the usual application of Carleman estimates.

Let us now explain our strategy to solve this problem.

1.3.1 Obtaining local information at low frequency

Part of the proof of the present paper is inspired by this idea of propagating only low frequency (in the
analytic variable xa) estimates. However, we replace the Gevrey cuto� functions by some analytic �almost�

localized functions of the form χλ := e−
|Da|2
λ χ where χ is smooth with the expected compact support. It

turns out that the right choice of λ is λ = Cµ where µ is the frequency where we want to measure our
solution. That such functions are not compactly supported makes the commutator estimates much more
intricate and requires a careful study of the dependence with respect the regularisation parameter λ, the
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local frequency µ and the parameter τ in the Carleman estimate. All estimates are carried out up to an
exponentially small remainder (in terms of these parameters).

Following this procedure, the local estimates we prove (which we are in addition able to propagate) are
some generalization of (1.12), but only with regards to the low frequencies (in the analytic variable xa).
In a neighborhood of a point x0, they are of the form∥∥∥∥mµ

(
Da

βµ

)
χ2,µu

∥∥∥∥
Hm−1

≤ Ceκµ
(∥∥∥∥mµ

(
Da

µ

)
χ1,µu

∥∥∥∥
Hm−1

+ ‖Pu‖L2(B(x0,R))

)
+ Ce−κ

′µ ‖u‖Hm−1 ,(1.13)

uniformly for µ ≥ µ0. See the beginning of Section 3 for a more precise statement and remarks on this
result. Here, χ1 and χ2 are some cuto� in the physical space that localize respectively to the place where the
information is taken (locally in {φ > ρ} for some ρ > 0) and to where it is propagated (a small neighborhood
of x0). The Fourier multipliers mµ cuts o� (analytically) the ξa frequencies. All these cuto� functions
are used only with their analytic regularization. They never localize exactly. Using such regularized
cuto� functions and Fourier multipliers follows the spirit of analytic semiclassical analysis [Sjö82] (see
also [Mar02]). However, we do not make use of that theory and rather construct by hand the appropriate
molli�ers, making the proof selfcontained in this respect.

The proof of estimates like (1.13), stated more precisely in Theorem 3.1 is the object of Section 3.
It proceeds in three steps. First, as in the usual proofs of unique continuation results, starting from the
hypersurface {φ = 0}, one needs to construct a weight function ψ with both properties

� to satisfy the assumptions required to apply the Carleman estimate (ψ should be a strictly pseudo-
convex function in the sense of De�nition 2.1);

� to have level sets appropriately located with respect to those of φ.

This corresponds to the so called �convexi�cation process�.
Second, we apply as a black box the Carleman estimates of [Tat95, RZ98, Hör97, Tat99b] (or some

similar ones that we prove in the presence of boundary) to χu, where χ is a particular cuto� function
(localizing near the point of interest, and according to levelsets of ψ), containing both rough cuto�s and

molli�ed ones. We then need to estimate terms arising from the commutator e−
ε
2τ |Da|

2

eτψ[P, χ], that are
either well localized or have an exponentially small contribution.

Finally, we need to transfer the information given by the Carleman estimate to some estimate like (1.13)
on the low frequencies of the function. This is done through a complex analysis argument, the Carleman
parameter τ playing the role of complex variable, as in [Tat95]. If ζ is the complex variable, the Carleman
estimates corresponds to an estimate on ζ = iτ ∈ iR+. Combined with a priori estimates, a Phragmén-
Lindelöf type theorem allows to extend this estimate to part of the real domain, where it corresponds

to estimating
∥∥∥m(Daβµ)χu∥∥∥. To obtain estimates that are uniform with respect to the frequency (and

regularization) parameter µ, we also need, following [Tat99a], to use a scaling argument, replacing τ by
τ/µ.

1.3.2 Propagating local informations to global ones

Once the local estimate are proved, we need to iterate them to obtain a global estimate. This is the object
of Section 4. At �rst, we de�ne some tools that will allow later in an abstract way to propagate easily
our local estimate (1.13). Roughly speaking, (1.13) says that, for solution of Pu = 0, some information
can be transfered from the support of χ1 to the support of χ2. We formalize that with the notion of zone
of dependence. Roughly speaking, we say that on open set O2 depends on O1 if (1.13) holds for every
χ1 equals to 1 on O1 and any χ2 supported in O2. This part allows to make the proof of Theorem 1.10
a complete geometric one. Even if quite di�erent in de�nition, it is close in spirit to the interpolation
theory developped in Lebeau [Leb92] to propagate globally the local information obtained by the Cauchy-
Kowaleski theorem. Moreover, it should adapt to some more general kind of foliation. Note that at each
step of this propagation argument, we have a loss in the the range of frequency: from an information on
frequencies ≤ µ, we obtain an information on frequencies ≤ βµ, with β small. This is overcome by the
fact that we only have a �nite number of steps in this iterative procedure.

Once this propagation result is done, we are left with some information about the low frequency of our
solution. Since we have no information about the high frequency part, the only thing to do is to use some
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trivial bound of the type ∥∥∥∥(1−m
(
Da

µ

))
u

∥∥∥∥
L2

≤ C

µm−1
‖u‖m−1

This is actually much worse than the negative exponential that we already had. But it turns out to be the
best we can do without any more information.

In section 6, we specify our general result to the case of the wave and Schrödinger equations. The main
task is to construct some noncharacteristic hypersurfaces that allow to be in the situation of Theorem
1.10. This part is quite classical and was already present for instance in [Leb92]. We recall the argument
in the present context.

1.3.3 Carleman estimates for the Dirichlet boundary value problem

Finally, to prove the results of Section 1.1, it remains to deal with the boundary-value problem. This
is the object of Section 5. As far as (qualitative) unique continuation is concerned, there is no need
to prove quantitative estimates up to the boundary. As a consequence, we need here to carry over the
analysis of [Tat95, RZ98, Hör97, Tat99b] at the boundary. In this context, we consider a particular class of
operators and a particular boundary condition. We assume that the operator belongs to the class described
in Remark 1.9 (hence encompassing wave and Schrödinger type operators), that is, with symbols of the
form p2(x, ξ) = Qx(ξ) where Qx is a smooth family of real quadratic forms. We further assume that
the analytic variables xa are tangent to the boundary, and that the functions satisfy Dirichlet boundary
conditions. Recall that this situation is of particular interest for the wave/Schrödinger equations, for which
xa is the time variable, which is always tangent to the boundary of cylindrical domains.

The proof of the quantitative unique continuation result up to and from the boundary relies on a
Carleman estimate at the boundary for such operators. As such, it interpolates between the �boundary
elliptic Carleman estimates� of Lebeau and Robbiano [LR95], and the �partially analytic Carleman esti-
mates� of Tataru [Tat95] (see also [RZ98, Hör97]). Then, we obtain the counterpart of the local estimate
of Theorem 3.1 for this boundary value problem. All local, semiglobal and global results shall then follow
as in the boundaryless case. We only need to be careful when performing changes of variables.

We wish to thank Daniel Tataru for having allowed us to use some ideas from his unpublished lecture
notes [Tat99a], and Luc Robbiano for his comments on a preliminary version of the paper. The �rst author
is partially supported by the Agence Nationale de la Recherche under grant EMAQS ANR-2011-BS01-
017-0 and IPROBLEMS ANR-13-JS01-0006. The second author is partially supported by the Agence
Nationale de la Recherche under grant GERASIC ANR-13-BS01-0007-01.

When �nalizing this article it came to our attention that another group, Roberta Bosi, Yaroslav Kurylev
and Matti Lassas has been working independently on issues related to this paper.

2 Preliminaries

The preliminary results presented in this section are mainly used in Section 3 for the local estimate. Some
are also used independently in Section 4 for the semiglobal estimate. They concern:

1. The Carleman estimate adapted to operators with partially analytic coe�cients, as stated in [Tat95,
RZ98, Hör97, Tat99b];

2. The regularization procedure for cuto� functions and Fourier multipliers (which is a key part in the
proofs);

3. Some preliminary commutator-type estimates.

2.1 Notation

Before this, let us recall basic notation, used all along the article.
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Above and below, dist stands for the Euclidean distance in Rn, R or Rna , or the Riemannian distance
on (M, g). For K ⊂ Rn (resp. R, resp. Rna) we de�ne a d neighborhood of K by

Vois(K, d) :=
⋃
x∈K

B(x, d),

where balls are taken according to the distance dist. For two open set U,U ′, we write U b U ′ if Ū is
compact and Ū ⊂ U ′.

We denote by F the Fourier transform in all variables, Fa in the variables xa ∈ Rna only. When there
is no possible confusion, we shall write û = Fa(u) or û = F(u).

We set 〈ξ〉 = (1+|ξ|2)
1
2 , and denote by ‖·‖m the classicalHm norm on Rn: ‖u‖m := ‖ 〈ξ〉m F(u)‖L2(Rn).

Similarly,

‖u‖m,τ =
∥∥∥(τ2 + |D|2

)m
2 u
∥∥∥

0
=
∥∥(τ2 + |ξ|2)

m
2 F(u)

∥∥
0

will denote the weighted (semiclassical) Hm norm for τ ≥ 1. In the main part of this article, τ will be a
large parameter. Finally, we use the notation ‖·‖Hk→H` for the operator norm from Hk(Rn) to H`(Rn).

2.2 The Carleman estimate

Before stating the Carleman estimate used in the main part of paper, we need to introduce the de�nition
of appropriate weight functions ψ.

De�nition 2.1 (Strongly pseudoconvex function). Let P be a principally normal operator in Ω ⊂ Rn,
with principal symbol p, let ψ ∈ C2(Ω;R) and Γ be a closed conic subset of T ∗Ω. Let x0 ∈ Ω. We say
that ψ is strongly pseudoconvex in Γ at x0 for P if:

Re {p, {p, ψ}} (x0, ξ) > 0, if p(x0, ξ) = 0 and ξ ∈ Γx0 , ξ 6= 0; (2.1)

1

iτ
{pψ, pψ}(x0, ξ) > 0, if pψ(x0, ξ) = 0 and ξ ∈ Γx0 , τ > 0, (2.2)

where pψ(x, ξ) = p(x, ξ + iτ∇ψ).

Note that in the case Γ = T ∗Ω, this property is the usual one for proving a Carleman estimate with the
weight function ψ. It is classical that a strongly pseudoconvex surface S (in the sense of De�nition 1.6) is a
level surface for some pseudoconvex function (see e.g. [Hör94, Proposition 28.3.3] or [Tat99a, Theorem 1.5]),
and that both de�nitions are stable with respect to small C2 perturbations. In what follows a more precise
link (adapted to our needs) between these two notions shall be made in Section 3.1.

In this paper (as in [Tat95, RZ98, Hör97, Tat99b]), De�nitions 1.6 and 2.1 shalls alway be used with
Γ = Ω× {ξa = 0}.

For ε, τ > 0 we de�ne the operator

Qψε,τu = Qψε,τ (x,Da)u = e−
ε
2τ |Da|

2

(eτψu) (2.3)

introduced in [Tat95].
The following result is due to Tataru [Tat99b, Theorem 2]. A proof in cases (E) and (H) can be found

in [Hör97] (see in this reference Equation (5.15), and the last equation before Section 7, respectively).
Some closely related estimates are also proved in [RZ98, Proposition 4.6].

In Section 5, when studying the boundary value problem for wave equations, we include a proof of
this result in the case (H) assuming that P has a real principal part, is of order m = 2, and under the
additional assumption that the coe�cients of P do not depend on xa.

Theorem 2.2. Let x0 ∈ Ω = Ωa ×Ωb ⊂ Rna ×Rnb and P be a partial di�erential operator on Ω of order
m. Assume that

� P is analytically principally normal operator in {ξa = 0} inside Ω (in the sense of De�nition 1.5);

� ψ is a quadratic polynomial in x = (xa, xb), strongly pseudoconvex in Ω ∩ {ξa = 0} at x0 for P (in
the sense of De�nition 2.1).
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Then, there exists ε > 0, R > 0, d > 0, C > 0, τ0 > 0 such that B(x0,R) ⊂ Ω and for any τ > τ0, we have

τ
∥∥Qψε,τu∥∥2

m−1,τ
≤ C

(∥∥Qψε,τPu∥∥2

0
+
∥∥∥eτ(ψ−d)Pu

∥∥∥2

0
+
∥∥∥eτ(ψ−d)u

∥∥∥2

m−1,τ

)
(2.4)

for any u ∈ C∞0 (B(x0,R)).

Note that most Carleman estimates in [Tat95, RZ98, Hör97, Tat99b] do not contain the term∥∥eτ(ψ−d)Pu
∥∥2

0
in the right hand-side. Also, this result was stated in some case where pseudoconvexity

holds on all Ω. Yet, pseudoconvexity at one points implies the pseudoconvexity in a small neighborhood
(see [Tat99b, Lemma 2.5]), so it implies the local Carleman estimate for functions supported close to x0.

2.3 Regularization of cuto� functions and Fourier multipliers

All along the paper, we shall use several cuto� functions and need to regularize them. Here, we explain
the regularization procedure we use, give some of its basic properties, and de�ne some (appropriately
regularized) Fourier multipliers.

2.3.1 Regularization of functions

Before describing the regularization operators, let us collect some basic facts about gaussian integrals.
Note �rst that we have (derive with respect to z or see e.g. [Leb72, (2.1.7) p17]), for z ≥ 0,∫ +∞

z

e−s
2

ds =
e−z

2

√
π

∫ +∞

0

e−z
2s2

1 + s2
ds ≤

√
π

2
e−z

2

.

As a consequence, we have the following estimates∫ +∞

r

e−
s2

t ds ≤
√
π

2

√
te−

r2

t ,

∫ +∞

r

〈s〉me− s
2

t ds ≤ Cm〈r〉m〈t〉
m+1

2 e−
r2

t for all r ≥ 0, t > 0,m ∈ N,

where the second estimate is obtained by iterated integration by parts. As a consequence, we also have∫
xa∈Rna ,|xa|≥r

e−
|xa|2
t dxa ≤ Cna 〈r〉

na−1 〈t〉
na
2 e−

r2

t for all r ≥ 0, t > 0. (2.5)

Moreover, we have for any measurable set E ⊂ Rna , any xa ∈ Rna , and any t > 0,∫
E

e−
1
t |xa−ya|

2

dya ≤
∫
Rna

e−
1
t |xa−ya|

2

dya = (πt)
na
2 .

In addition, according to (2.5), there exists Cna > 0 such that for any closed set E ⊂ Rna , any xa /∈ E,
and any t > 0, we have∫

E

e−
1
t |xa−ya|

2

dya ≤
∫
B(xa,dist(xa,E))c

e−
1
t |xa−ya|

2

dya ≤ Cna 〈dist(xa, E)〉na−1 〈t〉
na
2 e−

dist(xa,E)2

t ,

Hence there exists Cna > 0 such that for any closed set E ⊂ Rna , any xa ∈ Rna , and any t > 0, we have∫
E

e−
1
t |xa−ya|

2

dya ≤ Cna 〈dist(xa, E)〉na−1 〈t〉
na
2 e−

dist(xa,E)2

t . (2.6)

We are now prepared to de�ne the appropriate regularization process, used all along the article. We
shall use the notation fλ to denote

� fλ := e−
|D|2
λ f for a function f ∈ L∞(R);
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� or (more often used)

fλ := e−
|Da|2
λ f,

for a function f ∈ L∞(Rn), and a fortiori for f ∈ L∞(Rna).

We hope that this use shall not be confusing for the reader. We now discuss in more detail the basic
properties of this regularization process in the second case only (the �rst case can be seen as the particular
situation na = 1, nb = 0).

This de�nition can be rewritten as

fλ(xa, xb) =

(
λ

4π

)na
2 (

e−
λ
4 |·|

2

∗Rna f(·, xb)
)

(xa) =

(
λ

4π

)na
2
∫
Rna

f (ya, xb) e
−λ4 |xa−ya|

2

dya.

Note that similar smoothing of functions are used systematically when working with analytic microlocal
analysis, see [Sjö82] or [Mar02]. In this context, it is related to the Fourier-Bros-Iagolnitzer transform. In
applications to unique continution, it has been used in [RT73, Ler88, Rob91, Hör92, Leb92, Rob95, Tat95,
RZ98, Hör97, Tat99b]. In particular, the operator Qψε,τ de�ned in (2.3) contains such a regularization (the
regularizing parameter λ being linked to the Carleman large parameter τ).

We will use several times in the proofs that

‖fλ‖L2(Rn) ≤ ‖e
− |·|

2

λ ‖L∞(Rna )‖Fa(f)(ξa, xb)‖L2(Rn) = ‖f‖L2(Rn) (2.7)

and

‖fλ‖L∞ ≤
(
λ

4π

)na
2

‖e−λ4 |·|
2

‖L1(Rna ) ‖f‖L∞(Rn) = ‖f‖L∞(Rn) . (2.8)

Notice also that we have

f ≥ 0 =⇒ fλ ≥ 0, and hence f ≥ g =⇒ fλ ≥ gλ.

Moreover, the function fλ may be extended as an entire function in the variable xa by

fλ(za, xb) =

(
λ

4π

)na
2
∫
Rna

f (ya, xb) e
−λ4 (za−ya)2

dya, za ∈ Cna , xb ∈ Rnb ,

(where ζ2
a = ζa ·ζa = |Re ζa|2−| Im ζa|2 +2iRe ζa · Im ζa is the real inner product) with the uniform bound

|fλ(za, xb)| ≤
(
λ

4π

)na
2

‖f‖L∞
∫
ya∈supp(f(·,xb))

∣∣∣e−λ4 (za−ya)2
∣∣∣ dya

≤
(
λ

4π

)na
2

‖f‖L∞ e
λ
4 | Im(za)|2

∫
ya∈supp(f(·,xb))

e−
λ
4 |Re(za)−ya|2 dya

≤ C 〈λ〉
na
2 ‖f‖L∞ e

λ
4 | Im(za)|2

×〈dist(Re(za), supp(f(·, xb)))〉na−1
e−

λ
4 dist(Re(za),supp(f(·,xb)))2

(2.9)

where the last estimate comes from (2.6). Note that strictly speaking, if f is only in L∞(Rn), supp(f(·, xb))
is not really well de�ned for every xb ∈ Rnb . But supp f (in the distributional sense of support) is a well
de�ned closed set and we can de�ne for every xb ∈ Rnb the closed set of Rna , {xa ∈ Rna |(xa, xb) ∈ supp f }
that is supp(f(·, xb)) for continuous functions. We will not discuss more this subtlety and will continue to
write some expressions similar to (2.9). The estimate then makes sense by taking an element of the class
in L∞ that is zero outside of supp(f) and that is bounded by ‖f‖L∞ .

For functions compactly supported in the xa variable, we have the simpler estimate

|fλ(za, xb)| ≤ Cλ
na
2 ‖f‖L∞ | supp(f(·, xb))|e

λ
4 | Im(za)|2e−

λ
4 dist(Re(za),supp(f(·,xb)))2

. (2.10)
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2.3.2 Fourier multipliers

Finally, we also need to introduce frequency localization functions, i.e. appropriately smoothed Fourier
multipliers. Let m(ξa) be a smooth radial function (i.e. depending only on |ξa|), compactly supported
(in |ξa| < 1) such that m(ξa) = 1 for |ξa| < 3/4. We shall denote by Mµ the Fourier multiplier Mµu =

m
(
Da
µ

)
u, that is

(Mµu)(xa, xb) = F−1
a

(
m

(
ξa
µ

)
Fa(u)(ξa, xb)

)
(xa),

where Fa denotes the Fourier transform in the variable xa only. Given λ, µ > 0, we shall denote by Mµ
λ

the Fourier multiplier of symbol mµ
λ(ξa) = mλ

(
ξa
µ

)
, i.e. Mµ

λ = mλ

(
Da
µ

)
or

(Mµ
λu)(xa, xb) = F−1

a

(
mλ

(
ξa
µ

)
Fa(u)(ξa, xb)

)
(xa),

with, according to the above notation for the subscript λ,

mλ(ξa) =

(
λ

4π

)na
2
∫
Rna

m (ηa) e−
λ
4 |ξa−ηa|

2

dya.

Note that in this de�nition, the symbol is �rst regularized and then dilated. We hope the notation
(with the subscript for the regularization and the exponent for the dilation) will not be confusing for the
reader. Note also that these Fourier multipliers only act in the variable xa.

2.4 Some preliminary estimates

In this section, we state several technical lemmata of commutator type, needed to prove the main local
result Theorem 3.1. The proofs can certainly be omitted by the hurried reader. The spirit is that all the
estimates that we would expect for exact cuto� are true with their analytically regularized version, up to
some term exponentially small in term of λ. So, the important fact in all the estimates is the uniformity
with respect to λ and µ as large parameter.

2.4.1 Some basic preliminary estimates

Lemma 2.3. 1. For any d > 0, there exist C, c > 0 such that for any f1, f2 ∈ L∞(Rn) such that
dist(supp(f1), supp(f2)) ≥ d and all λ ≥ 0, we have

‖f1,λf2‖L∞ ≤ Ce
−cλ ‖f1‖L∞ ‖f2‖L∞ , ‖f1,λf2,λ‖L∞ ≤ Ce

−cλ ‖f1‖L∞ ‖f2‖L∞ .

2. If moreover f1, f2 ∈ C∞(Rn) have bounded derivatives, then for all k ∈ N, there exist C, c > 0 such
that for all λ ≥ 1, we have

‖f1,λf2‖Hk(Rn)→Hk(Rn) ≤ Ce
−cλ.

3. Let f1, f2 ∈ L∞(Rna) such that dist(supp(f1), supp(f2)) > 0 . Then there exist C, c > 0 such that
for all λ ≥ 1, for all k ∈ N, for all µ ≥ 1, we have

‖f1,λ(Da/µ)f2(Da/µ)‖Hk(Rn)→Hk(Rn) ≤ Ce
−cλ,

‖f1,λ(Da/µ)f2,λ(Da/µ)‖Hk(Rn)→Hk(Rn) ≤ Ce
−cλ.

Proof. Let us set d = dist(supp(f1), supp(f2)) > 0. We have

|f1,λ(xa, xb)| ≤ Cλna/2‖f1‖L∞
∫
ya∈suppxa (f1(·,xb))

e−
λ|ya−xa|2

4 dya.

Moreover, for all xb ∈ Rnb we have

distRna
(

suppxa(f1(·, xb)), suppxa(f2(·, xb))
)
≥ d,
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so that for all x = (xa, xb) ∈ supp(f2), we have |ya − xa| ≥ d in the above integral. As a consequence, we
obtain, for all x = (xa, xb) ∈ supp(f2),

|f1,λ(xa, xb)| ≤ Cλna/2‖f1‖L∞
∫
|ya−xa|≥d

e−
λ|ya−xa|2

4 dya ≤ C‖f1‖L∞λna/2
∫
|ya|≥d

e−
λ|ya|2

4 dya

≤ Ce−cλ‖f1‖L∞ ,

which provides the �rst estimate in item 1.
The second estimate is obtained by decomposing

f1,λf2,λ = f1,λf2,λ1Vois(supp(f2),d/3) + f1,λf2,λ1Vois(supp(f2),d/3)c ,

and applying the previous result to the products f1,λ1Vois(supp(f2),d/3) and f2,λ1Vois(supp(f2),d/3)c , where all
the supports are disjoint as required.

Item 2 is proved by induction on k ∈ N. For k = 0, it is precisely the �rst estimate of item 1. Now
assume that it holds for k−1 and write ‖f1,λf2u‖Hk ≤ ‖f1,λf2u‖Hk−1 +‖∇(f1,λf2u)‖Hk−1 . It only remains
to estimate ‖∇(f1,λf2u)‖Hk−1 : for this, it su�cies to write

∇(f1,λf2u) = (∇f1)λf2u+ f1,λ∇(f2)u) + f1,λf2∇(u),

where all functions have the appropriate support properties to apply the case k − 1. This �nally yields
‖∇(f1,λf2u)‖Hk−1 ≤ Ce−cλ‖u‖Hk−1 + Ce−cλ‖∇u‖Hk−1 and concludes the proof of item 2.

The proof of item 3 only relies on the fact that for any k ∈ N

‖f1,λ(Da/µ)f2(Da/µ)‖Hk(Rn)→Hk(Rn) = ‖f1,λ(ξa/µ)f2(ξa/µ)‖L∞ = ‖f1,λf2‖L∞ ,

(and similarly for the other term) and the use of item 1.

Similarly, we have

Lemma 2.4. Let f2 ∈ C∞(Rn) with all derivatives bounded, and d > 0. Then for every k ∈ N, there exist
C, c > 0 such that for all f1 ∈ Hk(Rn) such that dist(supp(f1), supp(f2)) ≥ d and all λ ≥ 0, we have

‖f1,λf2‖Hk ≤ Ce
−cλ ‖f1‖Hk .

Proof. We have

f1,λf2(xa, xb) =

(
λ

4π

)na
2
∫
Rna

f2(xa, xb)f1 (ya, xb) e
−λ4 |xa−ya|

2

dya

so that

|f1,λf2|(xa, xb) ≤
(
λ

4π

)na
2
∫
|xa−ya|≥d

|f2(xa, xb)f1 (ya, xb) |e−
λ
4 |xa−ya|

2

dya

≤ ‖f2‖L∞(Rn)

(
λ

4π

)na
2 (

1|·|≥de
−λ4 |·|

2

∗Rna |f1|(·, xb)
)

(xa).

As a consequence, using the Young inequality, we have

‖f1,λf2‖L2 ≤ ‖f2‖L∞(Rn)

(
λ

4π

)na
2 ∥∥∥1|·|≥de−λ4 |·|2∥∥∥

L1(Rna )
‖f1‖L2(Rn),

and, using (2.5), we obtain

‖f1,λf2‖L2 ≤ Ce−dλ‖f2‖L∞(Rn)‖f1‖L2(Rn),

which implies the result in the case k = 0. We obtain the case k > 0 by di�erentiating and applying the
same result (see e.g. the proof of Lemma 2.3).
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Lemma 2.5. Let ψ : Rn → R be a C∞ function, f1 ∈ C∞(R) with bounded derivatives and f2 ∈ C∞0 (Rn)
such that dist(supp(f1 ◦ ψ), supp(f2)) > 0 . Then, for all k ∈ N, there exist C, c > 0 such that for all
λ > 0, we have

‖f1,λ(ψ)f2‖Hk(Rn)→Hk(Rn) ≤ Ce
−cλ

Proof. We prove the estimate ‖f1,λ(ψ)f2‖L∞(Rn) ≤ Ce
−cλ which implies the result in the case k = 0. We

obtain the case k > 0 by di�erentiating and applying the same result (see e.g. the proof of Lemma 2.3).
Since f2 ∈ C∞0 (Rn), the set K := ψ(supp(f2)) = {ψ(x);x ∈ supp(f2)} is a compact set of R. Moreover,

the assumption dist(supp(f1(ψ)), supp(f2)) > 0 implies that dist(supp(f1),K) > 0. Indeed, otherwise, we
would have supp(f1) ∩ ψ(supp(f2)) 6= ∅: taking t in this intersection, there would be x ∈ supp(f2) such
that ψ(x) = t ∈ supp(f1), i.e. x ∈ supp(f1(ψ)), which contradicts the assumption. Now, note that
x ∈ supp(f2) implies that ψ(x) ∈ K, so that we have the pointwise estimate |f2| ≤ ‖f2‖L∞1K ◦ ψ on Rn.
As a consequence, we have

‖f1,λ(ψ)f2‖L∞(Rn) ≤ C ‖f1,λ(ψ)1K(ψ)‖L∞(Rn) ≤ C ‖f1,λ1K‖L∞(R) ≤ Ce
−cλ,

where we have used Lemma 2.3 together with dist(supp(f1),K) > 0.

Lemma 2.6. Let f1, f2 ∈ C∞0 (Rn) such that f1 = 1 in a neighborhood of supp(f2). Then for all k ∈ N
there exist C, c > 0 such that for all λ > 0, and all u ∈ Hk(Rn), we have

‖f2,λ∂
αu‖0 ≤ C ‖f1,λu‖k + Ce−cλ ‖u‖k , for all α such that |α| ≤ k;

‖f2,λu‖k ≤ C ‖f1,λu‖k + Ce−cλ ‖u‖k .

Proof. Let d = dist(supp(f2), supp(1− f1)) > 0. Thanks to the �rst item of Lemma 2.3, we have∥∥f2,λ1Vois(supp(f2),d/3)c∂
αu
∥∥

0
≤ Ce−cλ ‖u‖k .

Concerning the other term, we use again Lemma 2.3 applied to 1Vois(supp(f2),d/3) and some ∂α(1 − f1)
(using ∂α(f1,λ) = (∂αf1)λ), to obtain∥∥f2,λ1Vois(supp(f2),d/3)∂

αu
∥∥

0
≤

∥∥f2,λ1Vois(supp(f2),d/3)∂
α(f1,λu)

∥∥
0

+
∥∥f2,λ1Vois(supp(f2),d/3)∂

α((1− f1,λ)u)
∥∥

0

≤
∥∥f2,λ1Vois(supp(f2),d/3)∂

α(f1,λu)
∥∥

0
+ Ce−cλ ‖u‖k .

Writing then ∥∥f2,λ1Vois(supp(f2),d/3)∂
α(f1,λu)

∥∥
0
≤ C ‖∂α(f1,λu)‖0 ≤ C ‖f1,λu‖k

concludes the proof of the �rst estimate of the Lemma.

The second inequality follows from noticing that ∂α(f2,λu) is a sum of terms of the form (∂βf2)λ∂
α−βu

for which we can apply the �rst part of the Lemma.

Lemma 2.7. Assume m1,m2 ∈ L∞(Rna) are bounded by 1, and satisfy dist(supp(m1), supp(m2)) ≥ d > 0.
Then, there exists C > 0 such that for all f ∈ L∞(Rnb ;L∞(Rna)) satisfying Fa(f) ∈ L∞(Rnb ;L1(Rna))
and all µ, λ > 0, we have

‖m1,λ(Da/µ)f(x)m2,λ(Da/µ)‖L2(Rn)→L2(Rn) ≤ ‖Fa(f)‖L∞xbL1(|ξa|≥dµ/3) + Ce−cλ ‖Fa(f)‖L∞(Rnb ;L1(Rna ))

and

‖m1,λ(Da/µ)f(x)m2(Da/µ)‖L2(Rn)→L2(Rn) ≤ ‖Fa(f)‖L∞xbL1(|ξa|≥dµ/3) + Ce−cλ ‖Fa(f)‖L∞(Rnb ;L1(Rna ))
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Proof. We begin with the �rst estimate, the second one being simpler to handle. We denote mµ
j,λ(ξa) =

mj,λ(ξa/µ) for j = 1, 2, and, to lighten the notation, set f̂ = Fa(f) (in the proof only). We set fL =

1|Da|≤dµ/3f (that is f̂L(ξ) = 1|ξa|≤dµ/3f̂(ξ)) and fH = 1|Da|≥dµ/3f . We �rst have∥∥∥mµ
1,λ(Da)fH(x)mµ

2,λ(Da)
∥∥∥
L2→L2

≤ ‖fH‖L∞(Rn) ≤
∥∥∥f̂H∥∥∥

L∞(Rnb ;L1(Rna ))
≤
∥∥∥f̂∥∥∥

L∞xb
L1(|ξa|≥dµ/3)

.

Then, it remains to estimate
∥∥∥mµ

1,λ(Da)fL(x)mµ
2,λ(Da)

∥∥∥
L2→L2

. We work in the Fourier domain: for

u ∈ L2(Rn), we have

Fa
(
mµ

1,λ(Da)fL(x)mµ
2,λ(Da)u

)
(ξa, xb) = mµ

1,λ(ξa)
[
f̂L(ξa, xb) ∗

[
mµ

2,λ(ξa)û(ξa, xb)
]]
,

where ∗ denotes the convolution in the variable ξa only. Now, we set m̃1 = 1Vois(supp(m1),d/3) and m̃2 =
1Vois(supp(m2),d/3), satisfying ‖m̃j‖L∞ ≤ 1 and

dist(supp(m̃1), supp(m̃2)) ≥ d/3.

We write

mµ
1,λ(ξa)

[
f̂L(ξa, xb) ∗ (mµ2, λ(ξa)û(ξa, xb))

]
= Y1 + Y2 + Y3,

with

Y1 = m̃µ
1m

µ
1,λ(ξa)

[
f̂L(ξa, xb) ∗

(
m̃µ

2m
µ
2,λ(ξa)û(ξa, xb)

)]
Y2 = (1− m̃1,µ)mµ

1,λ(ξa)
[
f̂L(ξa, xb) ∗

(
m̃µ

2m
µ
2,λ(ξa)û(ξa, xb)

)]
Y3 = mµ

1,λ(ξa)
[
f̂L(ξa, xb) ∗

(
(1− m̃µ

2 )mµ
2,λ(ξa)û(ξa, xb)

)]
.

The term Y1 vanishes since m̃µ
2m

µ
2,λ(ξa)u(ξa, xb) is supported in ξa/µ ∈ Vois(supp(m2), d/3); hence,

using that supp(f̂L) ⊂ {|ξa|/µ ≤ d/3} the convolution
[
f̂L(ξa, xb) ∗

(
m̃µ

2m
µ
2,λ(ξa)u(ξa, xb)

)]
is sup-

ported in ξa/µ ∈ Vois(supp(m2), 2d/3) which does not intersect the support (in ξa/µ) of m̃µ
1 that is

Vois(supp(m1), d/3).

Concerning the term Y2, Lemma 2.3 implies
∥∥∥(1− m̃µ

1 )mµ
1,λ

∥∥∥
L∞ξa

≤ Ce−cλ. This, together with the

Young inequality in the variable ξa and the uniform boundedness of m̃µ
2m

µ
2,λ, yields∥∥∥(1− m̃µ

1 )mµ
1,λ(ξa)

[
f̂L(ξa, xb) ∗

(
m̃µ

2m
µ
2,λ(ξa)û(ξa, xb)

)]∥∥∥
L2(Rn)

≤
∥∥∥(1− m̃µ

1 )mµ
1,λ

∥∥∥
L∞ξa

∥∥∥f̂L∥∥∥
L∞xb

L1
ξa

‖Fa(u)‖L2(Rna×Rnb )

≤ Ce−cλ
∥∥∥f̂∥∥∥

L∞xb
L1
ξa

‖u‖L2(Rn) .

The term Y3 is treated similarly and the proof is complete.

The second estimate of the Lemma follows the same proof and is actually simpler because the term
(1− m̃µ

2 )mµ
2 is zero.

Lemma 2.8. Assume f1, f2 ∈ L∞(Rn) are bounded by 1, and satisfy dist(supp(f1), supp(f2)) ≥ d > 0.
Then, there exists C > 0 such that for all m ∈ L∞(Rna) satisfying m̂ ∈ L1(Rna) and all λ > 0, we have

‖f1,λ(x)m(Da)f2,λ(x)‖L2(Rn)→L2(Rn) ≤ ‖m̂‖L1(|ηa|≥d/3) + Ce−cλ ‖m̂‖L1(Rna )

and

‖f1,λ(x)m(Da)f2(x)‖L2(Rn)→L2(Rn) ≤ ‖m̂‖L1(|ηa|≥d/3) + Ce−cλ ‖m̂‖L1(Rna ) .
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Proof. This is essentially the same proof as the previous Lemma except that we have to be careful that
the functions fi depend on all variables, while m only depends on the variable xa ∈ Rna . Again, we set
mL = 1|Da|≤d/3m (that is m̂L(ηa) = 1|ηa|≤d/3m̂(ηa)) and mH = 1|Da|≥d/3m. We �rst have

‖f1,λ(x)mH(Da)f2,λ(x)‖L2(Rn)→L2(Rn) ≤ ‖mH(Da)‖L2(Rn)→L2(Rn)

≤ ‖mH‖L∞(Rna ) ≤ ‖m̂H‖L1(Rna ) ≤ ‖m̂‖L1(|ηa|≥d/3) .

Concerning the second term, and denoting m̌L = F−1
a (mL), i.e. m̌L(ηa) = m̂L(−ηa), we have

f1,λ(x)mL(Da)f2,λ(x)u = f1,λ(x) m̌L ∗Rna
(
f2,λ(·, xb)u(·, xb)

)
.

We then remark that we can �nish the proof as in the previous Lemma: introducing f̃j := 1Vois(supp(fj),d/3),
j = 1, 2, we notice that we have

supp
(
m̌L ∗Rna

[
f̃2f2,λu

] )
⊂ Vois(supp(f2), d/3) + {(xa, 0), |xa| ≤ d/3} ⊂ Vois(supp(f2), 2d/3).

Moreover, Lemma 2.3 still yields∥∥∥(1− f̃j)fj,λ
∥∥∥
L∞(Rn)

≤ Ce−cλ, j = 1, 2,

so that the proof then follows exactly that of Lemma 2.7. We obtain the second inequality similarly.

Lemma 2.9. Let k ∈ N and f ∈ C∞0 (Rn). Then, there exist C, c such that, for any λ, µ > 0, we have∥∥∥Mµ
λ fλ(1−M2µ

λ )
∥∥∥
Hk(Rn)→Hk(Rn)

≤ Ce−c
µ2

λ + Ce−cλ;∥∥∥(1−M2µ
λ )fλM

µ
λ

∥∥∥
Hk(Rn)→Hk(Rn)

≤ Ce−c
µ2

λ + Ce−cλ.

Proof. Note �rst that Fa(∂αxa∂
β
xb
fλ)(ξa, xb) = (iξa)αe−

|ξa|2
λ ∂βxbFa(f)(ξa, xb). Hence, for k = 0, the result is

a direct consequence of (the �rst estimate in) Lemma 2.7. Note that we also use the fact that (1−m)λ =
1−mλ.

For k ≥ 1, the proof proceeds by induction, noticing that

∇
[
(1−M2µ

λ )fλM
µ
λu
]

= (1−M2µ
λ )(∇f)λM

µ
λu+ (1−M2µ

λ )fλM
µ
λ∇u

(see e.g. the proof of Lemma 2.3).

Lemma 2.10. Let f1 and f2 ∈ C∞(Rn) bounded as well as all their derivatives, with
dist(supp(f1), supp(f2)) ≥ d > 0. Then for every k ∈ N, there exist C, c > 0 such that for all µ > 0 and
λ > 0, we have

‖f1,λM
µ
λ f2,λ‖Hk(Rn)→Hk(Rn)

≤ Ce−c
µ2

λ + Ce−cλ, ‖f1,λM
µ
λ f2‖Hk(Rn)→Hk(Rn)

≤ Ce−c
µ2

λ + Ce−cλ.

Proof. We �rst prove both estimates for k = 0, by using Lemma 2.8 with m replaced by mb = mλ

(
·
µ

)
.

The Fourier transform of mb is given by

m̂b(ηa) = µnaFa(mλ)(µηa) = µnae−
|ηa|2µ2

λ m̂ (ηaµ) .

As a consequence, we have

‖m̂b‖L1(|ηa|≥d/3) ≤ e
− d

2µ2

9λ ‖m̂‖L1(Rna )

and ‖m̂b‖L1(Rna ) ≤ ‖m̂‖L1(Rna ), so that

‖m̂b‖L1(|ηa|≥d/3) + Ce−cλ ‖m̂b‖L1(Rna ) ≤ Ce
− d

2µ2

9λ + Ce−cλ.
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Lemma 2.8 then yields the sought result in the case k = 0.
Again, for k ≥ 1, the result is proved by induction noticing that

∇ [f1,λM
µ
λ f2,λu] = (∇f1)λM

µ
λ f2,λu+ f1,λM

µ
λ (∇f2)λu+ f1,λM

µ
λ f2,λ∇u,

and using that the relative support properties of ∇fi are preserved (see e.g. the proof of Lemma 2.3).

Lemma 2.11. Let k ∈ N and let f ∈ C∞0 (Rn). Then there exist C, c > 0 such that for all µ > 0, λ > 0
and u ∈ Hk(Rn), we have

‖Mµ
λ fλu‖k ≤

∥∥∥fλM2µ
λ u

∥∥∥
k

+ C

(
e−c

µ2

λ + e−cλ
)
‖u‖k . (2.11)

Moreover, for any f1 ∈ C∞(Rn) bounded as well as all its derivatives, such that f1 = 1 on a neighborhood
of supp(f), for any k ∈ N, there exist C, c > 0 such that for all µ > 0, λ > 0 and u ∈ Hk(Rn), we have

‖fλMµ
λu‖k ≤ C ‖M

µ
λ f1,λu‖k + C

(
e−c

µ2

λ + e−cλ
)
‖u‖k . (2.12)

Proof. We write

‖Mµ
λ fλu‖k ≤

∥∥∥Mµ
λ fλM

2µ
λ u

∥∥∥
k

+
∥∥∥Mµ

λ fλ(1−M2µ
λ )u

∥∥∥
k
.

According to Lemma 2.9, we �rst have
∥∥∥Mµ

λ fλ(1−M2µ
λ )u

∥∥∥
k
≤ C

(
e−c

µ2

λ + e−cλ
)
‖u‖k. The �rst term is

simply estimated by
∥∥∥Mµ

λ fλM
2µ
λ u

∥∥∥
k
≤
∥∥∥fλM2µ

λ u
∥∥∥
k
, which proves (2.11).

Concerning the second part of the Lemma, we write

‖fλMµ
λu‖k ≤ ‖fλM

µ
λ f1,λu‖k + ‖fλMµ

λ (1− f1)λu‖k .

For the �rst term, we only have to remark that ‖fλMµ
λ f1,λu‖k ≤ C ‖Mµ

λ f1,λu‖k uniformly in λ. Then,
using the assumption dist(supp(f), supp(1− f1)) > 0, Lemma 2.10 applies and yields

‖fλMµ
λ (1− f1)λu‖k ≤ C

(
e−c

µ2

λ + e−cλ
)
‖u‖k ,

which eventually proves (2.12).

Lemma 2.12. Let k ∈ N and f ∈ C∞0 (Rn). Assume supp(f) ⊂
⋃
i∈I Ui where (Ui)i∈I is a �nite family

of bounded open sets. Let bj ∈ C∞0 (Rn) such that bj = 1 on a neighborhood of Ui. Then, for any k ∈ N,
there exist C, c > 0 such that for all µ > 0, λ > 0 and u ∈ Hk(Rn), we have

‖Mµ
λ fλu‖k ≤ C

∑
i

∥∥∥M2µ
λ (bi)λu

∥∥∥
k

+ C

(
e−c

µ2

λ + e−cλ
)
‖u‖k .

Proof. Applying the �rst item of Lemma 2.11 to f , we obtain

‖Mµ
λ fλu‖k ≤

∥∥∥fλM2µ
λ u

∥∥∥
k

+ C

(
e−c

µ2

λ + e−cλ
)
‖u‖k . (2.13)

Let now (fi)i∈I be a smooth partition of unity of a neighborhood of supp(f) such that∑
i∈I

fi = 1 in a neighborhood of supp(f), supp(fi) ⊂ Ui; 0 ≤ fi ≤ 1.

Note that in particular, bi = 1 in a neighborhood of supp(fi). Using the second estimate of Lemma 2.6,
we have∥∥∥fλM2µ

λ u
∥∥∥
k
≤ C

∥∥∥∥∥∑
i

(fi)λM
2µ
λ u

∥∥∥∥∥
k

+ Ce−cλ
∥∥∥M2µ

λ u
∥∥∥
k
≤ C

∑
i

∥∥∥(fi)λM
2µ
λ u

∥∥∥
k

+ Ce−cλ ‖u‖k . (2.14)
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Using the second estimate in Lemma 2.11, we then obtain∥∥∥(fi)λM
2µ
λ u

∥∥∥
k
≤ C

∥∥∥M2µ
λ (bi)λu

∥∥∥
k

+ C

(
e−c

µ2

λ + e−cλ
)
‖u‖k ,

which, combined with (2.13) and (2.14) concludes the proof of the Lemma.

Lemma 2.13. There exists C > 0 such that for all D ∈ R and χ̃ ∈ L∞(R) such that supp(χ̃) ⊂ (−∞, D],
for all λ, τ > 0, we have

|eτzχ̃λ(z)| ≤ C ‖χ̃‖L∞(R) 〈λ〉
1/2

e
λ
4 | Im(z)|2eDτe

τ2

λ , for all z ∈ C;

∥∥eτψχ̃λ(ψ)
∥∥
L∞(Rn)

≤ C ‖χ̃‖L∞(R) 〈λ〉
1/2

eDτe
τ2

λ , for all ψ ∈ C0(Rn;R).

Proof. First, according to (2.9), we have the estimate

|χ̃λ(z)| ≤ C ‖χ̃‖L∞(R) λ
1/2e

λ
4 | Im(z)|2e−

λ
4 dist(Re(z),supp χ̃)2

, for all z ∈ C.

Now, if Re(z) ≤ D, we use the bound |eτz| ≤ eDτ , which yields |eτzχ̃λ(z)| ≤ ‖χ̃‖L∞(R) e
λ
4 | Im(z)|2eDτ .

Next, for Re(z) ≥ D, we have dist(Re(z), supp χ̃) ≥ Re(z)−D ≥ 0, and

|eτzχ̃λ(z)| ≤ eτ Re(z)C ‖χ̃‖L∞(R) 〈λ〉
1/2

e
λ
4 | Im(z)|2e−

λ
4 (Re(z)−D)2

≤ C ‖χ̃‖L∞(R) 〈λ〉
1/2

e
λ
4 | Im(z)|2 sup

s≥D

(
eτse−

λ
4 (D−s)2

)
.

Finally, we have

sup
s≥D

(
eτse−

λ
4 (D−s)2

)
= sup

t≥0

(
eτ(D+t)e−

λ
4 t

2
)

= eτD sup
t≥0

(
et(τ−

λ
4 t)
)

= eDτe
τ2

λ ,

which concludes the proof of the �rst estimate of the lemma. The second estimate of the lemma follows
from the �rst estimate for z = s ∈ R combined with∥∥eτψχ̃λ(ψ)

∥∥
L∞(Rn)

= ‖eτsχ̃λ(s)‖L∞(R) .

Lemma 2.14. There exist C, c such that, for any ε, τ, λ, µ,> 0, for any k ∈ N, we have∥∥∥∥e− ε|Da|22τ (1−Mµ
λ )

∥∥∥∥
Hk(Rn)→Hk(Rn)

≤ e−
εµ2

8τ + Ce−cλ.

Proof. Since the operator e−
ε|Da|2

2τ (1−Mµ
λ ) is a Fourier multiplier, we are left to estimate

supξa∈Rna |e
− ε|ξa|

2

2τ (1 − mλ( ξaµ ))|. Recall that m ∈ C∞0 (Rna ; [0, 1]) is a radial function that we identify

below with a function m = m(s) ∈ C∞0 (R+), satisfying supp(m) ⊂ [0, 1) and m = 1 on [0, 3/4). We
distinguish the following two cases:

� If |s| ≤ µ/2, Lemma 2.3 applied with f1 = (1 − mλ(s)) and f2 = 1|s|≤1/2 implies |1|s|≤µ/2(1 −
mλ( sµ ))| ≤ Ce−cλ uniformly with respect to λ, µ > 0;

� If |s| ≥ µ/2, we simply have |1|s|≥µ/2e−
ε|s|2
2τ (1−mλ( sµ ))| ≤ e−

εµ2

8τ .

Combining these two estimates concludes the proof of the lemma.
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2.4.2 Some more involved preliminary estimates

We will need the estimate of the following Lemma.

Lemma 2.15. Let ψ be a smooth real valued function on Rn, which is a quadratic polynomial in the
variable xa ∈ Rna , let Rσ > 0, and σ ∈ C∞c (BRn(0, Rσ)). Let χ ∈ C∞0 (R) with supp(χ) ⊂ (−∞, 1), and
χ̃ ∈ C∞(R) such that χ̃ = 1 on a neighborhood of (−∞, 3

2 ), supp(χ̃) ⊂ (−∞, 2), and set χδ(s) := χ(s/δ),

χ̃δ(s) := χ̃(s/δ). Let f ∈ C∞0 (Rn) be real analytic in the variable xa in a neighborhood of BRna (0, Rσ) and
de�ne

g = eτψχδ,λ(ψ)χ̃δ(ψ)fσλ ∈ C∞0 (Rn).

Then, there exists c0, c1 > 0 such that for all N ∈ N and β ∈ Nnb , there exist C > 0 such that for all
δ > 0, there is ε0 > 0, so that for any λ ≥ 1, τ > 0, and 0 < ε < ε0, we have

|∂βxbFa(g)(ξa, xb)| ≤ C 〈ξa〉−N (τ + δ−1 + 1)N+|β|λ(na+1)/2eδτ

×
(
e
τ2

λ ec1ε
2λe−c0ε|ξa| + e

τ2

λ e−c0λ + ec1λε
2

eδτe−c0δ
2λ
)
.

In particular, for all δ > 0, N ∈ N, β ∈ Nnb , there is C, c, ε0 > 0, so that for any λ, τ ≥ 1, and 0 < ε < ε0,
we have

|∂βxbFa(g)(ξa, xb)| ≤ C 〈ξa〉−N τN+|β|λ(na+1)/2eδτe
τ2

λ

(
eCε

2λe−cε|ξa| + eδτe−cλ
)
.

Proof of Lemma 2.15. First, we prove the result for N = 0 and β = 0 (the other cases shall be obtained
by di�erentiating g).

Let us denote by R′f > 0 a real number such that supp(f) ⊂ B(0, R′f ) and Kb ⊂ BRnb (0, R′f ) the
projection in the variable xb of the support of f . Kb is compact since f has compact support. The function f
being real analytic in the variable xa in a neighborhood of the compact set BRna (0, Rσ), there exists Rf > 0
such that f can be extended in an analytic way in a neighborhood of za ∈ BRna (0, Rσ+Rf )+iBRna (0, Rf ),
uniformly for xb ∈ Kb. Note that za denotes the complex variable associated to xa, and we can also impose
that 0 < Rσ +Rf < R′f .

Notice also that we can extend χ̃ by 1 (hence analytically) on a neighborhood of (−∞, 3
2 )+iR. Moreover,

since ψ is quadratic in xa, there exists ε0 = ε0(δ) > 0 such that(
ψ(Re(za), xb) ≤

4

3
δ <

3

2
δ, | Im(za)| ≤ ε0Rf , xb ∈ Kb

)
=⇒ Re(ψ(za, xb)) ≤

3

2
δ, (2.15)(

ψ(Re(za), xb) =
4

3
δ, | Im(za)| ≤ ε0Rf , xb ∈ Kb

)
=⇒ Re(ψ(za, xb)) ≥

5

4
δ. (2.16)

In particular, χ̃(ψ(za, xb)) = 1 on(
ψ(Re(za), xb) ≤

4

3
δ <

3

2
δ, | Im(za)| ≤ ε0Rf , xb ∈ Kb

)
.

As a consequence, given xb ∈ Rnb , the function

za 7→ χδ,λ(ψ(za, xb))χ̃δ(ψ(za, xb))

is an analytic function on a neighborhood of {xa ∈ Rna , ψ(xa, xb) ≤ 4
3δ} + iBRna (0, ε0Rf ). Hence,

za 7→ g(za, xb) is holomorphic in a neighborhood of

Axb(ε0) :=

(
{ψ(xa, xb) ≤

4

3
δ} ∩BRna (0, Rσ +Rf )

)
+ iBRna (0, ε0Rf ).

The plan of the proof is �rst to estimate g in the complex domain, and then bound its Fourier transform
using a complex deformation. We use the analyticity inside of Axb(ε0) and the smallness elsewhere on the
real domain.
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Step 1: uniform estimates on the function g. We estimate separately fσλ and eτψχδ,λ(ψ)χ̃δ(ψ),
and then deduce estimates for g.

According to the basic estimate (2.10) for σλ, we have, uniformly for xb ∈ Rnb

|(fσλ)(za, xb)| ≤ Cλna/2e
λ
4 | Im za|2e−

λ
4 dist(Re za,suppσ(·,xb))2

, za ∈ BRna (0, Rσ +Rf ) + iBRna (0, Rf ),

where the constant C depends only on ‖f‖L∞ (on the previous complex domain), ‖σ‖L∞ and R′f .
In particular, we have for any ε ∈ [0, 1],

|(fσλ)(za, xb)| ≤ Cλna/2e
λ
4 ε

2R2
f , za ∈ BRna (0, Rσ +Rf ) + iBRna (0, εRf ), xb ∈ Rnb . (2.17)

We now notice that

dist(xa, suppσ(·, xb)) ≥ dist((xa, xb), B(0, Rσ)) ≥ |xa| −Rσ, for |xa| ≥ Rσ +Rf . (2.18)

As a �rst consequence, we have dist(xa, suppσ(·, xb)) ≥ Rf if |xa| = Rσ +Rf , so that for any
ε ∈ [0, 1], we obtain, uniformly for xb ∈ Rnb

|(fσλ)(za, xb)| ≤ Cλna/2e
λ
4 ε

2R2
f e−

λ
4R

2
f ≤ Cλna/2eλ4 (ε2−1)R2

f , (2.19)

| Im(za)| ≤ εRf , |Re(za)| = Rσ +Rf

Using now the estimate (2.10) for σλ on the real domain together with the boundedness of f and (2.18),
we obtain, uniformly for xb ∈ Rnb

|(fσλ)(xa, xb)| ≤ Cλna/2e−
λ
4 dist(xa,suppσ(·,xb))2

≤ Cλna/2e−
λ
4 (|xa|−Rσ)2

, xa ∈ Rna , |xa| ≥ Rσ +Rf . (2.20)

We now estimate the term eτψχδ,λ(ψ)χ̃δ(ψ) in parts of the complex domain.
First, on the real domain, we have

|eτsχδ,λ(s)χ̃δ(s)| ≤ e2δτ |χδ,λ(s)χ̃δ(s)| ≤ Cλ
1
2 e2δτe−cδ

2λ, s ≥ 4

3
δ,

after having used (2.6), where c is a numerical constant. As a consequence, we obtain

|eτψ(xa,xb)χδ,λ(ψ(xa, xb))χ̃δ(ψ(za, xb))| ≤ Cλ
1
2 e2δτe−cδ

2λ, if ψ(xa, xb) ≥
4

3
δ. (2.21)

Next, for z ∈ C, using Lemma 2.13, there is C > 0 such that for all δ ∈ R and all λ ≥ 1 , τ > 0, we have

|eτzχδ,λ(z)| ≤ Cλ1/2e
λ
4 (Im z)2

eδτe
τ2

λ , for all z ∈ C. (2.22)

Using that ψ is a quadratic polynomial in the variable xa, with real coe�cients, we have

| Im(ψ(za, xb))| ≤ C|Re(za)|| Im(za)|+ C(Kb)| Im(za)|, (za, xb) ∈ Cna ×Kb,

where we have used the fact thatKb is compact. As a consequence, there is a constant C0 = C0(ψ,Rσ, Rf ,Kb) >
0 such that

| Im(ψ(za, xb))| ≤ εC0, for za ∈ BRna (0, Rσ +Rf ) + iBRna (0, εRf ), xb ∈ Kb.

Hence, using (2.22), we obtain, for all ε ∈ (0, ε0)

|eτψ(za,xb)χδ,λ(ψ(za, xb))χ̃δ(ψ(za, xb))| ≤ Cλ1/2eλ
C2

0ε
2

4 eδτe
τ2

λ , xb ∈ Kb, za ∈ Axb(ε). (2.23)

According to (2.9), we also have

|χδ,λ(z)| ≤ Cλ
1
2 e

λ
4 | Im(z)|2e−

λ
4 dist(Re(z),supp(χδ))

2

≤ Cλ 1
2 e

λ
4 | Im(z)|2e−cδ

2λ, on Re(z) ≥ 5

4
δ,
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where c is a numerical constant. Using (2.16), this yields

|χδ,λ(ψ(za, xb))| ≤ Cλ
1
2 e

C2
0ε

2

4 λe−cδ
2λ, xb ∈ Kb, za ∈ Axb(ε), ψ(Re(za), xb) =

4

3
δ,

and, with (2.15), this implies

|eτψ(za,xb)χδ,λ(ψ(za, xb))χ̃δ(ψ(za, xb))| ≤ Cλ1/2e
C2

0ε
2

4 λe
3
2 δτe−cδ

2λ,

xb ∈ Kb, za ∈ Axb(ε), ψ(Re(za), xb) =
4

3
δ. (2.24)

Let us �nally gather all estimates obtained on the function g. Multiplying (2.23) with (2.17) and (2.19),
there is a constant C1 > 0 independent on λ, µ, τ , δ, ε such that, for any ε ∈ (0, ε0),

|g(za, xb)| ≤ Cλ(na+1)/2eC1λε
2

eδτe
τ2

λ , xb ∈ Kb, za ∈ Axb(ε), (2.25)

|g(za, xb)| ≤ Cλ(na+1)/2eλ(−
R2
f

4 +C1ε
2)eδτe

τ2

λ , xb ∈ Kb, za ∈ Axb(ε), |Re(za)| = Rσ +Rf . (2.26)

Next, multiplying (2.24) and (2.17) we also have

|g(za, xb)| ≤ Cλ(na+1)/2eC1ε
2λe

3
2 δτe−cδ

2λ, xb ∈ Kb, za ∈ Axb(ε), ψ(Re(za), xb) =
4

3
δ. (2.27)

Combining (2.20) with (2.22), and rewriting (2.21), we also have on the real domain

|g(xa, xb)| ≤ Cλ(na+1)/2eδτe
τ2

λ e−
λ
4 (|xa|−Rσ)2

, xa ∈ Rna , |xa| ≥ Rσ +Rf , xb ∈ Rnb , (2.28)

|g(xa, xb)| ≤ Cλ
1
2 e2δτe−cδ

2λ, xa ∈ Rna , xb ∈ Rnb , ψ(xa, xb) ≥
4

3
δ. (2.29)

Step 2: estimating the Fourier transform using a deformation of contour in the complex

domain. We now want to estimate Fa(g)(ξa, xb) uniformly with respect to xb. We split the integral as

Fa(g)(ξa, xb) =

∫
Rna

e−ixa·ξag(xa, xb)dxa = I0 + I1 + I2,

with Ij = Ij(ξa, xb) de�ned by

I0 :=

∫
|xa|≤Rσ+Rf ,ψ(xa,xb)≤ 4

3 δ

, I1 :=

∫
|xa|≤Rσ+Rf ,ψ(xa,xb)>

4
3 δ

, I2 :=

∫
|xa|>Rσ+Rf

Using (2.28), we obtain, for all δ, τ > 0 and λ > 1,

|I2| ≤ Cλ(na+1)/2eδτe
τ2

λ

∫
|xa|≥Rσ+Rf

e−
λ
4 (|xa|−Rσ)2

dxa

≤ Cλ(na+1)/2eδτe
τ2

λ

∫ +∞

s=Rf

(s+Rσ)na−1e−
λ
4 s

2

≤ Cλ(na+1)/2eδτe
τ2

λ e−
R2
f

4 λ. (2.30)

Using (2.29), we obtain, for all δ, τ > 0 and λ > 1,

|I1| ≤ Cλ
1
2 e2δτe−cδ

2λ. (2.31)

We now want to estimate the integral I0(ξa, xb): we write xa = x1
ξa
|ξa| + x′a for x1 = xa · ξa

|ξa| and x′a
such that x′a · ξa = 0 and make the orthogonal change of coordinates to (x1, x

′
a) (preserving the ball

BRna (0, Rσ +Rf )). This yields

I0(ξa, xb) =

∫
BRna (0,Rσ+Rf )∩{ψ(·,xb)≥ 4

3 δ}
e−ix1|ξa|g(x1, x

′
a)dx′adx1

=

∫
BRna−1 (0,Rσ+Rf )

Iξa,xb(x′a)dx′a,
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with Iξa,xb(x′a) =

∫
|x1|2≤(Rσ+Rf )2−|x′a|2,ψ(x1,x′a,xb)≤ 4

3 δ

e−ix1|ξa|g(x1, x
′
a)dx1,

so that
|I0(ξa, xb)| ≤ C sup

x′a∈BRna−1 (0,Rσ+Rf )

|Iξa,xb(x′a)|.

Hence, it only remains to estimate |Iξa,xb(x′a)| uniformly. Now, g being analytic in a neighborhood of
Axb(ε0), and given any x′a ∈ BRna−1(0, Rσ +Rf ), the function z1 7→ e−iz1|ξa|g(z1, x

′
a) is holomorphic in a

neighborhood of the set

|Re(z1)|2 ≤ (Rσ +Rf )2 − |x′a|2, ψ(Re(z1), x′a, xb) ≤
4

3
δ, | Im(z1)| ≤ εRf ,

for ε ∈ (0, ε0).
Now, we have

{x1 ∈ R, |x1|2 ≤ (Rσ +Rf )2 − |x′a|2, ψ(x1, x
′
a, xb) ≤

4

3
δ} =

⋃
k∈J

[α1
k, α

2
k],

where J = J(x′a, xb) has 0, 1 or 2 elements since ψ is quadratic. Moreover, we have

either |αik|2 + |x′a|2 = (Rσ +Rf )2, or ψ(αik, x
′
a, xb) =

4

3
δ (2.32)

for k ∈ J and i = 1, 2, together with

Iξa,xb(x′a) =
∑
k∈J

∫
[α1
k,α

2
k]

e−ix1|ξa|g(x1, x
′
a)dx1.

To estimate Iξa,xb(x′a), we now make a change of contour in the complex variable z1 as follows:∫
[α1
k,α

2
k]

e−ix1|ξa|g(x1, x
′
a)dx1 = IL + IT + IR, with I? =

∫
γ?

e−iz1|ξa|g(z1, x
′
a)dz1, for ? = L, T,R,

and

γL = [α1
k, α

1
k − iεRf ],

γT = [α1
k − iεRf , α2

k − iεRf ],

γR = [α2
k − iεRf , α2

k],

are three oriented segments in C (see Figure 2). We have

α1
k − iεRf

γR

Im(z1)

α2
k − iεRf

Re(z1)

α1
k

γT

α2
k

γL

0

Figure 2: Oriented contours

|I?| ≤
∫
γ?

eIm(z1)|ξa||g(z1, x
′
a)|dz1, for ? = L, T,R.
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On γL and γR, using (2.32) and Im(z1) ≤ 0, we can use either estimate (2.26) or (2.27) and obtain,
uniformly in x′a, ξa, xb, δ, τ > 0, λ > 1, and ε ∈ (0, ε0(δ))

|IL|+ |IR| ≤ Cελ(na+1)/2eC1λε
2

(
eδτe−λ

R2
f

4 e
τ2

λ + e
3
2 δτe−cδ

2λ

)
.

On γT , we have (z1, x
′
a) ∈ Axb(ε) and Im(z1) = −εRf , and thus using (2.25), we obtain, uniformly in

x′a, ξa, xb, δ, τ > 0, λ > 1, and ε ∈ (0, ε0(δ)),

|IT | ≤ Cλ(na+1)/2eC1λε
2

eδτe
τ2

λ e−εRf |ξa|.

Combining the estimates on IL, IR, IT now proves that there is C > 0 such that for any ξa ∈ Rna , xb ∈ Rnb ,
δ, τ > 0, λ > 1, and ε ≤ min(ε0(δ),

Rf
2
√
C1

),

|I0| ≤ Cλ(na+1)/2eδτe
τ2

λ

(
eC1λε

2

e−εRf |ξa| + e−
R2
f

8 λ

)
+ Cλ(na+1)/2eC1λε

2

e
3
2 δτe−cδ

2λ,

which, in view of Estimate (2.30) and (2.31), implies the result for N = 0 and α = 0.

To obtain the result for N ∈ N and β ∈ Nnb , we notice that the functions gα,β = ∂αxa∂
β
xb
g can be written

as a �nite sum of terms that have the same form as the one of the assumption of the theorem with some
di�erent f , b and χδ (with the same support and analyticity properties) and with powers of τα

′
δ−β

′
for

|α′|+ |β′| ≤ |α|+ |β|. The constants in the exponentials do not depend on α, β since they are functions of
ψ,Rσ, Rf ,Kb only. Noting that (iξa)α∂βxbFa(g)(ξa, xb) = Fa(∂αxa∂

β
xb
g)(ξa, xb) �nally concludes the proof

of the lemma.

As a consequence of the previous result, we now have the following lemma.

Lemma 2.16. Under the assumptions of Lemma 2.15, we have the following. For all k ∈ N, δ > 0, there
exist N ∈ N, C, c0, ε0 > 0, such that for any λ, µ, τ ≥ 1 and 0 < ε < ε0, we have∥∥∥Mµ/2

λ g(1−Mµ
λ )
∥∥∥
Hk(Rn)→Hk(Rn)

≤ CτNλ(na+1)/2eδτe
τ2

λ

(
eCε

2λe−c0εµ + eδτe−c0λ
)
,∥∥∥(1−Mµ

λ )gM
µ/2
λ

∥∥∥
Hk(Rn)→Hk(Rn)

≤ CτNλ(na+1)/2eδτe
τ2

λ

(
eCε

2λe−c0εµ + eδτe−c0λ
)
.

The estimates of this lemma will only be used under the weaker form: for all c, δ > 0, k ∈ N, there
exist c0, C,N > 0 such that for any τ, µ ≥ 1 and c−1µ ≤ λ ≤ cµ, we have∥∥∥Mµ/2

λ g(1−Mµ
λ )
∥∥∥
Hk(Rn)→Hk(Rn)

≤ CτNe τ
2

λ e2δτe−c0µ, (2.33)

with the same estimate for the second term. It is obtained by taking ε su�ciently small in the regime
c−1µ ≤ λ ≤ cµ.

Proof. The two estimates are proved the same way, so we only prove the �rst one. First, Lemma 2.7 yields∥∥∥Mµ/2
λ g(1−Mµ

λ )
∥∥∥
Hk(Rn)→Hk(Rn)

≤
∑

|α|+|β|≤k

∥∥ξαa ∂βxbFa(g)
∥∥
L∞xb

L1(|ξa|≥dµ/3)
+ Ce−cλ

∥∥ξαa ∂βxbFa(g)
∥∥
L∞(Rnb ;L1(Rna ))

. (2.34)

Next, Lemma 2.15 with a N ∈ N large enough so that 〈ξa〉−(N+k)
is integrable on Rna yields∥∥∥Mµ/2

λ g(1−Mµ
λ )
∥∥∥
Hk(Rn)→Hk(Rn)

≤ CτN+kλ(na+1)/2eδτe
τ2

λ

(
ec1ε

2λe−c0εµ + eδτe−c0λ
)
,

which concludes the proof of the Lemma.
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3 The local estimate

The aim of this section is to prove the local quantitative uniqueness result, (analytically) localized in
frequency in the analytic variables.

In the following, we shall denote by

σR(x) := σ(R−1|x− x0|) with σ ∈ C∞(R) such that
σ = 1 in a neighborhood of ]−∞, 1], and σ = 0 in a neighborhood of [2,+∞[.

(3.1)

Our main local theorem is the following. See Figure 3 for the geometry of the theorem. An important
feature of this local result is that it can be iterated and hence propagated.

Theorem 3.1. Let x0 ∈ Ω ⊂ Rna ×Rnb and P be a partial di�erential operator on Ω of order m. Assume
that

� P is analytically principally normal operator in {ξa = 0} inside Ω (in the sense of De�nition 1.5);

� there is a function φ de�ned in a neighborhood of x0 such that φ(x0) = 0, and {φ = 0} is a C2

strongly pseudoconvex oriented surface in the sense of De�nition 1.6.

Then, there exists R0 > 0 such that for any R ∈ (0, R0), there exist r, ρ, τ̃0 > 0, for any ϑ ∈ C∞0 (Rn) such
that ϑ(x) = 1 on a neighborhood of {φ ≥ 2ρ} ∩ B(x0, 3R), for all c1, κ > 0 there exist C, κ′, β0 > 0 such
that for all β ≤ β0, we have∥∥Mβµ

c1µσr,c1µu
∥∥
m−1

≤ Ceκµ
(∥∥Mµ

c1µϑc1µu
∥∥
m−1

+ ‖Pu‖L2(B(x0,4R))

)
+ Ce−κ

′µ ‖u‖m−1 ,

for all µ ≥ τ̃0
β and u ∈ C∞0 (Rn).

Note that this local result contains in particular the unique continuation result for operators with
partially analytic coe�cients [Tat95, RZ98, Hör97, Tat99b] (which it is aimed to quantify). The lat-
ter is proved by letting µ → +∞ in the estimate (and controlling some error terms), yielding: Pu =
0 on B(x0, 4R)), u = 0 on supp(ϑ) =⇒ u = 0 on {σ = 1}.

This theorem allows to systematically quantify this local unique continuation result under partial
analyticity conditions (in a way that can be iterated/propagated). As such, it also allows in particular
to systematically quantify both the Hörmander and the Holmgren theorems (again, in a way that can be
iterated/propagated). Let us brie�y comment on these two extreme situations: na = 0 (Hörmander case)
and na = n (Holmgren case).

Remark 3.2. If na = 0, this inequality takes the form:

‖σru‖m−1 ≤ C
1

εκ/κ′

(
‖ϑu‖m−1 + ‖Pu‖L2(B(x0,4R))

)
+ Cε ‖u‖m−1 , for all ε ≤ ε0,

and hence

‖σru‖m−1 ≤ C
(
‖ϑu‖m−1 + ‖Pu‖L2(B(x0,4R))

)δ
‖u‖1−δm−1 , for some δ > 0,

which is an interpolation inequality of Lebeau-Robbiano type [LR95] (see also [Rob95]), and, as such,
propagates well. Here it quanti�es the general situation of the Hörmander theorem (see also [Bah87]).

If na = n, we here describe a systematic way to quantify the Holmgren Theorem, which propagates
well. See also [Joh60] for a local result and [Leb92] for a global result for waves.

Remark 3.3. The previous inequality can be written in the following way:
For all (D,µ, u) ∈ R+ × [ τ̃0β ,+∞)×Hm−1(Rn), satisfying∥∥Mµ

c1µϑc1µu
∥∥
m−1

≤ e−κµD

‖Pu‖L2(B(x0,4R)) ≤ e
−κµD,
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x0

{φ = 0}
∇φ

{φ = 2ρ}

B(x0, 3R)

B(x0, 4R)

∇φ(x0)

B(x0, r)

Figure 3: Geometry of the local uniqueness result.
Tlue striped region is the observation region (i.e. where ϑ = 1). The red striped region is the observed

region (i.e. where σr = 1).

we have ∥∥Mβµ
c1µσr,c1µu

∥∥
m−1

≤ C ′e−κ
′µ
(
D + ‖u‖m−1

)
.

This could certainly be written in the framework of propagation of (semiclassical, partially analytic)
microsupport with respect to the variable xa, see [Sjö82] or [Mar02, Section 3.2]. If na = n, it seems related
to microlocal proofs of Holmgren theorem and the propagation of the analytic wavefront set (see [Sjö82]).

The proof of Theorem 3.1 is divided in three steps, given in Sections 3.1, 3.2, and 3.3 respectively.

3.1 Step 1: Geometric setting

The following lemma is a re�ned version of [RZ98, Lemma 4.1 p514] or [Hör97, Lemmata 4.3 and 4.4].
Its proof essentially follows that of [RZ98, Lemma 4.1]. We state the geometric part for some balls not
necessary euclidian. This will be useful in the case of boundary where some change of variable are used.

Lemma 3.4. Let P be analytically principally normal in Ω ⊂ Rn, of order m and principal symbol p. Let
φ ∈ C2(Ω;R) and S = {φ = 0} be a C2 oriented hypersurface of Ω. Let x0 ∈ S ∩ Ω with ∇φ(x0) 6= 0.
Assume that S is strongly pseudoconvex in Ω×{ξa = 0} at x0 for P (in the sense of De�nition 1.6). Then,
there exists A > 0 such that the function

ψ(x) := (x− x0) · ∇φ(x0) +A((x− x0) · ∇xφ(x0))2 +
1

2
φ′′(x0)(x− x0, x− x0)− 1

A
|x− x0|2

satis�es

1. ψ(x0) = 0 , ∇xψ(x0) = ∇xφ(x0) ;
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2. ψ is strongly pseudoconvex in Ω ∩ {ξa = 0} at x0 for P (in the sense of De�nition 2.1).

3. Let N be a distance function locally equivalent to the euclidian distance. There exists R0 > 0, such
that for any R ∈ (0, R0), there exists η0 > 0 and for any 0 < η < η0, any η1, η2 > 0 there exist
ρ, r > 0 such that we have(

{φ ≤ ρ} ∩ {ψ ≥ −η} ∩BN (x0, R)
)
⊂ BN (x0, R8 ), (3.2)(

{ψ ≥ η1} ∩BN (x0, R)
)
⊂ {φ > ρ} , (3.3)

BN (x0, r) ⊂ {−η2 < ψ < η2}. (3.4)

Conditions (3.2)-(3.3)-(3.4) are illustrated on Figure 4.

{ψ = η1}

x0

B(x0, R8 )

{φ = ρ} {ψ = −η}{φ = 0}

B(x0, r)

∇φ(x0) = ∇ψ(x0)

∇φ
{ψ = 0}

Figure 4: Local geometry of the level sets of the convexi�ed function ψ (in the case N =euclidean distance)

Proof. The �rst item directly follows from the de�nition of ψ as a second order perturbation of the Taylor
expansion of φ at x0. The proof of the pseudoconvexity in Item 2 is very similar to [RZ98, Lemma 4.1]

or [Hör97, Lemma 7.4]. We sketch it for sake of completeness.
Let us compute Re {p, {p, ψ}}: we have

Re {p, {p, ψ}} = Re

(
∂2p

∂ξ∂x

[
∂p̄

∂ξ
;∇ψ

]
+ ψ′′xx

[
∂p̄

∂ξ
;
∂p

∂ξ

]
− ∂2p

∂ξ2

[
∂p̄

∂x
;∇ψ

])
.

Since ∇ψ(x0) = ∇ψ(x0), we have

Re {p, {p, ψ}} (x0, ξ) = Re {p, {p, φ}} (x0, ξ) + 2A

∣∣∣∣∇xφ(x0) · ∂p
∂ξ

(x0, ξ)

∣∣∣∣2 − 2

A

∣∣∣∣∂p∂ξ (x0, ξ)

∣∣∣∣2 .
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In this identity, all terms are homogeneous of order 2m − 2 in the variable ξ, so it is enough to prove
the estimate for ξ ∈ Sn−1 Hence, applying Lemma A.1 below on the compact set K = {ξ ∈ Sn−1, ξa =
0, p(x0, ξ) = 0}, together with the �rst part of the pseudoconvexity assumption yields for A large enough

Re {p, {p, ψ}} (x0, ξ) > 0, if p(x0, ξ) = 0 and ξa = 0, ξb 6= 0. (3.5)

For the second estimate, we compute

1

i
{pφ, pφ}(x, ξ) =

1

i

(
∂p̄

∂ξ
(x, ξ − iτ∇φ)

∂p

∂x
(x, ξ + iτ∇φ) + iτφ′′xx

[
∂p̄

∂ξ
(x, ξ − iτ∇φ);

∂p

∂ξ
(x, ξ + iτ∇φ)

])
−1

i

(
∂p̄

∂x
(x, ξ − iτ∇φ)

∂p

∂ξ
(x, ξ + iτ∇φ)− iτφ′′xx

[
∂p̄

∂ξ
(x, ξ − iτ∇φ);

∂p

∂ξ
(x, ξ + iτ∇φ)

])
= Cτ,φ,1(x, ξ) + Cτ,φ,2(x, ξ),

with

Cτ,φ,1(x, ξ) :=
1

i

(
∂p̄

∂ξ
(x, ζ̄)

∂p

∂x
(x, ζ)− ∂p̄

∂x
(x, ζ̄)

∂p

∂ξ
(x, ζ)

)
, Cτ,φ,2(x, ξ) := 2τφ′′xx

[
∂p̄

∂ξ
(x, ζ̄);

∂p

∂ξ
(x, ζ)

]
,

where we have denoted ζ = ξ+iτ∇φ(x). But, we notice that for �xed (x, ξ) (and when φ varies), Cτ,φ,1(x, ξ)
only depends on ∇φ(x), while Cτ,φ,2(x, ξ) is linear in φ′′xx(x0), once ∇φ(x0) is �xed. So, since ψ(x0) = 0 ,
∇ψ(x0) = ∇φ(x0), and ψ′′xx(x0) = φ′′xx(x0)+2At∇φ(x0)∇φ(x0)− 2

AId we have Cτ,φ,1(x0, ξ) = Cτ,ψ,1(x0, ξ),
i.e.

1

i
{pψ, pψ}(x0, ξ) = Cτ,φ,1(x0, ξ) + 4Aτ

∣∣∣∣∇xφ(x0) · ∂p
∂ξ

(x0, ζ)

∣∣∣∣2 − 4τ

A

∣∣∣∣∂p∂ξ (x0, ζ)

∣∣∣∣2 . (3.6)

In identity (3.6), all terms are homogeneous of order 2m− 1 in the variables (τ, ξ), so it is enough to prove
the estimate for (τ, ξ) ∈ Sn, τ > 0. We now want this to be positive on the set {(τ, ξ) ∈ Sn, τ > 0, ξa =
0, pφ(x0, ξ) = 0} = {(τ, ξ) ∈ Sn, τ > 0, ξa = 0, pψ(x0, ξ) = 0}.

For this, notice �rst that ∂
∂τ

1
i {pφ, pφ}

∣∣
τ=0

= 2 Re {p, {p, φ}}. Hence, we can write

1

i
{pφ, pφ} =

1

i
{p, p}+ 2τ Re {p, {p, φ}}+O(τ2), τ → 0+, (3.7)

with O(τ2) uniform on (τ, ξ) ∈ Sn.
Moreover, by Taylor formula, we have pφ = p + iτ∇φ · ∂p∂ξ + O(τ2) = p + iτ {p, φ} + O(τ2), with

O(τ2) uniform on (τ, ξ) ∈ Sn. Hence, on the compact set {(τ, ξ) ∈ Sn, ξa = 0, pφ(x0, ξ) = 0}, we
have p = −iτ {p, φ} + O(τ2). But since P is analytically principally normal, (1.9) holds and we have
{p, p} = O(p) on the compact set {(τ, ξ) ∈ Sn, ξa = 0}.

In particular, on the set {(τ, ξ) ∈ Sn, ξa = 0, pφ(x0, ξ) = 0, τ 6= 0}, we have a constant C so that∣∣ 1
iτ {p, p}

∣∣ ≤ C(| {p, φ} |+ |τ |). Getting back to (3.7), it gives, on this set, the inequality∣∣∣∣ 1

iτ
{pφ, pφ} − 2 Re {p, {p, φ}}

∣∣∣∣ ≤ C(| {p, φ} |+ |τ |). (3.8)

Moreover, the �rst pseudoconvexity assumption (1.10) and Lemma A.1 below provide C1, C2 > 0 such
that, on the set {ξa = 0} ∩

{
|ξ|2 = 1

}
, we have

2 Re {p, {p, φ}}+ C1

(
|p|2 + | {p, φ} |2

)
≥ C2.

This is also true by homogeneity for |ξ| close to 1 with a di�erent constant. Hence, in the set {(τ, ξ) ∈
Sn, ξa = 0, pφ(x0, ξ) = 0, τ 6= 0}, there exist constants C̃, C > 0 such that | {p, φ} | ≤ ε and |τ | ≤ ε imply

1

iτ
{pφ, pφ} ≥ C2 − C̃

(
|p|2 + | {p, φ} |2 + | {p, φ} |+ |τ |

)
≥ C2 − Cε

where we have used |p| ≤ C|τ | ≤ Cε on this set.
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Therefore, there exists ε, C3 > 0 such that in {(τ, ξ) ∈ Sn, ξa = 0, pφ(x0, ξ) = 0, τ 6= 0}, we have

| {p, φ} | ≤ ε, |τ | ≤ ε =⇒ 1

iτ
{pφ, pφ} ≥ C3.

We now extend 1
iτ {pφ, pφ} to the compact set Kε = {(τ, ξ) ∈ Sn, ξa = 0, pφ(x0, ξ) = 0, 0 ≤ τ ≤ ε}, by

giving any positive value when τ = 0. We are in position to apply Lemma A.2 with g = 1
iτ {pφ, pφ} (its

extension), f = | {p, φ} |2 and h =
∣∣∣∂p∂ξ (x0, ζ)

∣∣∣2: This yields 1
iτ {pψ, pψ}(x

0, ξ) > C on Kε.

The case τ ≥ ε is easier since 1
iτ {pφ, pφ} is continuous. We apply directly Lemma A.1 using the second

pseudoconvexity assumption (1.11).
So, at this stage, we have proved, that there exist C so that for A large enough, 1

iτ {pψ, pψ}(x
0, ξ) > C

on {(τ, ξ) ∈ Sn, ξa = 0, pφ(x0, ξ) = 0, 0 < τ}. Since, pψ(x0, ξ) = pφ(x0, ξ), this yields

1

i
{pψ, pψ}(x0, ξ) > 0, if pψ(x0, ξ) = 0 and ξa = 0, τ > 0. (3.9)

Combining (3.5) and (3.9) implies that ψ is a strongly pseudoconvex function in Ω∩{ξa = 0} at x0 for P .

Let us now prove the geometrical part of the lemma, i.e. Item 3. From now on, the parameter A is
�xed. To simplify the notation, we set x0 = 0 and assume that 0 ≤ ρ ≤ η.

Let CN a positive constant so that 1
CN

N(x, 0) ≤ |x| ≤ CNN(x, 0).
Let us �rst prove (3.2). We have

1

A
|x|2 = −ψ(x) + x · ∇φ(0) +A(x · ∇φ(0))2 +

1

2
φ′′(0)(x, x),

which implies
1

A
|x|2 ≤ η + x · ∇φ(0) +A(x · ∇φ(0))2 +

1

2
φ′′(0)(x, x),

on the set {ψ ≥ −η}. Moreover, the Taylor expansion of φ yields x·∇φ(0)+ 1
2φ
′′(0)(x, x) = φ(x)+f(x) ,with

|f(x)| ≤ ε(|x|)|x|2, where ε : R+ → R+ is increasing and ε(s)→ 0+ as s→ 0+. For x ∈ {ψ ≥ −η}∩{φ ≤ ρ},
we thus obtain

1

A
|x|2 ≤ η + ρ+A(x · ∇φ(0))2 + ε(|x|)|x|2 ≤ 2η +A(x · ∇φ(0))2 + ε(|x|)|x|2. (3.10)

Moreover, for x ∈ {ψ ≥ −η}, the de�nition of ψ gives

x · ∇φ(0) = ψ(x)−A(x · ∇φ(0))2 − 1

2
φ′′(0)(x, x) +

1

A
|x|2

≥ −η − (AC2
0 + C0/2 + 0)|x|2,

for C0 = max(|∇φ(0)|, |φ′′(0)|). Also, for x ∈ {φ ≤ ρ}, we have

x · ∇φ(0) ≤ φ(x) + C0/2|x|2 ≤ ρ+ C0/2|x|2 ≤ η + C0/2|x|2.

Combining the last two inequalities, we obtain for x ∈ {φ ≤ ρ} ∩ {ψ ≥ −η},

|x · ∇φ(0)| ≤ η + (AC2
0 + C0/2)|x|2,

and hence

|x · ∇φ(0)|2 ≤ η2 + 2η(AC2
0 + C0/2)|x|2 + (AC2

0 + C0/2)2|x|4.

Coming back to (3.10), this yields for x ∈ {φ ≤ ρ} ∩ {ψ > −η}

1

A
|x|2 ≤ 2η +Aη2 + 2Aη(AC2

0 + C0/2)|x|2 +A(AC2
0 + C0/2)2|x|4 + ε(|x|)|x|2.
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For x ∈ {φ ≤ ρ} ∩ {ψ ≥ −η} ∩BN (0, R), this yields

1

A
|x|2 ≤ 2η +Aη2 + 2Aη(AC2

0 + C0/2)|x|2 +A(AC2
0 + C0/2)2(CNR)2|x|2 + ε(CNR)|x|2.

Taking R ≤ R0 with R0 = R0(A,C0) su�ciently small such that

A(AC2
0 + C0/2)2(CNR)2 + ε(CNR) <

1

4A
,

and η < η0 su�ciently small such that

2Aη(AC2
0 + C0/2) <

1

4A
,

we have by absorption

|x|2 ≤ 2A(2η +Aη2).

This gives N(x, 0) < R
8 as soon as η < η0 for η0 = η0(A,C0, R) su�ciently small. This concludes the proof

of (3.2) for the chosen constants and as long as 0 ≤ ρ ≤ η.

Let us now prove (3.3). Note that performing exactly the same computation as before with ρ = η = 0
and the same R, we obtain

{φ ≤ 0} ∩ {ψ ≥ 0} ∩BN (0, R) = {0} . (3.11)

Assumme that the compact set {ψ ≥ η1}∩BN (0, R) is nonempty, otherwise (3.3) is trivial. The minimum
of φ on that set is reached for some point xm. We have necessary φ(xm) > 0, otherwise, (3.11) implies
xm = 0, which is impossible since η1 > 0 and ψ(0) = 0. So, in particular, x ∈ {ψ ≥ η1}∩BN (0, R) implies
φ(x) ≥ φ(xm) > 0. This is (3.3) with some apropriate 0 < ρ < min(φ(xm), η).

Finally, Assertion (3.4) is just a matter of continuity. Since ψ(0) = 0, there exists r > 0 such that
N(x, 0) ≤ r implies |ψ(x)| ≤ η2.

Remark 3.5. Note that the estimate (3.8) implies in particular that 2 Re {p, {p, φ}} is the limit as τ → 0
of 1

iτ {pφ, pφ} on the subset {(τ, ξ) ∈ Sn, ξa = 0, pφ(x0, ξ) = {pφ, φ} (x0, ξ) = 0, τ 6= 0}. However, this is
not used directly in the above proof.

Now, thanks to Lemma 3.4 and the Carleman estimate of Theorem 2.2, we have the following result.

Corollary 3.6. Let x0 ∈ Ω = Ωa×Ωb ⊂ Rna ×Rnb and P be a partial di�erential operator on Ω of order
m. Assume that

� P is analytically principally normal operator in {ξa = 0} inside Ω (in the sense of De�nition 1.5);

� there is a function φ de�ned in a neighborhood of x0 such that φ(x0) = 0, and {φ = 0} is a C2

strongly pseudoconvex oriented surface in the sense of De�nition 1.6.

Then, there exists a quadratic polynomial ψ : Ω → R, there exists R0 > 0 such that B(x0, 4R0) ⊂ Ω and
for any R ∈ (0, R0], there exist ε, δ, ρ, r, d, τ0, C > 0, such that δ ≤ d

8 and

1. The Carleman estimate

τ
∥∥Qψε,τu∥∥2

m−1,τ
≤ C

(∥∥Qψε,τPu∥∥2

0
+
∥∥∥eτ(ψ−d)Pu

∥∥∥2

0
+
∥∥∥eτ(ψ−d)u

∥∥∥2

m−1,τ

)
(3.12)

holds for all τ ≥ τ0 and all u ∈ C∞0 (B(x0, 4R));

2. we have (
B(x0, 5R/2) \B(x0, R/2) ∩ {−9δ ≤ ψ ≤ 2δ}

)
b {φ > 2ρ} ∩B(x0, 3R), (3.13)

{δ/4 ≤ ψ ≤ 2δ} ∩B(x0, 5R/2) b {φ > 2ρ} ∩B(x0, 3R), (3.14)

B(x0, 2r) b {−δ/2 ≤ ψ ≤ δ/2} ∩B(x0, R). (3.15)
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Proof. First, Lemma 3.4 furnishes the function ψ for some A (large enough in its proof) and R0 > 0. Once
ψ is �xed, Theorem 2.2 yields the Carleman estimate (3.12) for some constants R, d, τ0, ε, C. Then, we
take any R < min(R/4, R0/3) and δ < min( d

8 , η0/9). Finally, applying the conclusion of Lemma 3.4 with
η = 9δ, η1 = δ/4, η2 = δ/2 implies (3.13)-(3.14)-(3.15), with eventually some di�erent constants, which
concludes the proof of the corollary.

3.2 Step 2: Using the Carleman estimate

From now on, we let Ω, x0, P and φ be �xed as in Corollary 3.6. The function ψ, and constants R0,
R := R0 (that we �x now) and δ, ρ, r are provided accordingly by Corollary 3.6, as well as the constants
d, τ0, C of the Carleman estimate (3.12). We shall moreover assume that there exists C > 0 such that

1

C
µ ≤ λ ≤ Cµ. (3.16)

Actually, at the end of the proof, we will take λ = c1µ, but we believe that to keep the notation λ makes
the presentation more readable by making a di�erence between µ which is the frequency and λ which is
the regularization parameter. All the constants appearing in the following may depend upon the above
ones.

Before going further, we need to introduce some cuto� functions that will be used all along the proof.
We �rst let χ(s) be a smooth function supported in (−8, 1) such that χ(s) = 1 for s ∈ [−7, 1/2] and set

χδ(s) := χ(s/δ). (3.17)

Hence, χδ(s) is a smooth function supported in (−8δ, δ) such that χδ(s) = 1 for s ∈ [−7δ, δ/2]. We also
de�ne χ̃ so that χ̃ = 1 on (−∞, 3/2) and supported in s ≤ 2, and denote as well χ̃δ(s) := χ̃(s/δ). We
�nally recall that the functions σR and σ2R are de�ned in (3.1).

In this part of the proof, we want to apply the Carleman estimate (3.12) (with weight ψ and constants
d, τ0, C given by Corollary 3.6) to the functions σ2RσR,λχ̃δ(ψ)χδ,λ(ψ)u (for any u ∈ C∞0 (Rn)), which is
indeed compactly supported in B(x0, 4R) (according to the de�nition of σ2R as in (3.1)). We �rst need to
estimate the following term ∥∥Qψε,τPσ2RσR,λχ̃δ(ψ)χδ,λ(ψ)u

∥∥
0
,

that will appear in the right handside of the inequality. Using supp(χδ) ⊂ (−∞, δ) with Lemma 2.13,
together with (3.16), we �rst have∥∥Qψε,τPσ2RσR,λχ̃δ(ψ)χδ,λ(ψ)u

∥∥
0
≤

∥∥Qψε,τσ2RσR,λχ̃δ(ψ)χδ,λ(ψ)Pu
∥∥

0

+
∥∥Qψε,τ [σ2RσR,λχ̃δ(ψ)χδ,λ(ψ), P ]u

∥∥
0

≤ Cµ1/2eC
τ2

µ eδτ ‖Pu‖B(x0,4R)

+
∥∥Qψε,τ [σ2RσR,λχ̃δ(ψ)χδ,λ(ψ), P ]u

∥∥
0
. (3.18)

The main task now consists in estimating the term containing the commutator, that we put in the following
Lemma.

Lemma 3.7. With the previous notations and assumptions, for any ϑ ∈ C∞0 (Rn) such that ϑ(x) = 1 on a
neighborhood of {φ ≥ 2ρ} ∩B(x0, 3R), there exist C > 0, c > 0 and N > 0 such that we have the estimate∥∥Qψε,τ [σ2RσR,λχ̃δ(ψ)χδ,λ(ψ), P ]u

∥∥
0
≤ Ce2δτ

∥∥∥M2µ
λ ϑλu

∥∥∥
m−1

+Cµ1/2τN
(
e−8δτ + e−

εµ2

8τ + e−cµeδτ
)
eC

τ2

µ eδτ ‖u‖m−1(3.19)

for any u ∈ C∞0 (Rn), µ ≥ 1, λ such that (3.16) holds and τ ≥ 1.
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Proof. The operator P can be written P =
∑
|α|≤m pα(x)∂α, with pα smooth and analytic in xa in a

neighborhood of B(x0, 4R) ⊂ Ω. By the Leibniz rule, we have

pα(x)∂α (σ2RσR,λχ̃δ(ψ)χδ,λ(ψ)u)

= pα(x)
∑

α1+α2+α3+α4+α5=α

C(αi)∂
α1(χδ,λ(ψ))∂α2(σ2R)∂α3(σR,λ)∂α4(χ̃δ(ψ))∂α5u.

The commutator [χ̃δ(ψ)χδ,λ(ψ)σ2RσR,λ, P ] consists in all terms in the sum where at least one of the αi is
non zero, for i = 1, 2, 3 or 4. Hence, we can split it in a sum of di�erential operators of order m− 1 as

[P, σ2RσR,λχ̃δ(ψ)χδ,λ(ψ)] = B1 +B2 +B3 +B4,

where

1. B1 contains the terms with α1 6= 0 and α2 = α4 = 0;

2. B2 contains some terms with α2 6= 0;

3. B3 contains the terms with α3 6= 0 and α1 = α2 = α4 = 0;

4. B4 contains some terms with α4 6= 0.

Note that some terms could belong to several categories, and that all terms are supported in {ψ ≤
2δ} ∩B(x0, 4R). More precisely, we have

1. B1 consists in terms where there is at least one derivative on χδ,λ(ψ) and none on σ2R and χ̃δ(ψ).
According to the de�nition of χ and (3.17), there are only two possibilities for the localization of a
derivative of χδ. Since we have χ

′
δ,λ = 1

δ (χ′)δ,λ, then ∂
α1(χδ,λ(ψ)) with α1 6= 0 can be decomposed

in two categories of terms: we shall use the notation χ−δ,λ for those terms supported in [−8δ,−7δ]

and χ+
δ,λ for those supported in [δ/2, δ]. Hence, the term B1 is a sum of generic terms of the form

B± = b±(x)∂γ = fσ2R∂
β(σR,λ)χ±δ,λ(ψ)χ̃δ(ψ)∂γ ,

where |β|, |γ| ≤ m−1, f ∈ C∞0 (Rn) is analytic in xa in B(x0, 4R), and χ±δ is a derivative of χδ (with
the above convention for the superscript ±). The function f actually contains some terms coming
from pα and some derivatives of ψ. Notice that in the absence of regularization (i.e. the subscript
λ), B+ would be supported in(

{δ/2 ≤ ψ ≤ δ} ∩B(x0, 2R)
)
⊂
(
{φ > 2ρ} ∩ {ψ ≤ δ} ∩B(x0, 2R)

)
,

and B− in {−8δ ≤ ψ ≤ −7δ} ∩B(x0, 2R).

2. B2 consists in terms where there is at least one derivative on σ2R. Hence, B2 is a sum of generic
terms of the form

B̌2 = b2(x)∂γ = b̃∂β(σR,λ)(χ(k))δ,λ(ψ)∂γ ,

where k, |β|, |γ| ≤ m− 1, the function b̃ is smooth supported in B(x0, 4R) \B(x0, 2R) and b̃ contains
derivatives of σ2R, some terms of pα(x), and potentially some derivatives of ψ or χ̃δ(ψ).

3. B3 consists in terms where there is at least one derivative on σR,λ and none on χδ,λ(ψ), χ̃δ(ψ) and
σ2R. Hence, B3 is a sum of generic terms of the form

B̌3 = b3(x)∂γ = fσ2R∂
β(σR,λ)χδ,λ(ψ)χ̃δ(ψ)∂γ ,

where f is smooth in (xa, xb), analytic in xa in a neighborhood of B(x0, 4R), |β| ≥ 1 and |β|, |γ| ≤
m−1. Notice also that in the absence of regularization (i.e. the subscript λ), B̌3 would be supported
in (

{−8δ ≤ ψ ≤ δ} ∩B(x0, 2R) \B(x0, R)
)
⊂
(
{φ > 2ρ} ∩ {ψ ≤ δ} ∩B(x0, 2R)

)
.
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4. B4 consists in terms where there is at least one derivative on χ̃δ(ψ). Hence, B4 is a sum of generic
terms of the form

B̌4 = b4(x)∂γ = b̃∂β(σR,λ)(χ(k))δ,λ(ψ)∂γ

where k, |β|, |γ| ≤ m− 1 and the function b̃ is smooth supported in B(x0, 4R)∩ {ψ ∈ [3δ/2, 2δ]} and
b̃ contains derivatives of σ2R, some terms from pα(x), and some derivatives of ψ or χ̃δ(ψ).

Now, proving an estimate of the last term in (3.18) consists in estimating successively the associated
expressions with the generic terms B±, B̌2, B̌3, B̌4; the �nal estimate then follows as the LHS of (3.19)
is bounded by a �nite sum of such terms.

Estimating B−. Starting with B−, we have, using Lemma 2.13 applied to χ−δ ,∥∥Qψε,τB−u∥∥0
≤
∥∥eτψB−u∥∥0

≤ Cδλ1/2e−7δτe
τ2

λ ‖u‖m−1 ≤ Cµ
1/2e−7δτeC

τ2

µ ‖u‖m−1 . (3.20)

Estimating B2. Concerning B2, we use Lemma 2.13 applied to χ
(k)
δ and Lemma 2.3 applied to b̃ and

∂β(σR) where supp(̃b) ∩ supp(σR) = ∅. This yields∥∥Qψε,τB2u
∥∥

0
≤
∥∥eτψB2u

∥∥
0
≤ Cδλ1/2eδτe

τ2

λ e−cλ ‖u‖m−1 ≤ Cµ
1/2eδτeC

τ2

µ e−cµ ‖u‖m−1 . (3.21)

Estimating B4. For B4, we use eτψ ≤ e2δτ and
∣∣(χ(k))δ,λ(ψ)

∣∣ ≤ Ce−cλ on {ψ ∈ [3δ/2, 2δ]} thanks to
Lemma 2.3 applied to χ(k) and 1[3δ/2,2δ]. This yields∥∥Qψε,τB4u

∥∥
0
≤
∥∥eτψB4u

∥∥
0
≤ Cδe2δτe−cλ ‖u‖m−1 ≤ Ce

2δτe−cµ ‖u‖m−1 . (3.22)

First estimates on B+ and B3. Concerning B?, with ? = + or ? = 3, we have∥∥Qψε,τB?u∥∥0
=

∥∥∥∥e−ε |Da|22τ eτψB?u

∥∥∥∥
0

≤
∥∥∥∥e−ε |Da|22τ Mµ

λ e
τψB?u

∥∥∥∥
0

+

∥∥∥∥e−ε |Da|22τ (1−Mµ
λ )eτψB?u

∥∥∥∥
0

≤
∥∥Mµ

λ e
τψB?u

∥∥
0

+ C

(
e−

εµ2

8τ + e−cµ
)∥∥eτψB?u∥∥0

≤
∥∥Mµ

λ e
τψB?u

∥∥
0

+ Cλ1/2

(
e−

εµ2

8τ + e−cµ
)
eC

τ2

µ eδτ ‖u‖m−1 ,

where the second inequality comes from the application of Lemma 2.14 and the third from Lemma 2.13.
Next, concerning the term with

∥∥Mµ
λ e

τψB?u
∥∥

0
, we have B? = b?∂

γ where ? is either + or 3. So, we
can estimate ∥∥Mµ

λ e
τψB?u

∥∥
0
≤

∥∥∥Mµ
λ e

τψb?(1−M2µ
λ )∂γu

∥∥∥
0

+
∥∥∥Mµ

λ e
τψb?M

2µ
λ ∂γu

∥∥∥
0
,

where ∥∥∥Mµ
λ e

τψb?(1−M2µ
λ )∂γu

∥∥∥
0
≤ CτNeC

τ2

µ e2δτ−cµ ‖u‖m−1 ,

according to Lemma 2.16 applied in the speci�c case of (2.33). Note that we use that fσ2R = f in a
neighborhood of B(x0, 2R) ⊃ supp(σR), and fσ2R is therefore analytic on a neighborhood of this set.
Next we have ∥∥∥Mµ

λ e
τψb?M

2µ
λ ∂γu

∥∥∥
0
≤

∥∥∥eτψb?M2µ
λ ∂γu

∥∥∥
0
.

Combining the four above estimates, we now have∥∥Qψε,τB?u∥∥0
≤

∥∥∥eτψb?M2µ
λ ∂γu

∥∥∥
0

+ Cµ1/2τN
(
e−

εµ2

8τ + eδτe−cµ
)
eC

τ2

µ eδτ ‖u‖m−1 . (3.23)

Now, to estimate the �rst term of the RHS, we will distinguish whether ? = + or 3, using the geometry of
the "almost" location of each b?.
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Estimating B+. We have to treat terms of the form

B+ = b+∂
γ = f

˜̃
bλχ

+
δ,λ(ψ)χ̃δ(ψ)∂γ ,

where
˜̃
b = ∂β(σR), |β| ≤ m− 1, is supported in B(x0, 2R) and f ∈ C∞0 (Rn). We decompose Rn as

Rn = O1 ∪O2 ∪O3, with

O1 = {ψ /∈ [δ/4, 2δ]} ∩B(x0, 5R/2),

O2 = B(x0, 5R/2)c,

O3 = {ψ ∈ [δ/4, 2δ]} ∩B(x0, 5R/2).

On O1, since χ
+
δ is supported in [δ/2, δ] and using Lemma 2.3 with f2 = 1[δ/4,2δ]c , we have

∣∣∣χ+
δ,λ(ψ)

∣∣∣ ≤ e−cλ.
Moreover, we have eτψ ≤ e2δτ on the support of χ̃δ. Hence, we obtain∥∥∥eτψb+M2µ

λ ∂γu
∥∥∥
L2(O1)

≤ Ce−cλe2δτ ‖u‖m−1 ≤ Ce
−cµe2δτ ‖u‖m−1 .

On O2, using Lemma 2.3 with f2 = 1O2
and f1 =

˜̃
b and then Lemma 2.13, we get∥∥∥eτψb+M2µ

λ ∂γu
∥∥∥
L2(O2)

≤ Cλ1/2e−cλeδτe
τ2

λ ‖u‖m−1 ≤ Cµ
1/2e−cµeδτeC

τ2

µ ‖u‖m−1 .

Using (3.14), we can �nd a smooth cuto� function ϑ̃ such that ϑ̃ = 1 on a neighborhood of O3 and
supported in {φ > 2ρ} ∩ B(x0, 3R). So, for λ large enough, we have ϑ̃λ ≥ 1/2 on O3. Moreover, we have
|eτψ| ≤ e2δτ on O3, and thus, we obtain∥∥∥eτψb+M2µ

λ ∂γu
∥∥∥
L2(O3)

≤ e2δτ
∥∥∥b+M2µ

λ ∂γu
∥∥∥
L2(O3)

≤ Ce2δτ
∥∥∥M2µ

λ ∂γu
∥∥∥
L2(O3)

≤ Ce2δτ
∥∥∥ϑ̃λM2µ

λ ∂γu
∥∥∥
L2(O3)

≤ Ce2δτ
∥∥∥ϑ̃λM2µ

λ ∂γu
∥∥∥
L2
.

Let
˜̃
ϑ ∈ C∞0 such that

˜̃
ϑ = 1 on a neighborhood of supp(ϑ̃) and supported in {φ > 2ρ} ∩ B(x0, 3R).

This is possible since supp ϑ̃ ⊂ {φ > 2ρ} ∩ B(x0, 3R). In particular, since ϑ = 1 on {φ > 2ρ} ∩ B(x0, 3R)

by the assumption, we have ϑ = 1 in a neighborhood of supp
˜̃
ϑ. Then, according to Lemma 2.6 and the

properties of
˜̃
ϑ, we have ∥∥∥ϑ̃λM2µ

λ ∂γu
∥∥∥
L2
≤

∥∥∥ ˜̃
ϑλM

2µ
λ u

∥∥∥
m−1

+ e−cλ ‖u‖m−1 ,

and then ∥∥∥ ˜̃
ϑλM

2µ
λ u

∥∥∥
m−1

≤
∥∥∥M2µ

λ ϑλu
∥∥∥
m−1

+ Ce−cµ ‖u‖m−1 ,

according to Lemma 2.11.
Combining the previous estimates with (3.23), we have obtained∥∥Qψε,τB+u

∥∥
0
≤ Ce2δτ

∥∥∥M2µ
λ ϑλu

∥∥∥
m−1

+ Cµ1/2τN
(
e−

εµ2

8τ + e−cµeδτ
)
eC

τ2

µ eδτ ‖u‖m−1 (3.24)

Estimating B3. We now treat terms of the form

B3 = b3∂
γ = f

˜̃
bλχδ,λ(ψ)χ̃δ(ψ)∂γ ,

where
˜̃
b = ∂β(σR), with |β| ≥ 1, is supported in B(x0, 2R) \ B(x0, R) and f ∈ C∞0 (Rn). We decompose

Rn as

Rn = O′1 ∪O′2 ∪O′3, with

O′1 =
{
ψ /∈ [−9δ, 2δ] ∩

{
|x− x0| ∈ [R/2, 5R/2]

}}
,

O′2 =
{
|x− x0| /∈ [R/2, 5R/2]

}
,

O′3 =
{
ψ ∈ [−9δ, 2δ] ∩

{
|x− x0| ∈ [R/2, 5R/2]

}}
.
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On O′1∩supp(χ̃δ(ψ)), we have eτψ |χδ,λ(ψ)| ≤ e−cλe2δτ as a consequence of Lemma 2.3 with f2 = 1[−9δ,2δ]c ,
since χδ is supported in [−8δ, δ]. We thus obtain∥∥∥eτψb3M2µ

λ ∂γu
∥∥∥
L2(O′1)

≤ Ce−cλe2δτ ‖u‖m−1 ≤ Ce
−cµe2δτ ‖u‖m−1 .

On O′2, using Lemma 2.3 with f2 = 1O′2 and f1 =
˜̃
b and using the support of χ̃δ(ψ), we get∥∥∥eτψb3M2µ

λ ∂γu
∥∥∥
L2(O′2)

≤ Ce−cλe2δτ ‖u‖m−1 ≤ Ce
−cµe2δτ ‖u‖m−1 .

Using (3.13), we can �nd a function ϑ̃ such that ϑ̃ = 1 on a neighborhood of O′3 and supported in
{φ > 2ρ} ∩ B(x0, 3R). So, for λ large enough, we have ϑ̃λ ≥ 1/2 on O′3. Moreover, we have |eτψ| ≤ e2δτ

on O′3. This yields∥∥∥eτψb3M2µ
λ ∂γu

∥∥∥
L2(O′3)

≤ e2δτ
∥∥∥b3M2µ

λ ∂γu
∥∥∥
L2(O′3)

≤ Ce2δτ
∥∥∥M2µ

λ ∂γu
∥∥∥
L2(O′3)

≤ Ce2δτ
∥∥∥ϑ̃λM2µ

λ ∂γu
∥∥∥
L2(O′3)

.

We can then �nish the estimates for B3 as for B+ to get, combining the above estimates with (3.23),∥∥Qψε,τB3u
∥∥

0
≤ Ce2δτ

∥∥∥M2µ
λ ϑλu

∥∥∥
m−1

+ Cµ1/2τN
(
e−

εµ2

8τ + eδτe−cµ
)
eC

τ2

µ eδτ ‖u‖m−1 (3.25)

Combining (3.20), (3.21), (3.24) and (3.25), this concludes the estimate of the commutator (3.19) and
the proof of Lemma 3.7.

Remark 3.8. In the special case of terms pα(xb)∂
α, that is some coe�cients independent on xa, we can

have some better estimates uniform in the size of pα∥∥Qψε,τ [σ2RσR,λχ̃δ(ψ)χδ,λ(ψ), pα(xb)∂
α]u
∥∥

0
=

∥∥pα(xb)Q
ψ
ε,τ [σ2RσR,λχ̃δ(ψ)χδ,λ(ψ), ∂α]u

∥∥
0

≤ ‖pα‖L∞
∥∥Qψε,τ [σ2RσR,λχ̃δ(ψ)χδ,λ(ψ), ∂α]u

∥∥
0
.

Also, for α = 0, that is for a potential V (xb), we have [σ2RσR,λχδ,λ(ψ)χ̃δ(ψ), V ] = 0, so this term does
not give any contribution.

This will be useful in particular for getting estimates uniform to lower order perturbation.
Moreover, if pα is only analytic in xa and bounded in xb, all estimates of the commutator remain valid.

Indeed, we only use Lemma 2.16 for k = 0 which remains true in that setting.

Now, we are ready to apply the Carleman estimate (3.12) to obtain the estimate of the following lemma.

Lemma 3.9. With the previous notations and assumptions, for any ϑ ∈ C∞0 (Rn) such that ϑ(x) = 1 on
a neighborhood of {φ > 2ρ} ∩ B(x0, 3R), there exist µ0 > 0, C > 0, c > 0 and N > 0 such that we have
the estimate

τ
∥∥Qψε,τσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u

∥∥
m−1,τ

≤ Cµ1/2eC
τ2

λ eδτ ‖Pu‖B(x0,4R) + Ce2δτ
∥∥∥M2µ

λ ϑλu
∥∥∥
m−1

+Cµ1/2τN
(
e−8δτ + e−

εµ2

8τ + eδτ−cµ
)
eC

τ2

µ eδτ ‖u‖m−1 .(3.26)

for any u ∈ C∞0 (Rn), µ ≥ µ0, λ such that (3.16) holds and τ ≥ τ0.

Proof. We only need to estimate the last two terms in the RHS of Carleman estimate (3.12) (the �rst term
being estimated in (3.18) and Lemma 3.7). Since we have chosen δ ≤ d

8 , we have that δ ≤ d− 7δ so that
the support of χδ gives using again Lemma 2.13, for τ ≥ τ0, 1

Cµ ≤ λ ≤ Cµ,∥∥∥eτ(ψ−d)σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u
∥∥∥
m−1,τ

≤ Cλ1/2τm−1e−7δτe
τ2

λ ‖u‖m−1

≤ Cµ1/2τm−1e−7δτeC
τ2

µ ‖u‖m−1 . (3.27)
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We also need to estimate the term eτ(ψ−d)Pσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u: we have∥∥∥eτ(ψ−d)Pσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u
∥∥∥

0
≤

∥∥∥eτ(ψ−d)σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)Pu
∥∥∥

0

+
∥∥∥eτ(ψ−d)[σ2RσR,λχδ,λ(ψ)χ̃δ(ψ), P ]u

∥∥∥
0

≤ Ce−τdλ1/2eδτe
τ2

λ

(
‖Pu‖L2(B(x0,4R)) + ‖u‖m−1

)
≤ Cµ1/2e−7δτeC

τ2

µ

(
‖Pu‖L2(B(x0,4R)) + ‖u‖m−1

)
(3.28)

where we have used several times Lemma 2.13 to χδ,λ(ψ) or some of its derivatives of order less than m−1.
So, the Carleman estimate (3.12) applied to σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u, together with (3.18), (3.19), (3.27)
and (3.28) gives for all τ0 ≤ τ , µ large enough, λ such that (3.16) holds, the sought estimate (3.26).

3.3 Step 3: A complex analysis argument

The purpose of this part is to transfer the information given by the Carleman estimate to some estimates
on the low frequencies of the function and conclude the proof of Theorem 3.1. The presence of the non

local regularizing term e−
ε|Da|2

2τ makes this task more intricate than in the usual case and imposes to work
by duality. Following [Tat95, Hör97, Tat99b, Tat99a], the idea is to proceed with the following three steps:

1. We make a kind of foliation along the level sets of ψ: if we want to measure u, we rather de�ne the
distribution hf = ψ∗(fu) by 〈hf , w〉E′(R),C∞(R) = 〈fu,w(ψ)〉E′(Rn),C∞(Rn) and estimate it for any
test function f . Heuristically, hf (s) is the integral of fu on the level set {ψ(x) = s}.

2. We notice that the Fourier transform of hf is ĥf (ζ) = 〈fu, e−iζψ〉 and can be extended to the complex

domain if u is compactly supported. In particular, on the imaginary axis, ĥf (iτ) = 〈f, ueτψ〉. Since
the Carleman estimate gives information on the norm of eτψu for τ large, this can be translated in

some information on ĥf on the upper imaginary axis. A Phragmén-Lindelöf type argument allows
to transfer this estimate to the (almost) whole upper plan.

3. Finally, using a change of contour, this information can be transferred to the real axis where we can

estimate the real Fourier transform ĥf .

Note that in the problem of (qualitative) unique continuation, the third step is replaced by a Paley-

Wiener type argument: a bound of exponential type for |ĥf (ζ)| on C implies some conditions on the
support of hf . Roughly speaking, if ψ(x) = x1, the problem is to transfer some information on the
Laplace transform (with respect to the x1 variable)

∫
x1≥C e

τx1fu (given by the Carleman estimate) to
some information on the Fourier transform using complex analysis. Moreover, since the Carleman estimate

only gives some information on e−
ε|Da|2

2τ eτψu, we need to add some cuto� in frequency to this reasoning.

More precisely, let us de�ne

η ∈ C∞0 ((−4, 1)), η = 1 in [−1/2, 1/2] and ηδ(s) := η(s/δ).

We �rst prove the following lemma. We then conclude this section with the end of the proof of Theorem 3.1
by estimating the left hand-side of the estimate of the lemma.

Lemma 3.10. Under the above assumptions, there exists τ̃0 = (‖ψ‖L∞(B(x0,4R)) + 11δ)
1
2 τ0 > 0 such that

for any κ, c1 > 0, there exists β0, C, c > 0 (depending on δ, ψ, d, τ0, κ, c1, ε), such that for any 0 < β < β0,
for all µ ≥ τ̃0

β and u ∈ C∞0 (Rn), we have∥∥Mβµσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u
∥∥
m−1

≤ Ce−cµ(D + ‖u‖m−1),

with

D = eκµ
(∥∥∥M2µ

λ ϑλu
∥∥∥
m−1

+ ‖Pu‖B(x0,4R)

)
, λ = 2c1µ.
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Proof. We now follow [Hör97, proposition 2.1]. For any test function f ∈ S(Rn), we de�ne the following
distribution (with β > 0 to be chosen later on)

〈hf , w〉E′(R),C∞(R) := 〈(Mβµf)σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u,w(ψ)〉E′(Rn),C∞(Rn).

We choose the particular test functions w = ηδ,λ, and want to estimate the quantity

〈hf , ηδ,λ〉E′(R),C∞(R) = 〈(Mβµf)σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u, ηδ,λ(ψ)〉E′(Rn),C∞(Rn)

= 〈Mβµσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u, f〉S′(Rn),S(Rn),

uniformly with respect to f to �nally obtain an estimate on ‖Mβµσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u‖m−1. As

the Fourier transform of a compactly supported distribution, ĥf is an entire function satisfying

ĥf (ζ) = 〈(Mβµf)σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u, e−iζψ〉E′(Rn),C∞(Rn)

= 〈σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u, e−iζψ(Mβµf)〉E′(Rn),C∞(Rn)

= 〈e−iζψσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u, (Mβµf)〉E′(Rn),C∞(Rn), ζ ∈ C.

Using supp(σ2R) ⊂ B(x0, 4R), we have the a priori estimate

|ĥf (ζ)| = |〈e−iζψσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u, (Mβµf)〉E′(Rn),C∞(Rn)|
≤ ‖e−iζψσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u‖m−1‖(Mβµf)‖1−m
≤ C〈|ζ|〉m−1e| Im(ζ)|‖ψ‖L∞(B(x0,4R))‖u‖m−1‖f‖1−m, ζ ∈ C. (3.29)

Next, for ζ ∈ R, we have

|ĥf (ζ)| = |〈e−iζψσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u, (Mβµf)〉E′(Rn),C∞(Rn)| ≤ C〈ζ〉m−1‖u‖m−1‖f‖1−m, ζ ∈ R.
(3.30)

Finally, for ζ ∈ iR+, ζ = iτ with τ > 0, we have

|ĥf (iτ)| = |〈(Mβµf), eτψσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u〉C∞(Rn),E′(Rn)|

= |〈e ε
2τ |Da|

2

(Mβµf), e−
ε
2τ |Da|

2

eτψσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u〉S(Rn),S′(Rn)|

≤ ‖e ε
2τ |Da|

2

Mβµf‖1−m‖e−
ε
2τ |Da|

2

eτψσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u‖m−1

≤ e ε
2τ β

2µ2

‖f‖1−m‖Qψε,τσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u‖m−1,

as |ξa| ≤ βµ on supp(mβµ). Using (3.26), we obtain for all τ ≥ τ0, µ ≥ 1, 1
Cµ ≤ λ ≤ Cµ,

|ĥf (iτ)| ≤ Ce
ε
2τ β

2µ2

‖f‖1−m

(
µ1/2eC

τ2

µ eδτ ‖Pu‖B(x0,4R) + e2δτ
∥∥∥M2µ

λ ϑλu
∥∥∥
m−1

+Cµ1/2τN
(
e−8δτ + e−

εµ2

8τ + eδτ−cµ
)
eC

τ2

µ eδτ ‖u‖m−1

)
.

Now, we choose
λ = 2c1µ,

and to simplify the notation we write, for κ > 0,

D = eκµ
(∥∥∥M2µ

λ ϑλu
∥∥∥
m−1

+ ‖Pu‖B(x0,4R)

)
.

With this notation, we have

|ĥf (iτ)| ≤ Ce
ε
2τ β

2µ2

‖f‖1−m

(
µ1/2eC

τ2

µ eδτe−κµD + e2δτe−κµD

+µ1/2τN
(
e−8δτ + e−

εµ2

8τ + eδτ−cµ
)
eC

τ2

µ eδτ ‖u‖m−1

)

≤ Cµ1/2τNe
ε
2τ β

2µ2

eC
τ2

µ e2δτ (D + ‖u‖m−1)‖f‖1−m
(
e−cµ + e−

εµ2

8τ + e−9δτ

)
, (3.31)
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where the new constant c > 0 may depend on κ.
We now come back to the quantity we want to estimate:

〈Mβµσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u, f〉S′(Rn),S(Rn) = 〈hf , ηδ,λ〉E′(R),C∞(R) =

∫
R
ĥf (ζ)η̂δ,λ(−ζ)dζ.

As ηδ ∈ C∞0 (−4δ, δ), the function η̂δ is holomorphic in the lower complex half-plane together with the
estimate

|η̂δ(ζ)| ≤ Ce−4δ Im(ζ), for Im(ζ) ≤ 0,

that is,

|η̂δ(−ζ)| ≤ Ce4δ Im(ζ), for Im(ζ) ≥ 0, (3.32)

|η̂δ,λ(−ζ)| = |e−
ζ2

λ η̂δ(−ζ)| ≤ Ce
Im(ζ)2−Re(ζ)2

λ e4δ Im(ζ), for Im(ζ) ≥ 0, (3.33)

For a constant 0 < d ≤ 1 (beware that this d is not the same as d appearing in the Carleman estimate)
to be chosen later on, we split the integral in three parts according to∫

R
ĥf (ζ)η̂δ,λ(−ζ)dζ = I− + I0 + I+,

with

I− :=

∫ −dµ
−∞

ĥf (ζ)η̂δ,λ(−ζ)dζ, I0 :=

∫ dµ

−dµ
ĥf (ζ)η̂δ,λ(−ζ)dζ, I+ :=

∫ +∞

dµ

ĥf (ζ)η̂δ,λ(−ζ)dζ.

According to (3.30) and (3.33), we have, for µ ≥ 1, λ = 2c1µ,

|I±| ≤ C

∫ +∞

dµ

e−
|ζ|2
λ 〈ζ〉m−1‖u‖m−1‖f‖1−mdζ ≤ Cµ2me−d

2 µ2

λ ‖u‖m−1‖f‖1−m

≤ Cde
−cd2µ‖u‖m−1‖f‖1−m. (3.34)

So the main problem is to estimate I0. For this, let us de�ne

H(ζ) = µ−1/2(ζ + i)−Nei2δζ ĥf (ζ).

From (3.31), we have the estimate on the imaginary axis for all τ ≥ τ0, for µ ≥ 1, λ = 2c1µ,

|H(iτ)| ≤ Ce
ε
2τ β

2µ2

eC
τ2

µ (D + ‖u‖m−1)‖f‖1−m
(
e−cµ + e−

εµ2

8τ + e−9δτ

)
.

Moreover, (3.29) implies (we can assume N ≥ m− 1 without loss of generality)

|H(ζ)| ≤ Ce| Im(ζ)|(2δ+‖ψ‖L∞(B(x0,4R)))‖u‖m−1‖f‖1−m, ζ ∈ C, Im(ζ) ≥ 0.

Next, we de�ne H := H
c0
, with

c0 = C(D + ‖u‖m−1)‖f‖1−m, (3.35)

and apply Lemma 3.11 below to the function H.
This Lemma implies the existence of d0 > 0 (depending only on δ, κ, ‖ψ‖L∞(B(x0,4R)), ε and the con-

stants C, c appearing in the exponents of the estimates of H(iτ)) such that for any d < d0, there exists
β0 > 0, (depending on the same parameters, together with d) such that for any 0 < β < β0, for all

µ ≥ τ̃0
β :=

τ0(‖ψ‖L∞(B(x0,4R))+11δ)
1
2

β , we have

|H(ζ)| ≤ c0e−8δ Im(ζ), on Q1 ∩ {
d

4
µ ≤ |ζ| ≤ 2dµ},

40



with Q1 = R∗+ +iR∗+. The same procedure leads to the same estimate if Q1 is replaced by the set R∗−+iR∗+,
and hence, by the whole C+ = {ζ ∈ C, Im(ζ) ≥ 0}. Coming back to ĥf , we obtain

|ĥf (ζ)| ≤ c0µ1/2〈|ζ|〉Ne−6δ Im(ζ) ≤ c0µN+1/2e−6δ Im(ζ), on C+ ∩ {
d

4
µ ≤ |ζ| ≤ 2dµ}. (3.36)

where c0 is de�ned in (3.35).

We now come back to I0. The function ĥf (ζ)η̂δ,λ(−ζ) being holomorphic in C+, we make the following
change of contour in the complex plane:

I0 =

∫
ΓV+

ĥf (ζ)η̂δ,λ(−ζ)dζ +

∫
ΓH

ĥf (ζ)η̂δ,λ(−ζ)dζ +

∫
ΓV−

ĥf (ζ)η̂δ,λ(−ζ)dζ,

where the contours (oriented counterclockwise) are de�ned by

ΓV± = {Re(ζ) = ±dµ, 0 ≤ Im(ζ) ≤ dµ/2},
ΓH = {−dµ ≤ Re(ζ) ≤ dµ, Im(ζ) = dµ/2}.

with d ∈]0, d0[ still to be chosen later on.

dµ 2dµ

Re(ζ)

dµ
2

dµ
4

Im(ζ)

−dµ

ΓH

ΓV+

0

ΓV−

Figure 5: Coutours of integration

Since ΓV+ ∪ ΓH ∪ ΓV− ⊂ C+ ∩ {d4µ ≤ |ζ| ≤ 2dµ} and λ = c1µ, estimates (3.33) and (3.36) yields the
estimate

|ĥf (ζ)η̂δ,λ(−ζ)| ≤ c0µ
N+1/2e−6δ Im(ζ)e

Im(ζ)2−Re(ζ)2

2c1µ e4δ Im(ζ), ζ ∈ ΓV+ ∪ ΓH ∪ ΓV−

≤ c0µ
N+1/2e−2δ Im(ζ)e

Im(ζ)2−Re(ζ)2

2c1µ , ζ ∈ ΓV+ ∪ ΓH ∪ ΓV−

Using that 3d2

4 µ2 ≤ Re(ζ)2 − Im(ζ)2 ≤ d2µ2 for ζ ∈ ΓV+ ∪ ΓV− we now obtain

|ĥf (ζ)η̂δ,λ(−ζ)| ≤ c0µ
N+1/2e−2δ Im(ζ)e−

3d2µ
8c1 , ζ ∈ ΓV+ ∪ ΓV−.

On ΓH , we have Im(ζ) = dµ/2, so , we can estimate

|ĥf (ζ)η̂δ,λ(−ζ)| ≤ c0µ
N+1/2e−δdµe

d2

8c1
µ, ζ ∈ ΓH

Now, we can �x 0 < d ≤ min(4c1δ, d0) so that we have e−δdµe
d2

8c1
µ ≤ Ce−cµ (for some 0 < c ≤ 2c1δ

2 ). As
a consequence, we have

|I0| =

∣∣∣∣∣
∫

ΓV+∪ΓH∪ΓV−

ĥf (ζ)η̂δ,λ(−ζ)dζ

∣∣∣∣∣ ≤ c0µ
N+1/2|ΓV+ ∪ ΓH ∪ ΓV−|e−cµ

≤ Ce−cµ(D + ‖u‖m−1)‖f‖1−m, (3.37)
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for any 0 < β < β0, for all µ ≥ max(C, τ̃0β ) (as |ΓV+ ∪ ΓH ∪ ΓV−| = Cdµ).

This, together with (3.34) yields, for any 0 < β < β0, for all µ ≥ τ̃0
β ,∣∣〈Mβµσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u, f〉S′(Rn),S(Rn)

∣∣ =

∣∣∣∣∫
R
ĥf (ζ)η̂δ,λ(−ζ)dζ

∣∣∣∣
≤ Ce−cµ(D + ‖u‖m−1)‖f‖1−m.

The constants being uniform with respect to f ∈ S(Rn), this provides by duality the estimate∥∥Mβµσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u
∥∥
m−1

≤ Ce−cµ(D + ‖u‖m−1),

which concludes the proof of the lemma.

With Lemma 3.10, we can now conclude the proof of the local estimate of Theorem 3.1. Lemma 3.11
and its proof are postponed to the end of the section.

End of the proof of Theorem 3.1. Using Lemma 2.3 with m(2 ·) and 1−m(·), we get∥∥∥∥M βµ
2

λ (1−Mβµ)

∥∥∥∥
Hm−1(Rn)→Hm−1(Rn)

≤ Ce−cλ.

Hence, applying Lemma 3.10, we obtain, for any 0 < β < β0, for all µ ≥ τ̃0
β and λ = 2c1µ,

∥∥Mβµσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u
∥∥
m−1

≤
∥∥∥∥M βµ

2

λ (1−Mβµ)σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u

∥∥∥∥
m−1

+

∥∥∥∥M βµ
2

λ Mβµσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u

∥∥∥∥
m−1

≤ Ce−cµ(D + ‖u‖m−1). (3.38)

Using Lemma 2.11, estimate (3.38) and the de�nition of r in Corollary 3.6, we get for any 0 < β < β0, for
all µ ≥ τ̃0

β and λ = 2c1µ,∥∥∥∥M βµ
4

λ σr,λu

∥∥∥∥
m−1

≤
∥∥∥∥σr,λM βµ

2

λ u

∥∥∥∥
m−1

+ Ce−cµ ‖u‖m−1

≤
∥∥∥∥σr,λM βµ

2

λ σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)u

∥∥∥∥
m−1

+

∥∥∥∥σr,λM βµ
2

λ

(
1− σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)

)
u

∥∥∥∥
m−1

+ Ce−cµ ‖u‖m−1

≤ Ce−cµ(D + ‖u‖m−1) +

∥∥∥∥σr,λM βµ
2

λ

(
1− σ2RσR,λχδ,λ(ψ)ηδ,λ(ψ)

)
u

∥∥∥∥
m−1

. (3.39)

We know that σR = χδ(ψ) = χ̃δ(ψ) = ηδ(ψ) = 1 on a neighborhood of supp(σr) according to (3.15) and
the properties of χ, χ̃δ and η. So, we can select Π ∈ C∞0 (Rn) such that Π = 1 on a neighborhood of
supp(σr) and such that σ2R = σR = χδ(ψ) = χ̃δ(ψ) = ηδ(ψ) = 1 on an neighborhood of supp(Π). Now,
we have∥∥∥∥σr,λM βµ

2

λ

(
1− σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)

)
u

∥∥∥∥
m−1

≤
∥∥∥∥σr,λM βµ

2

λ

(
1− σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)

)
(1−Π)u

∥∥∥∥
m−1

+

∥∥∥∥σr,λM βµ
2

λ

(
1− σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)

)
Πu

∥∥∥∥
m−1

. (3.40)
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To estimate the �rst term, we use Lemma 2.10 to obtain

∥∥∥∥σr,λM βµ
2

λ (1−Π)

∥∥∥∥
Hm−1→Hm−1

≤ Ce−cµ. Con-

cerning the second term, we have∥∥∥∥σr,λM βµ
2

λ

(
1− σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)

)
Πu

∥∥∥∥
m−1

≤ C
∥∥(1− σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ)

)
Πu
∥∥
m−1

≤ Ce−cµ ‖u‖m−1 (3.41)

where we have decomposed in the last inequality

1− σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)ηδ,λ(ψ) = (1− σ2R) + σ2R(1− σR,λ) + σ2RσR,λ(1− χδ,λ(ψ))

+σ2RσR,λχδ,λ(ψ)(1− χ̃δ(ψ)) + σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)(1− ηδ,λ(ψ))

and used Lemmata 2.3 and 2.5. These two Lemmata can be applied thanks to the geometric fact that

dist(supp(Π), {x ∈ Rn;σ2R(x) 6= 1}) > 0,

and the same is true with σ2R replaced by σR, χδ(ψ), χ̃δ(ψ) or ηδ(ψ). We now have the existence of τ̃0 > 0
such that for any κ, c1 > 0, there exist β0, C, c > 0, such that for any 0 < β < β0, µ ≥ τ̃0

β and λ = 2c1µ,
the following estimate holds:∥∥∥∥M βµ

4

λ σr,λu

∥∥∥∥
m−1

≤ Ce−cµ(D + ‖u‖m−1), D = eκµ
(∥∥∥M2µ

λ ϑλu
∥∥∥
m−1

+ ‖Pu‖B(x0,4R)

)
.

This concludes the proof of Theorem 3.1 with κ′ = c, when replacing µ and µ0 by µ/2 and µ0/2 respectively.

It only remains to prove Lemma 3.11 below.

Lemma 3.11. Let δ, κ,R0, C1, ε, τ0 > 0. Then, there exists d0 = d0(δ, κ,R0, C1, ε) such that for any

d < d0, there exists β0(δ, κ,R0, c1, ε, d) such that for any 0 < β < β0 and for all µ ≥ τ0(R0+9δ)
1
2

β , we have
the following statement:

For every H holomorphic function in Q1 = R∗+ + iR∗+, continuous on Q̄1 satisfying

|H(iτ)| ≤ eε
β2

2τ µ
2

eC1
τ2

µ max(e−κµ, e−
εµ2

8τ , e−9δτ ) for τ ∈ [τ0,+∞), (3.42)

|H(ζ)| ≤ eR0 Im(ζ) on Q̄1, (3.43)

we have

|H(ζ)| ≤ e−8δ Im(ζ) on Q̄1 ∩ {
d

4
µ ≤ |ζ| ≤ 2dµ}. (3.44)

The proof essentially consists in performing a scaling argument to get rid of the parameter µ and then
applying Lemma B.2.

Proof of Lemma 3.11. The function H is holomorphic in Q1 and z 7→ log |z| is subharmonic on C∗. As a
consequence, the function

gµ : ζ 7→ µ−1 log |H(µζ)|

is subharmonic on Q1 (which is invariant by dilations). Assumption (3.42) (used for τµ ∈ [τ0,+∞)) yields

gµ(iτ) ≤ c1τ2 +
εβ2

τ
+ max(−κ,−9δτ,− ε

8τ
), for τ ∈ [

τ0
µ
,+∞), (3.45)

and Assumption (3.43) yields

gµ(ζ) ≤ R0 Im(ζ), on Q̄1. (3.46)
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Now, we set

fµ1 (y) = R0y1[0,
τ0
µ )(y) + 1[

τ0
µ ,+∞)(y) min{R0y,max(−κ,−9δy,− ε

8y
) + C1y

2 +
εβ2

y
}, y ∈ R+. (3.47)

According to Lemma B.2, there exists d0 = d0(δ, κ,R0, ε, C1) such that for any d < d0, there exists

β0(δ, κ,R0, d, ε, C1), such that for any 0 < β < β0, and any µ ≥ τ0(R0+9δ)
1
2

β , the function fµ1 is continuous

and the associated function fµ given by Lemma B.1 with f0 = 0 and f1 = fµ1 satis�es

fµ ∈ C0(Q̄1), ∆fµ = 0 and |fµ(x, y)| ≤ Cµ(1 + |(x, y)|) in Q1, fµ = fµ1 on iR+, fµ = 0 on R+

together with

fµ(ζ) ≤ −8δ Im(ζ) on Q̄1 ∩ {
d

4
≤ |ζ| ≤ 2d}.

This is

fµ(ζ/µ) ≤ −8δ Im(ζ)/µ on Q̄1 ∩ {
d

4
µ ≤ |ζ| ≤ 2dµ}. (3.48)

Now, as gµ is subharmonic and fµ harmonic, the function

hµ(ζ) := gµ(ζ)− fµ(ζ)

is subharmonic too. As a consequence of (3.45), (3.46) and (3.47), we have

hµ(ζ) ≤ 0 on R+ ∪ iR+.

Moreover, (3.46) and |fµ(ζ)| ≤ C(1 + |ζ|) also yield

hµ(ζ) ≤ Cµ + (Cµ +R0)|ζ|.

According to Lemma B.4, this implies
hµ(ζ) ≤ 0 on Q̄1,

and hence

|H(µζ)| = eµg
µ(ζ) ≤ eµf

µ(ζ) on Q̄1.

Finally, coming back to (3.48), we obtain

|H(ζ)| ≤ e−8δ Im(ζ) on Q̄1 ∩ {
d

4
µ ≤ |ζ| ≤ 2dµ},

which concludes the proof of the lemma.

4 Semiglobal estimates

4.1 Some tools for propagating the information

The Local Estimate of Theorem 3.1 only provides information on the low frequency part of the function.
Iterating this result alows us to propagate the low frequency information. In this section, we de�ne some
tools that will be useful for this iterative procedure. They are aimed at describing how information on the
low frequency part of the solution can be deduced from one subregion to another one.

De�nition 4.1. Fix Ω be an open set of Rn = Rna × Rnb , P a di�erential operator of order m de�ned
in Ω, and (Vj)j∈J and (Ui)i∈I two �nite collections of bounded open sets of Rn. We say that (Vj)j∈J is
under the dependence of (Ui)i∈I , denoted

(Vj)j∈J E (Ui)i∈I ,
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if for any ϑi ∈ C∞0 (Rn) such that ϑi(x) = 1 on a neighborhood of Ui, for any ϑ̃j ∈ C∞0 (Vj) and for all
κ, α > 0, there exist C, κ′, β, µ0 > 0 such that for all (µ, u) ∈ [µ0,+∞)× C∞0 (Rn), we have

∑
j∈J

∥∥∥Mβµ
µ ϑ̃j,µu

∥∥∥
m−1

≤ Ceκµ
(∑
i∈I

∥∥Mαµ
µ ϑi,µu

∥∥
m−1

+ ‖Pu‖L2(Ω)

)
+ Ce−κ

′µ ‖u‖m−1 .

If ]I = 1 and U1 = U , we write (Vj)j∈J E U , with the same convention for V .

The norm ‖·‖m−1 being taken in Rn.

Remark 4.2. The de�nition E actually depends on the splitting Rn = Rna × Rnb , the set Ω and the
operator P . However, in the main part of this work, Rn = Rna × Rnb , Ω and P will be �xed, so it should
not lead to confusion (in particular in the applications). The dependence of E upon these object will be
mentioned when needed.

For the applications, it is important that the function u is not necessarily supported in Ω.
In the following, we will only need to use this relation E in some appropriate coordinate charts.

However, it will not be a problem for what we want to prove, even on a compact manifold. Indeed, we
will �x some coordinate chart on an open set Ω ⊂ Rn close to a point or close to a trajectory. Then, we
will use the relation E related to Ω to �nally obtain some estimates which will be invariant by change of
coordinates.

Now, we list some general properties of the relation E, which actually hold without using any asumption
on the set Ω and the operator P .

Proposition 4.3. We have the following properties

1. If (Vj)j∈J E (Ui)i∈I with Ui = U for all i ∈ I, then (Vj)j∈J E U .

2. If (Vj)j∈J E (Ui)i∈I with Ui ⊂Wi for all i ∈ I, then (Vj)j∈J E (Wi)i∈I .

3. If V ⊂ U then, V E U . In particular, we always have U E U .

4.
⋃
i∈I Ui E (Ui)i∈I .

5. If for any i ∈ I, Vi E Ui, then (Vi)i∈I E (Ui)i∈I . In particular, we always have (Ui)i∈I E (Ui)i∈I .

Proof. Property 1 is obvious from the de�nition. Property 2 is also immediate since ϑi(x) = 1 on a
neighborhood of Wi implies ϑi(x) = 1 on a neighborhood of Ui since Ui ⊂Wi.

Property 3 is a consequence of Lemma 2.11 applied with αµ/2 instead of µ, λ = µ, f1 = ϑ and f = ϑ̃.

The assumptions on ϑ and ϑ̃ ensures that f1 = 1 on a uniform neighborhood of supp(f). This gives the
result with β = α/2.

Property 4 is a consequence of Lemma 2.12 with the same parameters as before for Property 3, but
with bi = ϑi.

Property 5 is almost a consequence of the de�nition. Actually, the only di�erence is that a priori, we
have one βi for each i ∈ I. Taking the worst of the constants C, κ′, µ0 given by the application of the
de�nition for any i, it gives

∑
i∈I

∥∥∥Mβiµ
µ ϑ̃i,µu

∥∥∥
m−1

≤ Ceκµ
(∑
i∈I

∥∥Mαµ
µ ϑi,µu

∥∥
m−1

+ ‖Pu‖L2(Ω)

)
+ Ce−κ

′µ ‖u‖m−1 .

with ϑi = 1 on Ui and ϑ̃i ∈ C∞0 (Vi). But taking 2β = inf {βi, i ∈ I}, we have∥∥∥Mβµ
µ ϑ̃i,µu

∥∥∥
m−1

≤
∥∥∥Mβiµ

µ Mβµ
µ ϑ̃i,µu

∥∥∥
m−1

+
∥∥∥Mβµ

µ (1−Mβiµ
µ )ϑ̃i,µu

∥∥∥
m−1

≤
∥∥∥Mβiµ

µ ϑ̃i,µu
∥∥∥
m−1

+ Ce−cµ ‖u‖m−1 ,

where we have used Lemma 2.3 and the properties of support ofm( ·β ) and (1−m( ·βi )) for the last estimate.
The second part comes from the combination with Ui E Ui for all i ∈ I.
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The relation is not clearly transitive but we have the following weaker but su�cient property: if

(Vj)j∈J E (Ũi)i∈I and Ũi b Ui with compact inclusion (that is Ũ i ⊂ Ui) and (Ui)i∈I E (Wk)k∈K , then,

(Vj)j∈J E (Wk)k∈K (this is proved by introducing functions fi ∈ C∞0 (Ui) equal to 1 on Ũi: see the proof
of Item 6 in Proposition 4.5 below).

For this reason, it is convenient to introduce the following stronger property.

De�nition 4.4. Given Ω an open set of Rn = Rna × Rnb , P a di�erential operator of order m de�ned in
Ω, and (Vj)j∈J and (Ui)i∈I two �nite collections of bounded open sets of Rn, we say that (Vj)j∈J is under

the strong dependence of (Ui)i∈I if there exists Ũi b Ui such that (Vj)j∈J E (Ũi)i∈I . In that case, we
write.

(Vj)j∈J C (Ui)i∈I .

This makes the relation transitive, but it becomes more strict in the sense that we do not always have
U C U . We sumarize again the properties of this relation.

Proposition 4.5. We have the following properties

1. (Vj)j∈J C (Ui)i∈I implies (Vj)j∈J E (Ui)i∈I .

2. If (Vj)j∈J C (Ui)i∈I with Ui = U for all i ∈ I, then (Vj)j∈J C U .

3. If Vi b Ui for any i ∈ I, then, (Vi)i∈I C (Ui)i∈I .

4. If Vi b Ui for any i ∈ I, then
⋃
i∈I Vi C (Ui)i∈I .

5. If for any i ∈ I, Vi C Ui, then (Vi)i∈I C (Ui)i∈I . In particular, if for any i ∈ I, Ui C U , then
(Ui)i∈I C U .

6. The relation is transitive, that is

[(Vj)j∈J C (Ui)i∈I and (Ui)i∈I C (Wk)k∈K ] =⇒ (Vj)j∈J C (Wk)k∈K .

Proof. Property 1 is obvious. For 2, the assumption gives some (Ũi)i∈I with (Vj)j∈J E (Ũi)i∈I and Ũi b U

for all i ∈ I. Since Ũi ⊂ U for all i ∈ I and I is �nite, we have ∪i∈I Ũi = ∪i∈I Ũi ⊂ U . Denote W = ∪i∈I Ũi.
We have Ũi ⊂W for all i ∈ I, so Property 2 and then Property 1 of the previous Lemma give (Vj)j∈J EW
which implies (Vj)j∈J C U since W b U .

For 3, we use (Vi)i∈I E (Vi)i∈I from Property 5 of the previous Lemma and Vi b Ui.
For 4, we use Property 4 of the previous Lemma, which gives

⋃
i≤I ViE(Vi)i∈I . This is

⋃
i≤I ViC(Ui)i∈I

by the de�nition of C.
For 5, assume Vi E Ũi with Ũi b Ui. Then, Property 5 of the previous Lemma gives (Vi)i∈I E (Ũi)i∈I

which gives (Vi)i∈I C (Ui)i∈I by de�nition. The second part is direct by combining with Property 2.

For 6, the assumptions give the existence of Ũi b Ui and W̃k bWk such that

(Vj)j∈J E (Ũi)i∈I and (Ui)i∈I E (W̃k)k∈K

Since Ũi b Ui, we can pick χi ∈ C∞0 (Ui) such that χi = 1 in an neighborhood of Ũi. Let α > 0, κ > 0,

and take ϑk ∈ C∞0 (Rn) (for all k ∈ K) such that ϑk(x) = 1 on a neighborhood of W̃k and ϑ̃j ∈ C∞0 (Vj)

(for all j ∈ J). Since we have (Ui)i∈I E (W̃k)k∈K and χi ∈ C∞0 (Ui), there exist C, κ
′, β, µ0 > 0, such that

we have∑
i∈I

∥∥Mβµ
µ χi,µu

∥∥
m−1

≤ Ceκ2 µ
(∑
k∈K

∥∥Mαµ
µ ϑk,µu

∥∥
m−1

+ ‖Pu‖L2(Ω)

)
+ Ce−κ

′µ ‖u‖m−1 .

Now, we apply the relation given by (Vj)j∈J E (Ũi)i∈I with α replaced by the above β and κ replaced

by κ1 = min(κ′, κ)/2 > 0. Since χi = 1 in an neighborhood of Ũi and ϑ̃j ∈ C∞0 (Vj), there exist
C ′, κ′′, β′, µ′0 > 0 such that∑

j∈J

∥∥∥Mβ′µ
µ ϑ̃j,µu

∥∥∥
m−1

≤ C ′eκ1µ

(∑
i∈I

∥∥Mβµ
µ χi,µu

∥∥
m−1

+ ‖Pu‖L2(Ω)

)
+ C ′e−κ

′′µ ‖u‖m−1 .
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Combining the above two estimates now yields∑
j∈J

∥∥∥Mβ′µ
µ ϑ̃j,µu

∥∥∥
m−1

≤ CC ′e(κ2 +κ1)µ
∑
k∈K

∥∥Mαµ
µ ϑk,µu

∥∥
m−1

+ C ′eκ1µ
(
1 + Ce

κ
2 µ
)
‖Pu‖L2(Ω)

+
(
C ′e−κ

′′µ + CC ′e(κ1−κ′)µ
)
‖u‖m−1 .

Since κ/2 + κ1 ≤ κ and κ1 − κ′ < κ′/2 − κ′ = −κ′/2 < 0, it gives (Vj)j∈J E (W̃k)k∈K , which implies the

result since W̃k bWk.
Note that in the proofs above, we have omitted to precise each time the restriction µ ≥ µ0. Yet, all the

estimates have to be taken with that restriction, taking the worst constant µ0 when several restrictions
are involved.

Corollary 4.6. Under the assumptions of Theorem 3.1, there exists R0 > 0 such that for any R ∈ (0, R0),
there exists r, ρ > 0 so that we have

B(x0, r)E
[
{φ > 2ρ} ∩B(x0, 3R)

]
,

B(x0, r)C
[
{φ > ρ} ∩B(x0, 4R)

]
.

Proof of Corollary 4.6. First, we restrict R0 so that B(x0, 4R0) ⊂ Ω. Theorem 3.1 gives some R, r, ρ,
τ̃0 > 0.

Let κ, α > 0. We apply the result with µ = αµ′, c1 = 1/α and κ replaced by κ/α to obtain, uniformly
for µ′ ≥ τ̃0/(αβ),∥∥∥Mβαµ′

µ′ σr,µ′u
∥∥∥
m−1

≤ Ceκµ
′
(∥∥∥Mαµ′

µ′ ϑµ′u
∥∥∥
m−1

+ ‖Pu‖L2(B(x0,4R))

)
+ Ce−ακ

′µ′
(
‖u‖m−1

)
.

Now, let ϑ̃ ∈ C∞0 (B(x0, r)). Since σr = 1 on B(x0, r), Lemma 2.11 gives∥∥∥Mβαµ′/2
µ′ ϑ̃µ′u

∥∥∥
m−1

≤
∥∥∥Mβαµ′

µ′ σr,µ′u
∥∥∥
m−1

+ Ce−cµ
′
‖u‖m−1

This gives the result. The second comes from the compact inclusion of
[
{φ > 2ρ} ∩B(x0, 3R)

]
into

B(x0, r)C
[
{φ > ρ} ∩B(x0, 4R)

]
.

4.2 Semiglobal estimates along foliation by graphs

This section is devoted to the proof of Theorem 1.10. Actually, this result is a corollary of the following
stronger theorem, stated here in the context of zone of dependence.

Theorem 4.7. Under the assumptions of Theorem 1.10, there exists an open neighborhood U of K such
that for any open neighborhood ω̂ of S0, we have

U C ω̂.

In the present section, we �rst prove that Theorem 4.7 implies Theorem 1.10, and then prove Theo-
rem 4.7.

Proof that Theorem 4.7 implies Theorem 1.10. We �rst apply Theorem 4.7 for a neighborhood ω̂ of S0

such that ω̂ b ω̃, where ω̃ is that in the statement of Theorem 1.10. We obtain U C ω1. Take χ ∈ C∞0 (U)
such that χ = 1 on a neighborhood Uχ of K, and ϕ ∈ C∞0 (ω̃) such that ϕ = 1 on a neighborhood of ω1.
We obtain that for any κ > 0, there exist C, β, κ′, µ0 > 0 such that for µ ≥ µ0,∥∥Mβµ

µ χµu
∥∥
m−1

≤ Ceκµ
(∥∥Mµ

µϕµu
∥∥
m−1

+ ‖Pu‖L2(Ω)

)
+ Ce−κ

′µ ‖u‖m−1 . (4.1)

But since ϕ ∈ C∞0 (ω̃), taking again ϕ̃ ∈ C∞0 (ω̃), ϕ̃ = 1 on a neighborhood of supp(ϕ), we get thanks to
Lemma 2.3 ∥∥Mµ

µϕµu
∥∥
m−1

≤
∥∥Mµ

µ ϕ̃ϕµu
∥∥
m−1

+ ‖(1− ϕ̃)ϕµu‖m−1

≤
∑

|α|+|β|≤m−1

∥∥∥Dα
aM

µ
µ (Dβ

b ϕ̃ϕµu)
∥∥∥

0
+ Ce−cµ ‖u‖m−1 .
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Next, we have ∥∥Dα
aM

µ
µ f
∥∥

0
≤ ‖ξαamµ(ξa/µ)‖L∞(Rna ) ‖f‖0
≤ µ|α| ‖ξαamµ(ξa)‖L∞(Rna ) ‖f‖0 ≤ Cµ

|α| ‖f‖0 ,

since the function ξa 7→ ξαamµ(ξa) is uniformly bounded on Rna for µ ≥ 1. As a consequence, we now have∥∥Mµ
µϕµu

∥∥
m−1

≤ C
∑

|α|+|β|≤m−1

µ|α|
∥∥∥Dβ

b (ϕ̃ϕµu)
∥∥∥

0
+ Ce−cµ ‖u‖m−1

≤ Cµm−1
∑

|β|≤m−1

∥∥∥Dβ
b u
∥∥∥
L2(ω̃)

+ Ce−cµ ‖u‖m−1

≤ Cµm−1 ‖u‖Hm−1
b (ω̃) + Ce−cµ ‖u‖m−1 .

In the particular case where na = n, we change slightly the estimate∥∥Mµ
µϕµu

∥∥
m−1

≤
∥∥M2µMµ

µϕµu
∥∥
m−1

+
∥∥(1−M2µ)Mµ

µϕµu
∥∥
m−1

≤ Cµs+m−1 ‖ϕµu‖−s + Ce−cµ ‖u‖m−1

≤ Cµs+m−1 ‖ϕ̃ϕµu‖−s + Cµs+m−1 ‖(1− ϕ̃)ϕµu‖−s + Ce−cµ ‖u‖m−1

≤ Cµs+m−1 ‖ϕ̃u‖H−s + Ce−cµ ‖u‖m−1 .

In (4.1), the constant κ > 0 is arbitrary (all other constants in that estimate depending on it): imposing
κ < c/2 and noticing that µm−1 ≤ Cmeκµ, we obtain, with c′ := min(c/2, κ′),∥∥Mβµ

µ χµu
∥∥
m−1

≤ Ce2κµ
(
‖u‖Hm−1

b (ω̃) + ‖Pu‖L2(Ω)

)
+ Ce−c

′µ ‖u‖m−1 . (4.2)

In the analytic case, na = n, using µs+m−1 ≤ Cseκµ, we have similarly∥∥Mβµ
µ χµu

∥∥
m−1

≤ Ce2κµ
(
‖ϕ̃u‖H−s + ‖Pu‖L2(Ω)

)
+ Ce−c

′µ ‖u‖m−1 .

Now, let χ̃ ∈ C∞0 (Uχ) be such that χ̃ = 1 in a neighborhood of K. We have, using again Lemma 2.3,

‖χ̃u‖0 ≤ ‖χ̃χµu‖0 + ‖(1− χµ)χ̃u‖0
≤ C ‖χµu‖0 + Ce−cµ ‖u‖m−1

≤ C
∥∥Mβµ

µ χµu
∥∥

0
+ C

∥∥(1−Mβµ
µ )χµu

∥∥
0

+ Ce−cµ ‖u‖m−1 . (4.3)

Concerning the second term in this estimate, we write

∥∥(1−Mβµ
µ )χµu

∥∥
0
≤ C sup

(ξa,ξb)∈Rna+nb

∣∣∣∣∣ (1−mµ)( ξaβµ )

|ξa|m−1
+ 〈ξb〉m−1

∣∣∣∣∣ ‖χµu‖m−1 .

Hence, in the range |ξa| ≥ βµ/2 with µ ≥ µ0, we have the loose estimate∣∣∣∣∣ (1−mµ)( ξaβµ )

|ξa|m−1
+ 〈ξb〉m−1

∣∣∣∣∣ ≤ C

µm−1
. (4.4)

In the range |ξa| ≤ βµ/2, using dist
(

supp(1−m( ·β )), {|ξa| ≤ β/2}
)
> 0, we have

∣∣∣(1−mµ)( ξaβµ )
∣∣∣ ≤ Ce−cµ

according to Lemma 2.3. In this range of ξa, this yields∣∣∣∣∣ (1−mµ)( ξaβµ )

|ξa|m−1
+ 〈ξb〉m−1

∣∣∣∣∣ ≤ Ce−cµ,
so that (4.4) holds for all ξa ∈ Rna , and µ ≥ µ0. This yields

∥∥(1−Mβµ
µ )χµu

∥∥
0
≤ C

µm−1 ‖χµu‖m−1, which,

combined with (4.2) and (4.3) gives, for µ ≥ µ0,

‖χ̃u‖0 ≤ Ce2κµ
(
‖u‖Hm−1

b (ω̃) + ‖Pu‖L2(Ω)

)
+

C

µm−1
‖u‖m−1 .
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Similarly, in the analytic case, we have

‖χ̃u‖0 ≤ Ce2κµ
(
‖ϕ̃u‖H−s + ‖Pu‖L2(Ω)

)
+

C

µm−1
‖u‖m−1 .

Finally, the case na = 0 is a direct consequence of (4.1) since there is no regularization.
Now, we notice that the previous estimates are true for any Ω neighborhood of K. Denoting now by

Ω the neighborhood of K given by the assumptions of the Theorem, we can apply the previous estimates
to an open neighborhood Ω̃ of K so that Ω̃ b Ω. This gives that for any ω̃ ⊂ Ω̃ neighborhood of S0, there
exists an open set Ũ neighborhood of K (that we can impose included in Ω̃) so that we have the estimates

‖u‖L2(Ũ) ≤ Ce2κµ
(
‖u‖Hm−1

b (ω̃) + ‖Pu‖L2(Ω̃)

)
+

C

µm−1
‖u‖m−1 . (4.5)

Take χ0 supported in Ω and so that χ0 = 1 in Ω̃. In particular, we have ‖P (χ0u)‖L2(Ω̃) = ‖Pu‖L2(Ω̃) ≤
‖Pu‖L2(Ω), ‖χ0u‖L2(Ũ) = ‖u‖L2(Ũ), ‖χ0u‖Hm−1

b (ω̃) = ‖u‖Hm−1
b (ω̃) and ‖χ0u‖m−1 ≤ C ‖u‖Hm−1(Ω). Apply-

ing inequality (4.5) to χ0u gives

‖u‖L2(Ũ) ≤ Ce2κµ
(
‖u‖Hm−1

b (ω̃) + ‖Pu‖L2(Ω)

)
+

C

µm−1
‖u‖Hm−1(Ω) .

This concludes the proof of Theorem 1.10 in the general case. The end of the proof in the cases na = n
and na = 0 is similar.

Now, we come to the proof of the main result of this section, namely Theorem 4.7. This proof consists
in two main steps: �rst de�ning the adapted geometrical context, and second to iterate the local result in
this geometric context, using an induction argument.

Proof of Theorem 4.7. To begin with, we choose ω1 b ω2 b ω̂ where ω1 is another open neighborhood of
S0. We �x R such that

2R < min(dist(K,Ωc),dist(ωc1, S0)), (4.6)

de�ne the set
KR =

⋃
x∈K

B(x, 2R),

and pick a cuto� function

χK ∈ C∞c (Ω), such that χK = 1 on KR, and supp(χK) ∩ {xn ≤ 0} ⊂ ω1. (4.7)

Given any point x ∈ K, there exists ε > 0 such that x ∈ Sε. We denote by R0 > 0 the constant given by
Theorem 3.1 associated to the point x and the function φε. Next, we set

Rx := min(R0/2, R/4), (4.8)

and then
rx := min(r/2, 3Rx), ρx = ρ,

where r, ρ > 0 are the constants given by Theorem 3.1 (and Corollary 4.6) associated to x, φε and Rx.
For any ε ∈ (0, 1] and x ∈ Sε, we have φε(x) = 0. So, we can write

Sε ⊂
⋃
x∈Sε

B(x, rx),

and, since Sε is compact, we can extract a �nite covering, i.e. there is a �nite set of indices Iε and a �nite
number of points (xεi )i∈Iε , such that

Sε ⊂
⋃
i∈Iε

B(xεi , rxεi ), xεi ∈ Sε.
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For xεi ∈ Sε, we rename the associated radii, setting

Rεi := Rxεi , rεi := rxεi , ρεi := ρxεi ,

and de�ne
ρε := min

i∈Iε
ρεi > 0.

Since φε = 0 on Sε, we still have

Sε ⊂

(⋃
i∈Iε

B(xεi , r
ε
i )

)
∩ {φε < ρε} =: Uε.

The de�nition of Uε is illustrated on Figure 6. Therefore, for ε ∈]0, 1], Uε is an open neighborhood the

B(xε4, r
ε
4)

Sε = {φε = 0}

{φε = ρε}

B(xε2, r
ε
2)

B(xε3, r
ε
3)

B(xε1, r
ε
1)

B(xε6, r
ε
6)

B(xε5, r
ε
5)

Figure 6: De�nition of the set Uε, striped in blue

compact surface Sε. Since G is C1, we claim that we can �nd g(ε) > 0 so that

Vε :=
⋃

ε′∈]ε−g(ε),ε+g(ε)[

Sε′ ⊂ Uε (4.9)

(the de�nition of Vε is illustrated on Figure 7). Indeed, since G ∈ C1(D̄×]0, 1]), we can �nd C > 0 so that

|G(x′, ε)−G(x′, ε′)| ≤ C|ε− ε′|,

uniformly for x′ ∈ D. In particular, if |ε− ε′| ≤ 1
2C dist(Sε,Ucε ) with dist(Sε,Ucε ) > 0, we have

dist [(x′, G(x′, ε′)) , Sε] ≤ dist [(x′, G(x′, ε)) , (x′, G(x′, ε′))] ≤ |G(x′, ε)−G(x′, ε′)| ≤ dist(Sε,Ucε )/2.

This holds for any x′ ∈ D̄, so that Sε′ is contained in a neighborhood of Sε of size dist(Sε,Ucε )/2, and
hence contained in Uε. This proves (4.9) with g(ε) = dist(Sε,Ucε )/2C > 0.

As a consequence of (4.9), we have in particular, for any ε ∈]0, 1],

Vε ⊂ Uε ⊂ {φε < ρε} . (4.10)

Now, we also have

K ⊂
(
S0 ∪

⋃
ε∈(0,1]

Vε
)
⊂
(
ω1 ∪

⋃
ε∈(0,1]

Vε
)
.

The same argument as above using that ω1 is a neighborhood of S0 shows that there exists ε0 such that

V0 :=
⋃

ε∈[0,ε0)

Sε ⊂ ω1.
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Figure 7: De�nition of the set Vε, striped in blue

As a consequence, we now have

K ⊂
(
V0 ∪

⋃
ε∈[ε0,1]

Vε
)
, V0 ⊂ ω1.

From the covering [ε0, 1] ⊂
⋃
ε∈[ε0,1]]ε− g(ε), ε+ g(ε)[, we now extract a �nite covering [ε0, 1] ⊂

⋃
j∈J ]εj −

g(εj), εj + g(εj)[, where J is a �nite set of indices. In particular, this yields a �nite covering

[0, 1] ⊂ [0, ε0) ∪
⋃
i∈J

]εj − g(εj), εj + g(εj)[. (4.11)

As a consequence, we now have (Vεj being de�ned in (4.9))

K ⊂ ω1 ∪
⋃
j∈J
Vεj

⊂ ω1 ∪
⋃
j∈J

⋃
i∈Iεj

(
B(x

εj
i , r

εj
i ) ∩

{
φεj < ρεj

}) . (4.12)

Now, we reorder the set J by increasing order of εj − g(εj), that is

J = J0, NK, with εj − g(εj) ≤ εj+1 − g(εj+1), for all j ∈ J0, N − 1K. (4.13)

Note that if εj−g(εj) = εj+1−g(εj+1), we can suppress that associated to the smaller εj+g(εj) is smaller,
and the covering property remains true. We will also need to check that we have

εk+1 − g(εk+1) < max
1≤j≤k

(εj + g(εj)). (4.14)

Indeed, if it is not the case, we have εk+1−g(εk+1) ≥ max0≤j≤k(εj+g(εj)). In particular, for j ≤ k, we have
εj+g(εj) ≤ εk+1−g(εk+1) and εk+1−g(εk+1) /∈]εj−g(εj), εj+g(εj)[. But for j ≥ k+1, by increasing choice
(4.13), we have εk+1−g(εk+1) ≤ εj−g(εj), and in particular, εk+1−g(εk+1) /∈]εj−g(εj), εj+g(εj)[. Hence
εk+1−g(εk+1) /∈

⋃
j∈J ]εj−g(εj), εj+g(εj)[. Moreover, we have εk+1−g(εk+1) ≥ max1≤j≤k(εj+g(εj)) ≥ ε0

as εj ≥ ε0 for j ≥ 1 and hence εk+1 − g(εk+1) /∈ [0, ε0[. This contradicts (4.11) and proves (4.14).

This preparatory de�nitions were made to state the following geometrical Lemma that we prove below.

Lemma 4.8. With the notation of the proof of Theorem 4.7, we have for any k ∈ J0, N − 1K and i ∈ Iεk .

{
φεk+1

> ρεk+1

}
∩B(x

εk+1

i , 4R
εk+1

i ) b

ω1 ∪
⋃

j∈J1,kK

⋃
i∈Iεj

B(x
εj
i , r

εj
i )

 ,
where we consider the union

⋃
j∈J1,kK empty if k = 0.
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Now, we are going to use an abstract iteration argument, so we set the following notations for j ∈
J1, NK = J and i ∈ Iεj :

� IJ = Iεj ,

� Ui,j = B(x
εj
i , 2r

εj
i ),

� ωi,j = B(x
εj
i , r

εj
i ),

� Vi,j =
[{
φεj > ρεj

}
∩B(x

εj
i , 4R

εj
i )
]
,

� V0 = ω̂,

� U0 = ω1.

The choice of the r
εj
i and ρ

εj
i ≤ ρεj according to Corollary 4.6 implies

Ui,j C Vi,j .

Moreover, we have ωi,j b Ui,j and Lemma 4.8 can be written as Vi,k+1 b
[
U0 ∪

⋃
j∈J1,kK

⋃
i∈Ij ωi,j

]
. Now,

we are in position to apply the following iteration Proposition, that we prove later on.

Proposition 4.9. Assume that there exists some open sets U0, Ui,j, ωi,j b Ui,j, with j ∈ J1, NK and i ∈ Ij
(Ij �nite) such that we have

Ui,j C Vi,j and ωi,j b Ui,j , for all j ∈ J1, NK and i ∈ Ij ;

Vi,k+1 b
[
U0 ∪

⋃
j∈J1,kK

⋃
i∈Ij ωi,j

]
, for k ∈ J0, N − 1K,

where we consider the union
⋃
j∈J1,kK empty if k = 0. Then, we have

[
U0 ∪

⋃
j∈J1,NK

⋃
i∈Ij ωi,j

]
C V0 for

any U0 b V0.

Now, we always have ω2 C ω̂, as a consequence of Properties 5 (second part) and 6 of Proposition 5,

Hence, denoting U :=
[
ω1 ∪

⋃
j∈J1,kK

⋃
i∈Iεj

B(x
εj
i , r

εj
i )
]
, the application of Proposition 4.9 yields

U C ω̂.

Since U is a neighborhood of K by the covering property (4.12), this concludes the proof of Theorem 4.7,
up to the proofs of Lemma 4.8 and Proposition 4.9.

The next two sections are devoted to the proofs of Lemma 4.8 and Proposition 4.9, respectively.

4.2.1 Proof of Lemma 4.8

In this section,we give a proof of Lemma 4.8. We �rst prove, for later use, that for any x′ ∈ Ω̄, ε > 0, we
have

G(x′, ε− g(ε)) ≥ G(x′, ε)− ρε (4.15)

Indeed, let x ∈ Vε, so x ∈ Sε′ for one ε′ ∈]ε − g(ε), ε + g(ε)[. That is xn = G(x′, ε′). Using (4.10), we
have φε(x) < ρε, that is G(x′, ε) − xn < ρε and so G(x′, ε) − G(x′, ε′) < ρε. This is true for any point
x = (x′, G(x′, ε′) for ε′ ∈]ε− g(ε), ε+ g(ε)[. Letting ε′ tending to ε− g(ε) and using the continuity of G,
we get G(x′, ε)−G(x′, ε− g(ε)) ≤ ρε, which is (4.15).

We now come back to the proof of the Lemma. Notice that, as a consequence of the de�nitions of Uε,
Vε ⊂ Uε and of (4.12), we have for all k ∈ J0, NKV0 ∪

⋃
j∈J1,kK

Vεj

 b
ω1 ∪

⋃
j∈J1,kK

⋃
i∈Iεj

B(x
εj
i , r

εj
i )

 . (4.16)
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By (4.16), it is su�cient to prove, for any k ∈ J0, N − 1K, the inclusion({
φεk+1

≥ ρεk+1

}
∩B(x

εk+1

i , 4R
εk+1

i )
)
⊂
(
ω1 ∪

⋃
j∈J1,kK

Vεj
)
,

which shall follow from the following two inclusions:({
φεk+1

≥ ρεk+1

}
∩K

)
⊂
(
ω1

⋃
j∈J1,kK

Vεj
)
, (4.17)

and ({
φεk+1

≥ ρεk+1

}
∩Kc

)
∩B(x

εk+1

i , 4R
εk+1

i ) ⊂ ω1. (4.18)

Let us �rst prove (4.17). Since K ⊂
(
ω1 ∪

⋃
j∈J1,NK Vεj

)
by (4.12), we have({

φεk+1
≥ ρεk+1

}
∩K

)
⊂
(
ω1 ∪

⋃
j∈J1,NK

(
Vεj ∩

{
φεk+1

≥ ρεk+1

}))
. (4.19)

Moreover, using (4.10), we get

Vεk+1
⊂
{
φεk+1

< ρεk+1

}
.

Now, we will use the fact that G is increasing in ε to prove that we also have

Vεj ⊂
{
φεk+1

< ρεk+1

}
for j ≥ k + 1. (4.20)

Actually, for x ∈ Vεj , with j ≥ k + 1, we have xn = G(x′, ε) for some ε > εj − g(εj) ≥ εk+1 − g(εk+1)
(that is here that we use the order of the εj de�ned in (4.13)). But since G is strictly increasing in
ε, this implies xn > G(x′, εk+1 − g(εk+1)). Using the inequality (4.15), true for any ε > 0, we obtain
xn > G(x′, εk+1)− ρεk+1

. This gives φεk+1
(x′, xn) < ρεk+1

and therefore (4.20). As a consequence, in the
right hand-side of (4.19) only the terms for j ≤ k are nonempty, and it thus implies precisely (4.17).

We now prove (4.18). Since x
εk+1

i ∈ K and 4R
εk+1

i ≤ R, it is su�cient to prove({
φεk+1

≥ 0
}
∩Kc ∩KR

)
⊂ ω1.

We �rst notice that, according to the de�nition of K, we have

Kc = {xn < 0} ∪ {xn > G(x′, 1)} .

In addition, since G is increasing in ε, we have,{
φεk+1

≥ 0
}

= {xn ≤ G(x′, εk+1)} ⊂ {xn ≤ G(x′, 1)} .

As a consequence,
{
φεk+1

≥ 0
}
∩Kc ⊂ {xn < 0}. We are thus left to prove(

{xn < 0} ∩KR
)
⊂ ω1,

which is true thanks to (4.6). This concludes the proof of (4.18).
We �nally check that the proof works the same way for the degenerate case k = 0, which corresponds

to the same proof with ∅ instead of
⋃
j∈J1,kK. This concludes the proof of Lemma 4.8.

Remark 4.10. In this process, we can also impose that the points x
εj
i are far from {xn = 0}, by forcing

B(x
εj
i , 4R

εj
i ) ∩ {xn = 0} = ∅.

Indeed, if B(x
εj
i , 4R

εj
i ) ∩ {xn = 0} 6= ∅, we have necessarily dist(x

εj
i , S0) < 4R

εj
i because

dist(x
εj
i , {xn = 0}) is necessarily reached at a point in S0 = D × {0xn}, since x

εj
i ∈ Sεj ⊂ D × Rxn . But,

in the process, see (4.6) and (4.8), we have chosen R
εj
i ≤ dist(ωc1, S0)/8. This implies dist(x

εj
i , ω

c
1) ≥

dist(ωc1, S0)− dist(x
εj
i , S0) > 8R

εj
i − 4R

εj
i and so B(x

εj
i , 4R

εj
i ) ⊂ ω1. In particular, these points x

εj
i can be

removed without a�ecting the set ω1 ∪
⋃

j∈J1,kK

⋃
i∈Iεj

B(x
εj
i , r

εj
i )

 .
for any k.

This fact was not used here but it will be useful later in the presence of boundary.
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4.2.2 Semiglobal estimates by iteration: proof of Proposition 4.9

We now prove Proposition 4.9, which follows an induction argument on k ∈ J1, NK = J . We make the
following induction assumption at step k:

For any j ∈ J1, kK and i ∈ Ij , we have Ui,j C V0. (IAk)

Note that using Property 4 of Proposition 5 and since we can selectW0 with U0 bW0 b V0 and ωi,j b Ui,j ,
we have U0 ∪

⋃
j∈J1,kK

⋃
i∈Ij

ωi,j

C (W0, Ui,j)j∈J1,kK,i∈Ij

So, since we always have W0 C V0, using Properties 5 (second part) and 6 of Proposition 5, (IAk) directly
implies U0 ∪

⋃
j∈J1,kK

⋃
i∈Ij

ωi,j

C V0. (4.21)

In particular, proving (IAN ) implies (4.21) for k = N , which is the result of the proposition:

U :=

U0 ∪
⋃

j∈J1,NK

⋃
i∈Ij

ωi,j

C V0. (4.22)

We now come to the proof of (IAk) by induction

For k = 1, we need to prove Ui,1CV0 for i ∈ I1. But the assumption with k = 0 gives Vi,1 b U0, which
implies Vi,1 C U0. Since Ui,1 C Vi,1 by assumption, we get by transitivity Ui,1 C U0. Since, we also have
U0 C V0, we obtain the expected result Ui,1 C V0.

We now prove (IAk) =⇒ (IAk+1) for k ∈ J1, N − 1K. The assumption of the proposition gives

Vi,k+1 b

U0 ∪
⋃

j∈J1,kK

⋃
i∈Ij

ωi,j

 .
Combined with Property 3 of Proposition 5, this yields

Vi,k+1 C

U0 ∪
⋃

j∈J1,kK

⋃
i∈Ij

ωi,j

 .
Using (4.21) true for k since (IA)k is true and the transitivity of C, we get

Vi,k+1 C V0

Since Ui,j C Vi,j , the transitivity Property gives again Ui,k+1 C V0. This implies (IAk+1) and thus proves
the induction property for k ∈ J1, N − 1K.

This concludes the proof of Proposition 4.9.

4.3 Semiglobal estimates along foliation by hypersurfaces

The previous framework, where we de�ne hypersurfaces by graphs may look a bit rigid for the applications.
This de�nition of these hypersurfaces as graphs was mainly convenient to make the foliation more e�ective
and order the hypersurfaces more easily.

Now, we give a slight variant of Theorem 4.7, more adapted to some possible changes of variables.
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Theorem 4.11. Let Ω ⊂ Rn = Rna×Rnb and P smooth di�erential operator of order m on Ω, analytically
principally normal in {ξa = 0}. Let Φ a di�eomorphism of class C2 from Ω to Ω̃ = Φ(Ω). Assume that

the Geometric Setting of Theorem 1.10 is satis�ed for some D, G, K, φε on Ω̃ (and not on Ω). Assume
further that for any ε ∈ [0, 1 + η), the oriented surface {φε ◦ Φ = 0} = Φ−1(Sε) (well de�ned on Ω) is be
stricly pseudoconvex with respect to P on Φ−1(Sε).

Then, for any ω a neighborhood of Φ−1(S0), there exists an open neighborhood U ⊂ Ω of Φ−1(K) such
that

U C ω.

where C = CΩ,P is related to the operator P de�ned on Ω (see Remark 4.2).

Proof. The proof is exactly the same as that of Theorem 1.10/4.7 except that the local uniqueness estimates
are performed in Ω. So, for any x ∈ Φ−1(Sε), it furnishes some rx, Rx and ρx, so that

BΩ(x, rx)CΩ,P [{φε ◦ Φ > ρx} ∩BΩ(x, 4Rx)] .

But since Φ is an homeomorphism, it implies the existence of r̃x and R̃x (that can still be chosen small

enough) so that Φ−1
[
BΩ̃(Φ(x), r̃x)

]
b BΩ(x, rx) and BΩ(x, 4Rx) b Φ−1

[
BΩ̃(Φ(x), 4R̃x)

]
, so that

Φ−1
[
BΩ̃(Φ(x), r̃x)

]
CΩ,P

(
{φε ◦ Φ > ρx} ∩ Φ−1

[
BΩ̃(Φ(x), 4R̃x)

] )
.

where BΩ (resp. BΩ̃) denote balls in Ω (resp. Ω̃).

The geometric part of the proof of Theorem 1.10/4.7 is then exactly the same, performed in Ω̃,

i.e. replacing rx, Rx by r̃x and R̃x. Once the geometric part is done, the iteration process, per-
formed in Ω, is exactly the same by replacing each geometric term by the preimage in Ω (for instance

Φ−1
[
BΩ̃(Φ(xεki ), 4R̃xεki

)
]
replaces B(xεki , 4Rxεki

) etc.).

5 The Dirichlet problem for some second order operators

In this section, we shall consider a particular class of operators as described in Remark 1.9, that is, with
symbols the form p2(x, ξ) = Qx(ξ) where Qx is a smooth family of real quadratic forms. Assuming that
the variables xa are tangent to the boundary, and that the functions satisfy Dirichlet boundary conditions,
we prove a counterpart of the local estimate of Theorem 3.1 for this boundary value problem. For this,
the main goal to achieve is to prove a Carleman estimate adapted to this boundary value problem. All
local, semiglobal and global results shall then follow.

This situation is of particular interest for the wave equation for which xa is the time variable, which is
always tangent to the boundary of cylindrical domains.

For the sake of simplicity, we shall further assume that the operator principal symbol of P is independent
of the xa variable (we would otherwise need to assume the coe�cients of P to be analytic with respect to
xa). This allows to avoid some additional technicalities in the (already rather technical) proofs.

5.1 Some notation

Here, we shall always assume that the analytic variables are tangential to the boundary, that is

x = (xa, xb) ∈ Rna × Rnb+ , with Rnb+ = Rnb−1 × R+, and xb = (x′b, x
n
b ).

When the distinction between analytic and non-analytic variables is not essential, we shall split the variables
according to

x = (x′, xn) ∈ Rn+ = Rn−1 × R+, with x′ = (xa, x
′
b) ∈ Rna+nb−1, and xn = xnb ∈ R+.

We also denote by ξ′ = (ξa, ξ
′
b) ∈ Rn−1 the cotangential variables and ξn = ξnb the conormal variable, by

D′ = (Da, Dx′b
) = 1

i (∂xa , ∂x′b) the associated tangential derivations and Dn = Dxnb
= 1

i ∂xn the normal
derivation.
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For any r0 > 0, we de�ne

Kr0 =
{
x ∈ Rn+; |xa| ≤ r0, |xb| ≤ r0

}
= BRna (0, r0)×BRnb (0, r0) ∩ {xn ≥ 0}. (5.1)

We denote by C∞0 (Rn+) the space of restrictions to Rn+ of functions in C∞0 (Rn), and by C∞0 (Kr0) the space
of functions C∞0 (Rn+) supported in Kr0 . the trace of a function f ∈ C∞0 (Rn+) at xn = 0 is denoted by
f|xn=0.

We denote by (f, g) =
∫
Rn+
fg, ‖f‖20,+ = (f, f) the L2(Rn+) inner product and norm. For k ∈ N, the

norm ‖·‖k,+ will denote the classical Sobolev norm on Rn+ and ‖·‖k,+,τ the associated weighted norms,
that is,

‖f‖2k,+,τ =
∑

j+|α|≤k

τ2j ‖∂αf‖20,+ , τ ≥ 1.

We also de�ne the tangential Sobolev norms, given by

|f |2k,τ =
∥∥(|D′|+ τ)kf

∥∥2

0,+
∼

∑
j+|α|≤k

τ2j ‖∂αx′f‖
2
0,+ , τ ≥ 1.

We shall also use, for f, g ∈ C∞0 (Rn+), the notation (f, g)0 =
∫
Rn−1 f|xn=0(x′)g|xn=0(x′)dx′.

Finally, for j ∈ N, we denote by Dkτ , the space of tangential di�erential operators, i.e. operators of the
form

P (x,D′, τ) =
∑

j+|α|≤k

aj,α(x)τ jD′α,

and by

σ(P ) = p(x, ξ′, τ) =
∑

j+|α|=k

aj,α(x)τ jξ′α

their principal symbol.

Remark 5.1. Denote T the restriction operator fromD′(Rn) toD′(Rn+). We denoteHk(Rn+) = T (Hk(Rn))
with the restriction Sobolev norms

‖u‖k,+ := inf
{
‖v‖k

∣∣v ∈ Hk(Rn);Tv = u in D′(Rn+)
}

” = ” inf
{
‖v‖k

∣∣v ∈ Hk(Rn); v = u on Rn+
}

We have the property

‖u‖k,+ ≈ sup
|α|≤k

‖∂αu‖L2(Rn+) ,

see Chapter B2. of [Hör85] and Corollary B.2.5 (with di�erent notations H(k,0)(Rn+)) . Moreover, the

set C∞0 (Rn+) = T (C∞0 (Rn)) of restriction of smooth functions is dense in Hk(Rn+) (see Theorem B.2.1 of
[Hör85]). As a conclusion, if L is a linear operator from Hk to H l of norm C that sends ker(T ) ∩Hk into
ker(T ) ∩H l, then, L extends to a linear operator from Hk(Rn+) to H l(Rn+) and we have

‖Lu‖l,+ ≤ C ‖u‖k,+ .

In particular, this will be the case for all �tangential� operators.

5.2 The Carleman estimate

In this section, we state and prove the counterpart of the Carleman estimate (2.4) asociated to the Dirichlet
problem for waves. Recall that the operator Qψε,τ is de�ned in (2.3) and acts in the variable xa only, and
hence, is tangential to the boundary.

Theorem 5.2 (Local Carleman estimate). Let r0 > 0 and P = D2
xnb

+ r(xb, Dxa , Dx′b
) be a di�erential

operator of order two on a neighborhood of Kr0 , with real principal part, where r(xb, Dxa , Dx′b
) does not

depend on xa and is a smooth xnb family of second order operators in the (tangential) variable (xa, x
′
b).
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Let ψ be quadratic polynomial such that ψ′xnb 6= 0 on Kr0 and

{p, {p, ψ}} (x, ξ) > 0, if p(x, ξ) = 0, x ∈ Kr0 and ξa = 0, ξ 6= 0; (5.2)

1

iτ
{pψ, pψ}(x, ξ) > 0, if pψ(x, ξ) = 0, x ∈ Kr0 and ξa = 0, τ > 0, (5.3)

where pψ(x, ξ) = p(x, ξ + iτ∇ψ).
Then, there exist ε > 0, d > 0, C > 0, τ0 > 0 such that for any τ > τ0, we have for all u ∈ C∞0 (Kr0/4)

τ‖Qψε,τu‖21,+,τ ≤ C
(∥∥Qψε,τPu∥∥2

0,+
+ e−dτ

∥∥eτψu∥∥2

1,+,τ
+ τ3|(Qψε,τu)|xn=0|20

+e−dτ |eτψu|xn=0|20 + τ |
(
D(Qψε,τu)

)
|xn=0

|20 + e−dτ |eτψDu|xn=0|20
)
. (5.4)

If moreover ψ′xn > 0 for (x′, xn = 0) ∈ Kr0 , then we have for all u ∈ C∞0 (Kr0/4) such that u|xn=0 = 0,

τ‖Qψε,τu‖21,+,τ ≤ C
(∥∥Qψε,τPu∥∥2

0,+
+ e−dτ

∥∥eτψu∥∥2

1,+,τ

)
. (5.5)

The proof of this theorem relies on a Carleman estimate interpolating between the �boundary elliptic
Carleman estimates� of Lebeau and Robbiano [LR95] and the �partially analytic Carleman estimates� of
Tataru [Tat95] (see also [Hör97]). We �rst state two Corollaries and get to the proof.

Corollary 5.3. Under the assumptions of Theorem 5.2, there exist ε > 0, d > 0, C > 0, τ0 > 0 such that

for any V ∈ L∞(Kr0), W ∈ L∞(Kr0 ;Rn), independent of xa and any τ > τ0 max{1, ‖V ‖
2
3

L∞ , ‖W‖2L∞},
the Carleman estimates (5.4) or (5.5) are satis�ed with P replaced by PV,W = P +W · ∇+ V .

Proof. Applying the Carleman estimates (5.4) or (5.5) for P = PV,W − iW ·D − V , we need to estimate
the term

Qψε,τPu = Qψε,τPV,Wu− iW ·Qψε,τ (Du)− V Qψε,τu
where we used V = V (xb), W = W (xb). Notice �rst that we have

C
∥∥V Qψε,τu∥∥2

0,+
≤ C‖V ‖2L∞

∥∥Qψε,τu∥∥2

0,+
≤ 1

4
τ
∥∥Qψε,τu∥∥2

1,+
,

as soon as τ3/4C ≥ ‖V ‖2L∞ . Next, using (5.6), we write

Qψε,τ (Du) = (D − εψ′′x,xaDa + iτψ′)Qψε,τu,

and consequently

C
∥∥iW ·Qψε,τ (Du)

∥∥2

0,+
≤ C ′‖W‖2L∞

∥∥Qψε,τu∥∥2

1,+
≤ 1

4
τ
∥∥Qψε,τu∥∥2

1,+
,

as soon as τ/4C ′ ≥ ‖W‖2L∞ . For such τ , these two terms may hence be absorbed in the left hand-side of
the inequality. This concludes the proof of the corollary.

Corollary 5.4. Under the assumptions of Theorem 5.2, take R(x,D) a di�erential operator of order 1, with
coe�cients which can be extended to a bounded function in {(za, xb) ∈ Cna × Rnb ; |za| < 5r0, |xb| < 5r0}
which are analytic with respect to za, for �xed xb.

Then, there exist ε > 0, d > 0, C > 0, τ0 > 0 such that for any any τ > τ0, the Carleman estimates
(5.4) or (5.5) are satis�ed with P replaced by PR = P +R.

Proof. Lemma 4.8 of Hörmander [Hör97] yields∥∥Qψε,τR(x,D)u
∥∥

0,+
≤ C

∥∥Qψε,τu∥∥1,+,τ
+ Ce−τd

∥∥eτψu∥∥
1,+,τ

for all u ∈ C∞0 (Kr0/4). Actually, it is stated for the interior case, with the norm ‖·‖1,+,τ replaced by the
norm ‖·‖1,τ . Yet, the estimates used for the proof, (3.13) and (3.14) in [Hör97], are actually made �rst in
the variable xa and then integrated in xb. Since, the variable xa is tangential, the same proof gives the
expected result.

As in Corollary 5.3, we can absorb the term C
∥∥Qψε,τu∥∥1,+,τ

for τ large enough. The second term has

the same form as the right hand side of the Carleman estimate, up to changing d.
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Remark 5.5. This theorem, as well as its consequences may be extended with some modi�cation to
the Neumann case following Lebeau-Robbiano [LR97]. It could also be generalized to a larger class
of operators and boundary condition (satisfying a Lopatinskii condition) following Tataru [Tat96] and
Bellassoued-Le Rousseau [BLR13].

To prove Theorem 5.2, we de�ne the conjugated operator Pψ = eτψPe−τψ = P (x,D + iτψ′), and also

Pψ,ε the conjugate of Pψ with respect to e−
ε
2τ |Da|

2

, that is, such that

e−
ε
2τ |Da|

2

Pψw = Pψ,εe
− ε

2τ |Da|
2

w. (5.6)

Since P is independent on xa, we have

Pψ,ε = P (x,D − εψ′′x,xaDa + iτψ′),

where ψ′′x,xaDa = ψ′′xx
(
(Da, 0)

)
(with the notation of [Hör97]).

When proving the theorem, we shall drop the index + in the norms to lighten the notation; of course,
all inner norms and integrals are meant on Rn+. We �rst need the following proposition.

Proposition 5.6. Under the assumptions of Theorem 5.2, there exist C > 0, τ0 > 0 such that for any
τ > τ0 and f ∈ C∞0 (Kr0), we have

τ‖f‖21,τ ≤ C ‖Pψ,εf‖
2
0 + τ‖Daf‖20 + τ3|f|xn=0|20 + τ |Df|xn=0|20. (5.7)

If moreover ψ′xn > 0 for (x′, xn = 0) ∈ Kr0 , then

τ‖f‖21,τ ≤ C ‖Pψ,εf‖
2
0 + τ‖Daf‖20, for all f ∈ C∞0 (Kr0) such that f|xn=0 = 0. (5.8)

Proof. De�ning Q̃ε2 = 1
2 (Pψ,ε + P ∗ψ,ε) and Q̃

ε
1 = 1

2iτ (Pψ,ε − P ∗ψ,ε), we have

Pψ,ε = Q̃ε2 + iτQ̃ε1,

and denote by q̃εj the principal symbol of Q̃
ε
j , j = 1, 2. We have{

Q̃ε2 = D2
n − 2εψ′′xn,xa(Dn;Da) +Qε2

Q̃ε1 = Dnψ
′
xn + ψ′xnDn + 2Qε1,

(5.9)

where Qε2 ∈ D2
τ and Qε1 ∈ D1

τ with principal symbols

qε2 = ε2
(
ψ′′xn,xaξa

)2 − τ2(ψ′xn)2 + r(x, ξ′ − εψ′′x′,xaξa)− τ2r(x, ψ′x′)

qε1 = r̃(xb, ξ
′ − εψ′′x′,xaξa, ψ

′
x′),

where r̃ is the bilinear form associated with the quadratic form r. Note that, even if it does not appear in
the notation, all these operators depend upon the parameter τ .

With this notation, we hence have pψ = q̃0
2 + iτ q̃0

1 , so that 1
iτ {pψ, pψ} = 2{q̃0

2 , q̃
0
1}. Assumptions (5.2)

and (5.3) then translate respectively into

{q̃0
2 , q̃

0
1}(x, ξ) > 0, if p(x, ξ) = 0, x ∈ Kr0 and ξa = 0, τ = 0; (5.10)

{q̃0
2 , q̃

0
1}(x, ξ) > 0, if pψ(x, ξ) = 0, x ∈ Kr0 and ξa = 0, τ > 0, (5.11)

where the second assertion is a direct consequence of (5.3), and the �rst one follows from (5.2) together
with the fact that, using that p is real, we have

lim
τ→0+

1

iτ
{pψ, pψ} =

∂

∂τ

1

i
{pψ, pψ}

∣∣∣∣
τ=0

= 2 {p, {p, ψ}} .

Next, we have the integration by parts formulæ:{
(g, Q̃ε2f) = (Q̃ε2g, f)− i

[
(g,Dnf)0 + (Dng, f)0 + 2ε(g, ψ′′xn,xaDaf)0

]
,

(g, Q̃ε1f) = (Q̃ε1g, f)− 2i
(
ψ′xng, f

)
0
.

(5.12)
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So, we have for f ∈ C∞0 (Kr0)

‖Pψ,εf‖0 =
∥∥∥Q̃ε2f∥∥∥2

0
+ τ2

∥∥∥Q̃ε1f∥∥∥2

0
+ iτ

[(
Q̃ε1f, Q̃

ε
2f
)
−
(
Q̃ε2f, Q̃

ε
1f
)]
. (5.13)

So, we get, using the integration by parts formulæ (5.12)

‖Pψ,εf‖0 =
∥∥∥Q̃ε2f∥∥∥2

0
+ τ2

∥∥∥Q̃ε1f∥∥∥2

0
+ iτ

(
[Q̃ε2, Q̃

ε
1]f, f

)
+ τBε(f), (5.14)

with the boundary term

Bε(f) =
[
(Q̃ε1f,Dnf)0 + (DnQ̃

ε
1f, f)0 + 2ε(Q̃ε1f, ψ

′′
xn,xaDaf)0

]
− 2

(
ψ′xnQ̃

ε
2f, f

)
0

= 2(ψ′xnDnf,Dnf)0 + (Mε
1f,Dnf)0 + (M ′ε1 Dnf, f)0 + (Mε

2f, f)0, (5.15)

for some tangential operator Mε
1 of order 1 (in ξ′, τ) (note that terms of order two in Dn cancel).

Now that we have made the exact computations, we will make some estimates on the symbols of the
interior part of the commutator. The idea is to tranfer the positivity assumption of the full symbol to
some positivity of a tangential symbol, which will then allow to apply the tangential Gårding.

The �rst step is to perform a factorisation of [Q̃ε2, Q̃
ε
1] with respect to Q̃ε1 and Q̃ε2 to have a tangential

reminder. Since [Q̃ε2, Q̃
ε
1] is of order 2, it can be written i[Q̃ε2, Q̃

ε
1] = C2+C1Dn+C0D

2
n where Ci ∈ Diτ . But

using (5.9), and ψ′xn 6= 0 on Kr0 , we can replace Dn = 1
2ψ′xn

Q̃ε1+D1
τ and D

2
n = Q̃ε2+2εψ′′xn,xa(Dn;Da)−Qε2.

So, in particular, we can write

i[Q̃ε2, Q̃
ε
1] = Bε0Q̃

ε
2 +Bε1Q̃

ε
1 +Bε2. (5.16)

where Bεi ∈ Diτ with real symbol bεi . Now, we need to

� use the assumption to get some positivity of the symbol {pψ, pψ}, this is Lemma 5.7;

� transfer this positivity to {pεψ, pεψ} for ε small enough by approximation, this is Lemma 5.8;

� transfer this information to a tangential information on the symbol, this is Lemma 5.9.

Lemma 5.7. There exist C1, C2 > 0 such that for all (x, ξ) ∈ Kr0 × Rn and τ > 0, we have

(|ξ|2 + τ2) ≤ C1{q̃0
2 , q̃

0
1}(x, ξ) + C2

[
|pψ(x, ξ)|2

|ξ|2 + τ2
+ |ξa|2

]
.

Proof. All the terms are homogeneous of order 2 in (ξ, τ) and continuous on the compact (x, ξ, τ) ∈
Kr0 × {(ξ, τ) ∈ Rn × R+, |ξ|2 + τ2 = 1}. Thus, on this set, the result is a consequence of (5.10), (5.11)

and Lemma A.1 applied to f =
|pψ(x,ξ)|2
|ξ|2+τ2 + |ξa|2 ≥ 0, g = {q̃0

2 , q̃
0
1} and h = 0. The result on the whole

Kr0 × Rn × R+ follows by homogeneity.

Lemma 5.8. There exists ε0 such that for all ε ∈ (0, ε0), there exist C1, C2 > 0 such that for all (x, ξ) ∈
Kr0 × Rn and τ > 0, we have

(|ξ|2 + τ2) ≤ C1{q̃ε2, q̃ε1}(x, ξ) + C2

[
|pεψ(x, ξ)|2

|ξ|2 + τ2
+ |ξa|2

]
.

Proof. By the same argument, we may restrict to the compact (x, ξ, τ) ∈ Kr0×{(ξ, τ) ∈ Rn×R+, |ξ|2+τ2 =
1}. There, the inequality follows from Lemma 5.7 and the continuity of the maps ε 7→ qεj , j = 1, 2 from R
to C1(V ), where V is a neighborhood of Kr0 × {(ξ, τ) ∈ Rn × R+, |ξ|2 + τ2 = 1} in Rn × Rn × R+.

Now, we set

µε(x, ξ′) = (qε1)2 + 2εqε1ψ
′′
xn,xa(ψ′xn ; ξa) + (ψ′xn)2qε2.

The symbol µε(x, ξ′) satis�es the property that µε(x, ξ′) = 0 if and only if there exists ξn real such that

pεψ(x, ξ′, ξn) = 0. This is easily seen by noticing that the zero of qε1 can only be with ξn = − qε1
ψ′xn

.

Notice also that µε(x, ξ′) is a tangential symbol of order 2.
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Lemma 5.9. There exists ε0 such that for all ε ∈ (0, ε0), there exist C1, C2 > 0 such that for all (x, ξ′) ∈
Kr0 × Rn−1 and τ > 0, we have

(|ξ′|2 + τ2) ≤ C1b
ε
2 + C2

[
[µε(x, ξ′)]

2

|ξ′|2 + τ2
+ |ξa|2

]
. (5.17)

Proof. Note �rst that for any (x, ξ′, ξn) with ξn = − q1(x,ξ′)
ψ′xn

, we have q̃ε1(x, ξ′, ξn) = 0 and

pεψ(x, ξ′, ξn) = q̃ε2(x, ξ′, ξn) = (ψ′xn)−2µε(x, ξ′).

Now, assume µε(x, ξ′) = 0 and ξa = 0. Setting ξn = − q1(x,ξ′)
ψ′xn

, we have pεψ(x, ξ′, ξn) = 0. Using Lemma 5.8,

we have {q̃ε2, q̃ε1}(x, ξ′, ξn) > 0. According to the de�nition of Bε2 in (5.16), we have bε2(x, ξ′, ξn) > 0. As a
consequence, we have (

µε(x, ξ′) = 0 and ξa = 0
)

=⇒ bε2(x, ξ′, ξn) > 0.

Moreover, all terms in (5.17) are homogeneous of order 2 in the variables (ξ′, τ) and continuous on (ξ′, τ) 6=
(0, 0). Hence, applying Lemma A.1 below on the compact set Kr0 × {(ξ′, τ) ∈ Rn−1 × R+, |ξ′|2 + τ2 =
1, ξa = 0} yields (5.17) on that set. The conclusion follows by homogeneity.

Taking the real part of (5.14) and using (5.16), we obtain

‖Pψ,εf‖0 − τ Re (Bε(f)) =
∥∥∥Q̃ε2f∥∥∥2

0
+ τ2

∥∥∥Q̃ε1f∥∥∥2

0
+ τ Re (Bε2f, f) + τ Re

(
(Bε0Q̃

ε
2 +Bε1Q̃

ε
1)f, f

)
. (5.18)

Concerning the remainder term, we have

τ |Re
(

(Bε0Q̃
ε
2 +Bε1Q̃

ε
1)f, f

)
| ≤ τ‖f‖0‖Q̃ε2f‖0 + τ |f |1‖Q̃ε1f‖0

≤ τ−1/2
(
τ |f |21,τ + ‖Q̃ε2f‖20 + τ2‖Q̃ε1f‖20

)
. (5.19)

De�ning now
Σ = (Qε1)2 + 2εQε1ψ

′′
xn,xa(ψ′xn ;Da) + (ψ′xn)2Qε2,

with principal symbol µε, and for an operator G with principal symbol µε(x,ξ′)
|ξ′|2+τ2 , the tangential Gårding

inequality in the class S
(

(|ξ′| + τ)2, |dx′|2 + |dξ′|2
(|ξ′|+τ)2

)
(see [Hör85, Chapter XVIII] or [Ler10]), in which

symbols are allowed to depend smoothly upon the variable xn yields, for τ su�ciently large,

|f |21,τ ≤ C Re (Bε2f, f) + Re (Σf,Gf) + ‖Daf‖20. (5.20)

Writing ψ′xnDn = 1
2 (Q̃ε1 − [Dn, ψ

′
xn ]) − Qε1 (where ψ′xn does not vanish), this allows to estimate the full

norm ‖f‖1,τ according to

‖f‖1,τ ≤ C(‖Q̃ε1f‖0 + |f |1,τ ). (5.21)

Recalling the de�nitions of Q̃εi in (5.9), we also have

Σ =

(
1

2
(Q̃ε1 − [Dn, ψ

′
xn ])− ψ′xnDn

)2

+ 2εQε1ψ
′′
xn,xa(ψ′xn ;Da)

+(ψ′xn)2
(
Q̃ε2 −D2

n + 2εψ′′xn,xa(Dn;Da)
)

=

(
1

2
(Q̃ε1 − [Dn, ψ

′
xn ])− ψ′xnDn

)
1

2
(Q̃ε1 − [Dn, ψ

′
xn ]) + 2εQε1ψ

′′
xn,xa(ψ′xn ;Da)

+(ψ′xn)2
(
Q̃ε2 + 2εψ′′xn,xa(Dn;Da)

)
, (5.22)

60



and hence

Σ ∈ (ψ′xn)2Q̃ε2 −
1

2
ψ′xnDnQ̃

ε
1 + 2εψ′′xn,xa

(
(ψ′xn)2Dn +Qε1ψ

′
xn ;Da

)
+D1

τ Q̃
ε
1 +D1

τ +D0
τDn.

We now want to estimate the term Re (Σf,Gf) in (5.20). For this, integrating by parts in the tangential
direction xa, we have∣∣(ψ′′xn,xa ((ψ′xn)2Dn +Qε1ψ

′
xn ;Da

)
f,Gf

)∣∣ ≤ C‖ 〈Da〉 f‖‖f‖1,τ .

This yields

| (Σf,Gf) | ≤ C‖Q̃ε2f‖0‖f‖0 +

∣∣∣∣( 1

2i
ψ′xnQ̃

ε
1f,Gf

)
0

∣∣∣∣
+‖Q̃ε1f‖0‖f‖1,τ + ‖f‖0‖f‖1,τ + C‖ 〈Da〉 f‖‖f‖1,τ

≤
∣∣∣∣( 1

2i
ψ′xnQ̃

ε
1f,Gf

)
0

∣∣∣∣+ C‖f‖1,τ
(
τ−1‖Q̃ε2f‖0 + +‖Q̃ε1f‖0 + τ−1‖f‖1,τ + ‖Daf‖0

)
(5.23)

According to (5.20) and (5.21) and (5.23), this now implies

‖f‖21,τ . Re (Bε2f, f) + ‖Q̃ε1f‖20 +

∣∣∣∣( 1

2i
ψ′xnQ̃

ε
1f,Gf

)
0

∣∣∣∣+ τ−2‖Q̃ε2f‖20 + ‖Daf‖20.

Coming back to (5.18), we obtain, for τ large enough,

τ‖f‖21,τ . ‖Pψ,εf‖20 − τ Re (Bε(f))−
∥∥∥Q̃ε2f∥∥∥2

0
− τ2

∥∥∥Q̃ε1f∥∥∥2

0
+ τ‖Daf‖20 + τ

∣∣∣∣( 1

2i
ψ′xnQ̃

ε
1f,Gf

)
0

∣∣∣∣
. ‖Pψ,εf‖20 − τ Re (Bε(f)) + τ‖Daf‖20 + τ

∣∣∣∣( 1

2i
ψ′xnQ̃

ε
1f,Gf

)
0

∣∣∣∣ .
Recalling te de�nition of Q̃ε1, we have ψ

′
xnQ̃

ε
1 = Dn +G1, where G1 ∈ D1

τ is a di�erential operator of order
1 (in (τ,D′)), we �nally have

τ‖f‖21,τ . ‖Pψ,εf‖
2
0 − τ Re (Bε(f)) + τ‖Daf‖20 + τ |(Dnf +G1f,Gf)0| , (5.24)

where G a tangential pseudodi�erential operator of order zero, Recalling the form of Bε(f) in (5.15) gives
the bound |Bε(f)| ≤ τ2|f|xn=0|20 + |Df|xn=0|20, which concludes the proof of (5.7).

Now if f|xn=0 = 0, all tangential derivatives vanish. With (5.24) and the form of Bε(f) in (5.15), this
yields

τ‖f‖21,τ . ‖Pψ,εf‖
2
0 − 2τ(ψ′xnDnf,Dnf)0 + τ‖Daf‖20,

which proves (5.8) since ψ′xn > 0 for (x′, xn = 0) ∈ K. This concludes the proof of Proposition 5.6.

We turn now to the proof of Theorem 5.2.

Proof of Theorem 5.2. In the proof, we consider functions u ∈ C∞0 (Kr0/4) where Kr is de�ned in (5.1).

Let χ ∈ C∞0 (BRna (0, r0)) such that χ = 1 on BRna (0, r0/2). Setting v = Qψε,τu = e−
ε
2τ |Da|

2

(eτψu)
and f = χ(xa)v(x), we have supp(f) ⊂ Kr0 so that we may apply Proposition 5.6 to f . We have

v − f = (1 − χ)Qψε,τu = (1 − χ)e−
ε
2τ |Da|

2

(χ̌eτψu) for some χ̌ ∈ C∞c (BRna (0, r0/3)) with χ̌ = 1 in a

neighborhood of BRna (0, r0/4). As a consequence of Lemma 2.4, we have, for τ ≥ τ0

‖v‖1,τ ≤ ‖f‖1,τ + Ce−C
τ
ε ‖eτψu‖1,τ (5.25)

Now, it remains to estimate the terms on the RHS of Proposition 5.6 in terms of v. Notice �rst that the
same reasonning with Lemma 2.4 (using that Da is tangential) allows to estimate the boundary terms as:

|f|xn=0|0 ≤ |v|xn=0|0 + Ce−C
τ
ε |eτψu|xn=0|0, (5.26)
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and, with Dv −Df = D
(

(1− χ)e−
ε
2τ |Da|

2

(χ̌eτψu)
)
,

|Df|xn=0|0 ≤ |Dv|xn=0|0 + Ce−C
τ
ε |eτψu|xn=0|0 + Ce−C

τ
ε |eτψ(τψ′ +D)u|xn=0|0

+Ce−C
τ
ε |eτψDu|xn=0|0

≤ |Dv|xn=0|0 + Cτe−C
τ
ε |eτψu|xn=0|0 + Ce−C

τ
ε |eτψDu|xn=0|0 (5.27)

Second, we estimate ‖Pψ,εf‖0 = ‖Pψ,εχv‖0 = ‖χPψ,εv‖0 + ‖[Pψ,ε, χ]v‖0. For the commutator, we write

[Pψ,ε, χ]v = [Pψ,ε, χ]e−
ε
2τ |Da|

2

χ̌eτψu. We notice that [Pψ,ε, χ] is a di�erential operator of order 1 in (D, τ)
with some coe�cients supported on supp(χ′xa) that is, away from supp(χ̌). In particular, Lemma 2.4
implies ‖[Pψ,ε, χ]v‖0 ≤ Ce

−c τε
∥∥eτψu∥∥

1,τ
. This yields

‖Pψ,εf‖0 ≤ ‖Pψ,εv‖0 + Ce−c
τ
ε

∥∥eτψu∥∥
1,τ

(5.28)

Now, it remains to treat the term ‖Daf‖0. Similarly, we obtain

‖Daf‖0 = ‖Da(χv)‖0 ≤ ‖χDav‖0 + ‖χ′xae
− ε

2τ |Da|
2

χ̌eτψu‖0 ≤ ‖Dav‖0 + Ce−c
τ
ε

∥∥eτψu∥∥
0

(5.29)

where we have used again Lemma 2.4.
Let ς a small constant to be �xed later on. We distinguish between frequencies of size smaller and

bigger than ςτ . We get for τ ≥ 1
ς2ε large enough (so that the function s 7→ se−

ε
2τ s

2

is decreasing on

s ≥
√

τ
ε )

‖Dav‖0 = ‖Dae
− ε

2τ |Da|
2

eτψu‖0 ≤ ‖Da1|Da|≤ςτv‖0 + ‖Da1|Da|≥ςτe
− ε

2τ |Da|
2

eτψu‖0

≤ ςτ‖v‖0 + ςτe−
τς2ε

2 ‖eτψu‖0 (5.30)

We may now apply Proposition 5.6 to f . Combining the Carleman estimate (5.7) with (5.28), (5.29),
(5.30), (5.26), (5.27), we obtain, for some C1 > 0 and τ ≥ τ0 with τ0 (depending also on ς, ε)) su�ciently
large,

C1τ‖v‖21,τ ≤ ‖Pψ,εv‖20 + Ce−2c τε
∥∥eτψu∥∥2

1,τ
+ ς2τ3‖v‖20 + ς2τ3e−τς

2ε‖eτψu‖20
+τ3|v|xn=0|20 + τ3e−2c τε |eτψu|xn=0|20 + τ |Dv|xn=0|20 + τe−2c τε |eτψDu|xn=0|20.

Fixing ς ≤ C1/2, this yields, for some d > 0 (ε is �xed already) and τ ≥ τ0,

C1

2
τ‖v‖21,τ ≤ ‖Pψ,εv‖20 + Ce−dτ

∥∥eτψu∥∥2

1,τ

+τ3|v|xn=0|20 + e−dτ |eτψu|xn=0|20 + τ |Dv|xn=0|20 + e−dτ |eτψDu|xn=0|20. (5.31)

Similarly, if moreover ψ′xn > 0 for (x′, xn = 0) ∈ Kr0 , then (5.8) yields for all u ∈ C∞0 (Kr0/4) such that
u|xn=0 = 0,

τ‖v‖21,τ . ‖Pψ,εv‖
2
0 + e−2c τε

∥∥eτψu∥∥2

1,τ
+ ς2τ3‖v‖20 + ς2τ3e−τς

2ε‖eτψu‖20,

and hence

C1

2
τ‖v‖21,τ ≤ ‖Pψ,εv‖20 + e−dτ

∥∥eτψu∥∥2

1,τ
. (5.32)

Rewriting (5.31)-(5.32) in terms of u concludes the proof of Theorem 5.2.

5.3 The local quantitative uniqueness result

The Carleman estimates of the previous section have been proved when P has a very speci�c form. Before
proving the local quantitative uniqueness result, we �rst state them in a more invariant way that can be
obtained by change of coordinates in xb. When doing so, we strengthen the assumptions made on the
operator P , still encompassing the cases of wave and Schrödinger operators (or more generally of the form
of Remark 1.9)

Up to now, and until the end of the section, P will have the following property:
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Assumption 5.1. P is a di�erential operator on Rna × Rnb+ of order two with coe�cients analytic in
the variable xa. Assume moreover that P has principal symbol independent of xa of the form p(x, ξ) =
qxb(ξa)+ q̃xb(ξb), where qxb , q̃xb are smooth xb-families of real quadratic forms on Rna and Rnb respectively.

Moreover, if V ∈ L∞(Rnb+ ) andW ∈ L∞(Rnb+ ;Rn), independent of xa, we denote PV,W = P+W ·∇+V .

The proof of the local quantitative uniqueness will then be essentially the same as in the boundaryless
case. The following Proposition is the counterpart, in the boundary case, of the end of the �rst step in
Section 3 (hence containing the geometrical part of the proof of the local uniqueness result).

Proposition 5.10. Let x0 ∈ {xn = 0} and let P satisfying Assumption 5.1.
Assume that {xn = 0} is non-characteristic with respect to P .
Let φ be a function de�ned in a neighborhood of x0 in Rn such that φ(x0) = 0, and {φ = 0} is a C2

strongly pseudoconvex oriented surface at x0 in the sense of De�nition 1.6.
Then, there exists R0 > 0 and a smooth function ψ : B(x0, 4R0)→ R which is a quadratic polynomial

with respect to xa ∈ Rna , such that for any R ∈ (0, R0], there exist ε, δ, ρ, r, d, τ0, C > 0, such that we have

1. δ ≤ d
8 and (3.13)-(3.14)-(3.15),

2. for any τ ≥ τ0, the Carleman estimate (5.4) holds for P , for all u ∈ C∞0 (Rn+) with supp(u) ⊂
B(x0, 4R).

If moreover φ′xn(x0) > 0, the Carleman estimate (5.5) holds for P for all u ∈ C∞0 (Rn+) with supp(u) ⊂
B(x0, 4R) and u|xn=0 = 0.

The estimates can also be made uniform for τ > τ0 max{1, ‖V ‖
2
3

L∞ , ‖W‖2L∞} if P is replaced by PW,V ,
as in Corollary 5.3.

Proof. First, according to non-charactericticity assumption, we have q̃xb(ξb) 6= 0 for xb = (x′b, 0) and ξ′b =
0, ξnb = 1. We may thus place ourselves in normal geodesic coordinates for q̃xb in Rnb , in a su�ciently small
neighborhood of {xn = 0}. More precisely (see [Hör85, Appendix C.5]) there exists a local di�eomorphism
Ψb from a neighborhood of x0

b in Rnb+ to a neighborhood of 0 in Rnb+ such that, setting Ψ := IdRna ⊗Ψb,
the principal part of Ψ∗P takes the form (ξnb )2 + r(xb, ξa, ξ

′
b). From the function φ ◦ Ψ−1 (still de�ning

a strictly pseudoconvex surface for Ψ∗P since this property is invariant), we can construct a quadratic
polynomial ψ̃ exactly as in Lemma 3.4/Corollary 3.6 such that the Carleman estimates (5.4)-(5.5) hold for
Ψ∗P and ψ̃. We then use Corollary 5.4 and then Corollary 5.3 to allow, �rst, lower order terms analytic
in xa and then lower order terms independent on xa with the right estimates (note that both properties
are invariant by our change of coordinates in xb). Applying then the di�eomorphism Ψ to come back to
the original setting yields the sought estimate with ψ = ψ̃ ◦Ψ, which remains a quadratic polynomial with
respect to the variable xa (only) since Ψ := IdRna ⊗Ψb. This proves Item 2.

Finally, the geometric assertion of Item 1 comes from the application of Lemma 3.4 in the geodesic
coordinates. There, using the distance N(x, y) = |Ψ−1(x) − Ψ−1(y)| allows to obtain (3.13)-(3.14)-(3.15)
with euclidian balls as claimed by Item 1.

The aim of this section is now to prove the following two local results, namely local quantitative
uniqueness up to and from the boundary.

Theorem 5.11 (Local quantitative uniqueness up to the boundary). Let x0 ∈ {xn = 0} and P satisfying
Assumption 5.1. Assume that {xn = 0} is non-characteristic with respect to P .

Assume that there is a function φ de�ned in a neighborhood of x0 in Rn such that φ(x0) = 0, and
{φ = 0} is a C2 strongly pseudoconvex oriented surface at x0 in the sense of De�nition 1.6 and such that
φ′xn(x0) > 0.

Then there exists R0 > 0 such that for any R ∈ (0, R0), there exist r > 0, ρ > 0 for any ϑ ∈ C∞0 (Rn)
such that ϑ(x) = 1 on a neighborhood of {φ ≥ 2ρ} ∩B(x0, 3R), for all c1, κ > 0 there exist C, κ′, β, τ̃0 > 0
such that we have∥∥Mβµ

c1µσr,c1µu
∥∥

1,+
≤ Ceκµ

(∥∥Mµ
c1µϑc1µu

∥∥
1,+

+ ‖Pu‖L2(B(x0,4R)∩Rn+)

)
+ Ce−κ

′µ ‖u‖1,+ .

for all µ ≥ τ̃0 and u ∈ C∞0 (Rn+) such that u|xn=0 = 0.
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Moreover, under the same assumptions, there exists C0, κ
′, β, τ̃0 > 0 such that for all V ∈ L∞(Rnb),

W ∈ L∞(Rnb ;Rn) the previous estimate is still true with P replaced by PW,V = P + W · ∇ + V with C

replaced by C0 max {1, ‖W‖L∞} and uniformly for all µ ≥ τ̃0 max{1, ‖V ‖
2
3

L∞ , ‖W‖
2
L∞}.

This theorem is proved similarly as in the case without boundary. See the details in the proof of the
related Theorem 5.12 below.

Theorem 5.12 (Local quantitative uniqueness from the boundary). Let x0 and P satisfying Assumption
5.1.

Assume that {xn = 0} is non-characteristic with respect to P .
Assume that the function φ(x) = −xn satis�es the property of De�nition 1.6 at x0.
Then there exists R0 > 0 such that for any R ∈ (0, R0), there exist r > 0 for all c1, κ > 0 there exist

C, κ′, β, τ̃0 > 0 such that we have∥∥Mβµ
c1µσr,c1µu

∥∥
1,+
≤ Ceκµ

(
‖Dnu‖L2(B(x0,4R)∩{xn=0} + ‖Pu‖L2(B(x0,4R)∩Rn+)

)
+ Ce−κ

′µ ‖u‖1,+ .

for all µ ≥ τ̃0 and u ∈ C∞0 (Rn+) such that u|xn=0 = 0.
The same dependence of the constants holds if P is replaced by PW,V as in Theorem 5.11

Proof. The proof is very similar to the proof of Theorem 3.1 in Section 3, using the Carleman estimate (5.4)
of Theorem 5.2 . We only sketch it and underline the di�erences with respect to the boundaryless case.
We moreover added the potential V with respect to the general case; we need also check that it is painless
in the proof.

Step 1: The geometric setting. We start by choosing φ = −xn. The surface {φ = 0} = {−xn = 0} is
non characteristic by assumption, and according to Remark 1.9, is hence a strongly pseudoconvex oriented
surface for P . Proposition 5.10 furnishes an appropriate convexi�ed ψ, polynomial of degree two in the
variable xa, that satis�es the desired geometric conditions, together with the Carleman estimate (5.4). We
now follow the proof of the boundaryless case.

Step 2: Using the Carleman estimate. The point is to use the Carleman estimate (5.4) with weight
ψ, applied to the (compactly supported) function w = σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u.

Similarly, using the same support property supp(χδ) ⊂]− 8δ, δ[, and Lemma 2.13, we write∥∥Qψε,τPW,V w∥∥0,+
≤

∥∥Qψε,τσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)PW,V u
∥∥

0,+
+
∥∥Qψε,τ [σ2RσR,λχδ,λ(ψ)χ̃δ(ψ), PW,V ]u

∥∥
0,+

≤ e
τ2

λ eδτ ‖PW,V u‖L2(B(x0,4R)∩{xn≥0}) +
∥∥Qψε,τ [σ2RσR,λχδ,λ(ψ)χ̃δ(ψ), PW,V ]u

∥∥
0,+

.

Next, Lemma 3.7 still holds in Rn+ since xa is a tangential variable (see Remark 5.1). Hence, the commutator
term is bounded by∥∥Qψε,τ [σ2RσR,λχδ,λ(ψ)χ̃δ(ψ), P ]u

∥∥
0,+

≤ Ce2δτ
∥∥∥M2µ

λ ϑλu
∥∥∥

1,+

+Cλ1/2τN
(
e−

εµ2

4τ + e−8δτ + eδτ−cµ
)
e
τ2

λ eδτ ‖u‖1,+ ,

with some ϑ (equal to one in a neighborhood of {φ ≥ 2ρ}∩B(x0, 3R)) supported in {φ > ρ} = {xn < −ρ}.
Moreover, following Remark 3.8, we can get uniform estimates for the commutator of PW,V by replacing

C by C0 max
{

1, ‖W‖L∞(Rnb )

}
. We will not write it any more for sake of clarity but it appears multiplically

in all the estimates.
Since the operator Mµ

c1µ only applies in the tangential variable xa, we have
∥∥Mµ

c1µϑc1µu
∥∥

1,+
≤

‖ϑc1µu‖1,+. Moreover, since ϑ is supported in {xn < −ρ} and ϑc1µ = e−
|Da|2
c1µ ϑ is a regularization in the

variable xa, ϑc1µ is also supported in {xn < −ρ} and ϑc1µ(x) = 0 if xn ≥ 0. In particular, ‖ϑc1µu‖1,+ = 0.
That is ∥∥Qψε,τPW,V w∥∥0,+

≤ Ce
τ2

λ eδτ ‖PW,V u‖L2(B(x0,4R)∩Rn+)

+Cλ1/2τN
(
e−

εµ2

4τ + e−8δτ + eδτ−cµ
)
e
τ2

λ eδτ ‖u‖1,+ .
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The other term in the Carleman estimate that we have to check are

τ |
(
D(Qψε,τw)

)
|xn=0

|20 + e−dτ |eτψDw|xn=0|20 ≤ Cτ |eτψDnw|xn=0|20, (5.33)

where we have used that u|xn=0 = w|xn=0 = 0. This also implies

Dnw|xn=0 = (σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)Dnu)|xn=0.

Since
∥∥eτψχδ,λ(ψ)

∥∥
L∞
≤ Cλ1/2eδτe

τ2

λ thanks to Lemma 2.13, the left hand-side of (5.33) is bounded by

Cλe2δτe2 τ
2

λ τ |Dnu|2L2(B(x0,4R)∩{xn=0}).
So, combining the Carleman estimate of Corollary 5.3 and the previous bounds, we have proved for all

τ ≥ τ0 max{1, ‖V ‖
2
3

L∞}, µ ≥ 1, 1
Cµ ≤ λ ≤ Cµ,

τ1/2
∥∥Qψε,τσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u

∥∥
1,+,τ

≤ Ce
τ2

λ eδτ ‖PW,V u‖L2(B(x0,4R)∩Rn+)

+Cλ1/2τ1/2eδτe
τ2

λ |Dnu|L2(B(x0,4R)∩{xn=0})

+Cλ1/2τN
(
e−

εµ2

4τ + τe−8δτ + eδτ−cµ
)
e
τ2

λ eδτ ‖u‖1,+ .

So, denoting D = eκµ
(
‖Dnu‖L2(B(x0,4R)∩{xn=0}) + ‖Pu‖L2(B(x0,4R)∩Rn+)

)
, we can rewrite it as

∥∥Qψε,τσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u
∥∥

1,+,τ
≤ Cµ1/2eδτeC

τ2

µ e−κµD

+Cµ1/2τN
(
e−

εµ2

4τ + τe−8δτ + eδτ−cµ
)
eC

τ2

λ eδτ ‖u‖1,+ .

Step 3: A complex analysis argument. We now proceed exactly as in the boundaryless case. For any
test function f ∈ C∞0 (Rn+), we de�ne the distribution hf (with β > 0 to be chosen later on)

〈hf , w〉E′(R),C∞(R) := 〈σ2RσR,λχδ,λ(ψ)χ̃δ(ψ)w(ψ)u, (Mβµf)〉H1
0 (Rn+),H−1(Rn+).

We proceed similarly, noticing at the end that C∞0 (Rn+) is dense in the dual space H−1(Rn+) and that
all operations are tangential. The analogue of Lemma 3.10 is proved with the same complex analysis
argument (which does not involve the x-space, but only complexi�es the Carleman large parameter τ),

using Lemma 3.11. This yields the analogous result for µ ≥ Cτ0 max{1, ‖V ‖
2
3

L∞}.
Finally, it remains to transfer the estimate obtained on

∥∥Qψε,τσ2RσR,λχδ,λ(ψ)χ̃δ(ψ)u
∥∥

1,+,τ
to an esti-

mate on
∥∥Mβµ

c1µσr,c1µu
∥∥

1,+
. The computations of the end of Section 3.3 remain valid in the present context

for the following two reasons: (a) the operators Mβµ
c1µ are tangential and the associated estimates of Sec-

tion 2.4.1 still hold; (b) these computations only rely on the geometric fact that σR = χδ(ψ) = χ̃δ(ψ) =
ηδ(ψ) = 1 on a neighborhood of supp(σr), which now follows from Proposition 5.10.

5.4 The semiglobal estimate with boundary

In this section, we prove a version of Theorem 1.10/4.7 adapted to the boundary value problem. More
precisely, the following result considers, under the assumptions of the above uniqueness results, the Dirichlet
boundary condition at the bottom and the top of the graph, with an observation at the bottom.

Recall that in the present context, the analytic variable is supposed to be tangential to the boundary.
In the following results (as opposed to the boundaryless case), this translates into the fact that we assume
that, in the splittings x = (x′, xn) ∈ Rn−1 × [0, `0] and x = (xa, xb) ∈ Rna × Rnb , the variable xn = xnb
always belongs to the xb variables.

In Theorem 5.13 below, we state the semiglobal estimate with an observation from the boundary (i.e.
the �rst hypersurface S0 is a Dirichlet boundary) and if the last hypersurface S1 touches a (Dirichlet)
boundary. This is the most intricate situation. The proof is the same in the cases where the last hyper-
surface does not touch the boundary, or if we have an internal observation around the �rst surface. We do
not state these cases for the sake of concision.
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Theorem 5.13. Let D be a bounded open subset of Rn−1 with smooth boundary. Let G = G(x′, ε) ∈
C1(D × [0, 1 + η)), such that

� For all ε ∈ (0, 1], we have {x′ ∈ Rn−1, G(x′, ε) ≥ 0} = D

� for all x′ ∈ D, the function ε 7→ G(x′, ε) is strictly increasing

� for all ε ∈ (0, 1], we have {x′ ∈ Rn−1, G(x′, ε) = 0} = ∂D

We further set
`0 = max

x′∈D
G(x′, 1), G(x′, 0) = 0, S0 = D × {xn = 0} ,

and, for ε ∈ (0, 1],

Sε = {(x′, xn) ∈ Rn, xn ≥ 0 and G(x′, ε) = xn} = (D × R) ∩ {(x′, xn) ∈ Rn, G(x′, ε) = xn},
K = {x ∈ Rn, 0 ≤ xn ≤ G(x′, 1)}.

We let Ω be a neighborhood of K in Rn−1 × [0, `0] and D̃ be a neighborhood of D in Rn−1.
Let P satisfying Assumption 5.1. Assume that {xn = 0} and {xn = `0} are non-characteristic with

respect to P .
Assume also that for any ε ∈ [0, 1], the function

φε(x
′, xn) := G(x′, ε)− xn

is strictly pseudoconvex with respect to P on the whole Sε.
Then, there exist a neighborhood U of K and constants κ,C, µ0 > 0 such that for all for all u ∈

C∞0 (Rn−1 × [0, `0]) satisfying

u|xn=0 = u|xn=`0 = 0, on D̃

we have, with PV = P + V

‖u‖L2(U) ≤ Ce
κµ
(∥∥Dnu|xn=0

∥∥
L2(D̃)

+ ‖Pu‖L2(Ω)

)
+
C

µ
‖u‖H1(Rn−1×[0,`0])

for all µ ≥ µ0.
Moreover, under the same assumptions, there exists C0, κ

′, β, τ̃0 > 0 such that for all V ∈ L∞(Rnb),
W ∈ L∞(Rnb ;Rn) the previous estimate is still true with P replaced by PW,V = P + W · ∇ + V with C

replaced by C0 max {1, ‖W‖L∞} and uniformly for all µ ≥ τ̃0 max{1, ‖V ‖
2
3

L∞ , ‖W‖
2
L∞}.

Proof. For simplicity, we �rst make the proof for V = 0 and we will check the dependence in V at the end.
We will use the same scheme of proof as for Theorem 4.7. We �rst note that the notion of C can be

extended to the case when there is a boundary and the variables ξa are tangential to this boundary. Then,
the local uniqueness results of Corollary 4.6, and Theorem 5.11, can be written as

B(x0, r)C
[
{φ > ρ} ∩B(x0, 4R)

]
(5.34)

as long as B(x0, 4R) ∩ {xn = 0} = ∅. Indeed, in (5.34), the case where B(x0, 4R) ∩ {xn = `0} = ∅ follows
from the internal quantitative uniqueness result (e.g. Corollary 4.6), whereas the case �up to the boundary�
B(x0, 4R)∩{xn = `0} 6= ∅ follows from Theorem 5.11. To apply this theorem in this context, one needs to
make the change of variables xn 7→ `0 − xn, which transforms {xn ≤ `0} into Rn+ and φε = G(x′, ε) − xn
to φ̃ε := G(x′, ε) − (`0 − xn). The condition ∂xn φ̃ε = −∂xnφε = 1 > 0 is satis�ed, the surface {xn = 0}
(new coordinates) remains noncharacteristic; the pseudoconvexity assumption is invariant as well.

Claim: For any ω̃ open neighborhood of S0 = D × {xn = 0}, there exists an open neighborhood U of
K (for the topology of Rn−1 × [0, `0]) such that

U C ω̃.
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The claim can be proved with almost the same proof as that of Theorem 4.7, but using in addition Theorem
5.11 instead of only Theorem 3.1. So, we have to ensure that in the proof, we only apply Theorem 5.11 for
some points x

εj
i with B(x

εj
i , 4R

εj
i )∩{xn = 0} = ∅. This is the point of Remark 4.10, which then allows to

prove the Claim as in Theorem 4.7.

Now, let x0 ∈ D×{xn = 0}. We apply Theorem 5.12 with Rx small enough so that Rn−1×{xn = 0}∩
B(x,Rx) ⊂ {xn = 0} × D̃ and B(x,Rx) ⊂ Ω. It gives rx so that for some β, κ, C, κ′, µ0 > 0,∥∥∥Mβµ

c1µσ
x0

r,c1µu
∥∥∥

1,+
≤ Ceκµ

(∥∥Dnu|xn=0

∥∥
L2(D̃)

+ ‖Pu‖L2(Ω)

)
+ Ce−κ

′µ ‖u‖1,+ .

where σx
0

r is centered in x0. By compactness of D, we can cover it by a �nite number of such balls(
B(xi, ri)

)
i∈I . Pick ϑ ∈ C

∞
0 (Rn−1× [0, `0]) with supp(ϑ) ⊂ ∪i∈IB(xi, ri) so that ϑ = 1 in a neighborhood

ω̃ of S0. Lemma 2.12 gives that for functions σx
i

ri equal to one on B(xi, ri), the estimate∥∥M2βµ
µ ϑµu

∥∥
m−1

≤
∑
i∈I

∥∥∥Mβµ
c1µσ

xi

ri,c1µ
u
∥∥∥

1,+
+ Ce−cµ ‖u‖1,+

Now, apply the Claim with the selected ω̃ and for some ϑ̃ ∈ C∞0 (U ∩ Rn−1 × [0, `0]) equal to 1 in a
neighborhood of K. For some κ1 < min(c/2, κ′), there exist C1, κ

′
1 > 0 so that∥∥∥Mαµ

µ ϑ̃µu
∥∥∥

1,+
≤ Ceκ1µ

(∥∥M2βµ
µ ϑµu

∥∥
m−1

+ ‖Pu‖L2(Ω)

)
+ Ce−κ

′
1µ ‖u‖1,+ .

This implies, for some κ2, κ
′
2, C > 0,∥∥∥Mαµ

µ ϑ̃µu
∥∥∥

1,+
≤ Ceκ2µ

(∥∥Dnu|xn=0

∥∥
L2(D̃)

+ ‖Pu‖L2(Ω)

)
+ Ce−κ

′
2µ ‖u‖1,+ .

We �nish the proof as in Theorem 1.10 once Theorem 4.7 is proved, taking into account Remark 5.1.

Now, if P is replaced by PW,V , we want to obtain the uniformity with respect to the size of V and W .
It is clear that the proof of the Theorem involves a �nite number of applications of Theorem 5.11 and 5.12.
Indeed, the scheme of proof of Theorem 4.7 only involves a �nite number of applications of the geometric
propagation of the property C. They can be divided in two categories: the general ones described in
Proposition 4.5 that are completely independent of the operator P (so, the constants will be independent
of V and W ) and those using Theorems 5.11 and 5.12 where the dependence of the constants µ0 and
C is explicitly described. Note also that in all the properties (propagation, transitivity, simpli�cation...)
that we prove about some relations C, once κ is �xed, the µ0 corresponding to some relations is always
transformed into the some linear combination (with universal constants) of the µ0 corresponding to the
previous ones. This is the same for the constants C involved in C. Finally, a �nite number of applications

of these rules will always conclude with the restriction of the form µ ≥ τ̃0 max{1, ‖V ‖
2
3

L∞ , ‖W‖
2
L∞} and C

of the form C0 max {1, ‖W‖L∞}, once κ is �xed.

6 Applications

We now give applications of the above main results, namely Theorem 1.10 and, in the case with boundary
Theorem 5.13 to the wave and Schrödinger operators. In these applications, we study an evolution equation
in the analytic variable. We thus have na = 1, nb = n − 1 = dim(M) and we denote accordingly t = xa
the time variable and x = xb the space variable. In this section, we prove general versions of Theorems 1.1
and 1.4: we add (complex valued) lower order terms that are analytic in time. We also provide uniform
estimates with respect to these lower order terms if they are time independent.

The proof consists each time in the application of the quantitative estimates of Theorem 5.13 and then
using energy estimates to relate the energy to the initial data and source term. Note that the �rst step,
the quantitative unique continuation itself, does not see the lower order terms. For instance, Theorem 6.6
below is equally valid for the Schrödinger equation i∂t + ∆g, the heat equation ∂t−∆g, Ginzburg-Landau
eiθ∂t + ∆g, etc.
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6.1 The wave equation

Our result for the wave equation can be formulated as follows.

Theorem 6.1. Let M be a compact Riemannian manifold with (or without) boundary, ∆g the Laplace-
Beltrami operator onM, and

P = ∂2
t −∆g +W0∂t +W1 · ∇+ V

with V,W0,W1,div(W1) bounded and depending analytically on the variable t ∈ (−T, T ).
For any nonempty open subset ω of M and any T > L(M, ω), there exist C, κ, µ0 > 0 such that for

any (u0, u1) ∈ H1
0 (M)× L2(M), f ∈ L2((−T, T )×M) and associated solution u of Pu = f in (−T, T )×M,

u|∂M = 0 in (−T, T )× ∂M,
(u, ∂tu)|t=0 = (u0, u1) inM,

(6.1)

we have, for any µ ≥ µ0,

‖(u0, u1)‖L2×H−1 ≤ Ceκµ
(
‖u‖L2((−T,T );H1(ω)) + ‖f‖L2((−T,T )×M)

)
+
C

µ
‖(u0, u1)‖H1×L2 . (6.2)

If moreover all coe�cients of P are analytic in t and x, and ∂M = ∅, there exists ϕ̃ ∈ C∞0 ((−T, T )× ω)
such that for any s ∈ R, we have

‖(u0, u1)‖L2×H−1 ≤ Ceκµ
(
‖ϕ̃u‖H−s((−T,T )×M) + ‖f‖L2((−T,T )×M)

)
+
C

µ
‖(u0, u1)‖H1×L2 .

If ∂M 6= ∅ and Γ is a non empty open subset of ∂M, for any T > L(M,Γ), there exist C, κ, µ0 > 0 such
that for any (u0, u1) ∈ H1

0 (M) × L2(M), f ∈ L2((−T, T ) ×M) and associated solution u of (6.1), we
have

‖(u0, u1)‖L2×H−1 ≤ Ceκµ
(
‖∂νu‖L2((−T,T )×Γ) + ‖f‖L2((−T,T )×M)

)
+
C

µ
‖(u0, u1)‖H1×L2 . (6.3)

Finally, if V , W0 and W1 are time-independent then we have the following stronger result. There exist
C0, κ, µ0 > 0 such that for any (u0, u1) ∈ H1

0 (M)×L2(M), f ∈ L2((−T, T )×M) and associated solution
u of (6.1), and for any V,W0,W1,div(W1) bounded in the x-variable (all independent of t), estimates (6.2)

and (6.3) hold uniformly for all µ ≥ µ0 max{1, ‖V ‖
2
3

L∞ , ‖W0‖2L∞ , ‖W1‖2L∞} with constant

C = C0 exp
(
C0 max

{
‖V ‖L∞(M) , ‖W0‖L∞(M) , ‖W1‖L∞(M) , ‖div(W1)‖L∞(M)

})
.

Remark 6.2. Using Lemma A.3 and the admissibility ‖∂νu‖L2(]−T,T [×Γ) ≤ C ‖(u0, u1)‖H1×L2 , the previ-
ous estimates can be written as in Corollary 1.2 with some constants depending explicitly on the norms
of the lower order terms.

Theorem 6.1 above is a consequence of the following result, together with basic energy estimates for
solutions to the wave equation.

Theorem 6.3. Let M be a compact Riemannian manifold with (or without) boundary, ∆g the Laplace-
Beltrami operator onM, and P = ∂2

t −∆g +R with R = R(t, x, ∂t, ∂x) is a di�erential operator of order
one on (−T, T )×M, bounded in the x-variable and depending analytically on the variable t ∈ (−T, T ) at
any x ∈M.

For any nonempty open subset ω ofM and any T > L(M, ω), there exist ε, C, κ, µ0 > 0 such that for
any u ∈ H1((−T, T )×M) and f ∈ L2((−T, T )×M) solving{

Pu = f in (−T, T )×M,
u|∂M = 0 in (−T, T )× ∂M,

(6.4)

we have, for any µ ≥ µ0,

‖u‖L2((−ε,ε)×M) ≤ Ce
κµ
(
‖u‖L2((−T,T );H1(ω)) + ‖f‖L2((−T,T )×M)

)
+
C

µ
‖u‖H1((−T,T )×M) .
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If moreover M and the metric g and lower order terms R are analytic, and ∂M = ∅, there exists ϕ̃ ∈
C∞0 ((−T, T )× ω) such that for any s ∈ R, we have

‖u‖L2((−ε,ε)×M) ≤ Ce
κµ
(
‖ϕ̃u‖H−s((−T,T )×M) + ‖f‖L2((−T,T )×M)

)
+
C

µ
‖u‖H1((−T,T )×M) .

If ∂M 6= ∅ and Γ is a non empty open subset of ∂M, for any T > L(M,Γ), there exist ε, C, κ, µ0 > 0
such that for any u ∈ H1((−T, T )×M) and f ∈ L2((−T, T )×M) solving (6.4), we have

‖u‖L2((−ε,ε)×M) ≤ Ce
κµ
(
‖∂νu‖L2((−T,T )×Γ) + ‖f‖L2((−T,T )×M)

)
+
C

µ
‖u‖H1((−T,T )×M) .

Finally, if all lower order terms are time-independent, that is if R = W0∂t +W1 · ∇+ V does not depend
on t, then we have the following stronger result. There exist ε, C0, κ, µ0 > 0 such that for any u ∈
H1((−T, T ) ×M) and f ∈ L2((−T, T ) ×M) solving (6.4) and for any V,W0 ∈ L∞(M) and W1 a L∞

vector �eld on M, all above estimates hold uniformly for all µ ≥ µ0 max{1, ‖V ‖
2
3

L∞ , ‖W0‖2L∞ , ‖W1‖2L∞}
and C replaced by C0 max {1, ‖W‖L∞}.

We �rst prove Theorem 6.3 and then conclude with the proof of Theorem 6.1.

Proof of Theorem 6.3. We only prove here the more complicated case of the boundary observation. The
internal observation case is simpler and follows the same proof. To transport the information from one
point x0 to another point x1, the idea is to build nice coordinates in a neighborhood of a path between
x0 and x1. In these coordinates, we construct an appropriate foliation in which to apply our semi-global
estimate. To construct these coordinates, we follow the presentation of Lebeau [Leb92, pp 21-22].

We �x a point x1 ∈ M. We can �nd x0 ∈ Γ and a path γ : [0, 1] →M of length `0 with L(M,Γ) <
`0 < T (see the de�nition of L(M,Γ) in (1.3)) so that γ(0) = x0 and γ(1) = x1. Moreover, we can impose
that  γ does not have self intersection

γ(s) ∈M for s ∈]0, 1[
γ̇(0) and γ̇(1) are orthogonal to ∂M.

According to Lemma 6.4 below, we can �nd local coordinates (w, xn) near γ in which M is de�ned by
0 ≤ xn ≤ `0, the path γ by γ(s) = (0, s`0) and the metric is given by the matrix m(w, xn) ∈Mn(R) with

m(w, xn) =

(
m′(xn) 0

0 1

)
+OMn(R)(|w|), for w ∈ BRn−1(0, δ), δ > 0, (6.5)

with m′(xn) ∈ Mn−1(R) (uniformly) de�nite symmetric. With these coordinates in the space variable,
and still using the straight time variable, the symbol of the wave operator is given by

p(t, w, xn, τ, ξw, ξn) = p(w, xn, τ, ξw, ξn) = −τ2 + 〈m(w, xn)ξ, ξ〉, ξ = (ξw, ξn), (6.6)

where we have used τ for the dual of the time variable and ξw, ξn for the dual to w ∈ BRn−1(0, δ) and
xn ∈ [0, `0].

We now aim to apply Theorem 5.13. Pick again t0 with `0 < t0 < T . For b < δ small, to be �xed later
on, we de�ne

xn = l, x′ = (t, w), D =

{
(t, w)

∣∣∣∣(wb )2

+
( t
t0

)2

≤ 1

}
G(t, w, ε) = ε`0ψ

(√(w
b

)2

+
( t
t0

)2
)
, φε(t, w, xn) := G(t, w, ε)− xn, ε ∈ [0, 1]

where ψ is such that

ψ even, ψ(±1) = 0, ψ(0) = 1,

ψ(s) ≥ 0, |ψ′(s)| ≤ α, for s ∈ [−1, 1],

69



with 1 < α < t0
`0
. This is possible since t0

`0
> 1.

Note also that the point (t = 0, w = 0, xn = `0) corresponding in the local coordinates to x1 belongs
to {φ1 = 0}. We have

dφε(t, w, xn) = ε`0

((w
b

)2

+
( t
t0

)2
)−1/2

ψ′

(√(w
b

)2

+
( t
t0

)2
)(

tdt

t20
+
wdw

b2

)
− dxn.

Given the form of the principal symbol of the wave operator in these coordinates (see (6.5)-(6.6)), we
obtain

p(w, xn, dφε(t, w, xn)) = −ε2`20
t2

t40

((w
b

)2

+
( t
t0

)2
)−1

|ψ′|2

+`20
ε2

b4
〈m′(xn)w,w〉

((w
b

)2

+
( t
t0

)2
)−1

|ψ′|2 + 1

+O(|w|2)

(
1 +

ε2`20
b4
|w|2

((w
b

)2

+
( t
t0

)2
)−1

|ψ′|2
)
,

where |ψ′|2 is taken at the point

(√(
w
b

)2

+
(
t
t0

)2
)
. Now, since α < t0

`0
and m′(xn) is uniformly (for

xn ∈ [0, `0]) de�nite positive, there is η > 0 so that for |w| ≤ b small enough, we have

1 +O(|w|2) ≥ α2 `
2
0

t20
η

〈m′(xn)w,w〉+O(|w|2)|w|2 ≥ 1

2
〈m′(xn)w,w〉 ≥ 0.

Hence, there is a su�ciently small neighborhood (taking again b small enough) of the path (i.e. of w = 0),
in which we have (for any ε ∈ [0, 1]), and any (t, w, xn) ∈ D × [0, `0]

p(w, xn, dφε(t, w, xn)) ≥ −ε
2

t20
`20

( t
t0

)2
((w

b

)2

+
( t
t0

)2
)−1

|ψ′|2 + α2 `
2
0

t20
+ η

≥ −`
2
0

t20
|ψ′|2 + α2 `

2
0

t20
+ η ≥ η.

So, the surface {φε = 0} is noncharacteristic for any ε ∈ [0, 1] and, therefore, strictly pseudoconvex with
respect to the wave operator, see Remark 1.9.

Moreover, since b can be chosen arbitrary small and x0 ∈ Γ open, we can select b small enough so that
in the chosen coordinates, we have D ⊂ [−t0, t0] × Γ. Therefore, applying Theorem 5.13 in the chosen
coordinates and writing (with a slight abuse of notation) the �nal result in an invariant way, we get

‖u‖L2(U) ≤ Ce
κµ
(
‖∂νu‖L2((−T,T )×Γ) + ‖Pu‖L2((−T,T )×M)

)
+
C

µ
‖u‖H1((−T,T )×M) ,

where U is a neigborhood (in the local coordinates) of {φ1 = 0} and in particular a neighborhood of x1 (in
the global coordinates). Note, that we actually apply the Theorem to χu with χ ∈ C∞(]−T, T [×M) so that
in the coordinate charts, χu ∈ C∞0 ([0, `0]×Rn−1) and χ = 1 on a neighborhood of the Ω de�ned in Theorem
5.13. We have therefore ‖Pχu‖L2(Ω) = ‖Pu‖L2(Ω) ≤ C ‖Pu‖L2(]−T,T [×M) and ‖χu‖H1([0,`0]×Rn−1) ≤
‖u‖H1((−T,T )×M) (where we have switched from some coordinate set to another with a slight abuse of

notation).
Since the previous property is true for any x1 ∈M, we obtain by compactness (taking the worst of all

the constants κ, C, µ0), using only a �nite number of this estimate, that there exists ε > 0 so that we have

‖u‖L2((−ε,ε)×M) ≤ Ce
κµ
(
‖∂νu‖L2((−T,T )×Γ) + ‖Pu‖L2(]−T,T [×M)

)
+
C

µ
‖u‖H1((−T,T )×M) .
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This concludes the proof of the theorem in the general (boundary) case.
For the last analytic case, we apply the same reasoning as before using the case na = n of Theorem

1.10 and taking care for having some analytic change of coordinates. For instance, we need to have an
analytic path. So, it leads to an observation ‖ϕu‖H−s where ϕ = 1 on all the cuto� functions obtained by
the theorem.

The lower order term depending analytically in time are treated using Corollary 5.4 and Remark 3.8.
The uniform dependence with respect to time independent lower order terms follows from the fact that

we use only a �nite number of times Theorem 5.13.

With Theorem 6.3, we now conclude the proof of Theorem 6.1, using energy estimates to relate
‖(u0, u1)‖H1

0×L2(M) to ‖u‖H1((−T,T )×M), and ‖(u0, u1)‖L2×H−1(M) to ‖u‖L2((−T,T )×M). These estimates

are very classical in the selfadjoint case (which we omit here) and need a little care in the general case.

Proof of Theorem 6.1. We consider a perturbation of order one R(t, x, ∂t, ∂x)u = V (t, x)u+W0(t, x)∂tu+
W1(t, x) · ∇u and perform the energy estimates. We have the pointwise in time estimate, for s ∈ [−T, T ],

‖R(s)u(s)‖L2 ≤ CR
(
‖u(s)‖H1(M) + ‖∂tu(s)‖L2(M)

)
with

CR = ‖V ‖L∞([−T,T ]×M) + ‖W0‖L∞([−T,T ]×M) + ‖W1‖L∞([−T,T ]×M) .

Using the Dumamel formula and Gronwall Lemma, it gives

‖(u, ∂tu)(t)‖H1×L2(M) ≤ Ce
CCR

(
(‖(u0, u1)‖H1×L2(M) + ‖f‖L1([−T,T ],L2)

)
,

and in particular, integrating in time,

‖u‖H1(]−T,T [×M) ≤ Ce
CCR

(
(‖(u0, u1)‖H1×L2(M) + ‖f‖L1([−T,T ],L2)

)
. (6.7)

Let R∗(t, x, ∂t, Dx)u = V (t, x)u − ∂t(W0(t, x)u) − div(W1(t, x)u) be the formal (space-time) adjoint of R
(we take the real duality for simplicity).

If (v0, v1) ∈ H1 × L2, let v be the associate solution of �v +R∗v = 0. We have

‖R∗(s)v(s)‖L2 ≤ CR∗
(
‖v(s)‖H1(M) + ‖∂tv(s)‖L2(M)

)
,

with

CR∗ = ‖V ‖L∞([0,ε]×M) + ‖W0‖W 1,∞([0,ε],L∞(M)) + ‖W1‖L∞([0,ε]×M) + ‖divW1‖L∞([0,ε]×M) .

Similar energy estimate applied to v give

‖v‖H1((−ε,ε)×M) ≤ Ce
CεCR∗ ‖(v0, v1)‖H1×L2(M) .

χ ∈ C∞([0, ε]) so that χ(0) = 1, χ̇(0) = 0 χ(ε) = 0 χ̇(ε) = 0. Then, w = χ(t)v is solution of �w +R∗w = 2χ̇(t)∂tv + χ̇(t)W0v + χ̈(t)v := g
w|∂M = 0

(w, ∂tw)|t=0 = (v0, v1)

Then, g is a (trivial) control that (v0, v1) to zero, i.e. (w, ∂tw)|t=ε = (0, 0), with ‖g‖L2(]0,ε[×M) ≤
CeCCR∗ ‖(v0, v1)‖H1×L2 . So, the usual computation yields, after integrating by parts∫

]0,ε[×M
ug =

∫
]0,ε[×M

u(�+R∗)w =

∫
M
u1v0 −

∫
M
u0v1 −

∫
M
W0(0, x)u0v0 +

∫
]−ε,ε[×M

fw

and in particular

〈(u0, u1), (−v1, v0)〉L2×H−1,L2×H1 ≤ C ‖u‖L2(]0,ε[×M) ‖g‖L2(]0,ε[×M) + C ‖f‖L2(]0,ε[×M) ‖w‖L2(]0,ε[×M)

≤ CeCR
∗
‖(v0, v1)‖H1×L2

(
‖u‖L2(]0,ε[×M) + ‖f‖L2(]0,ε[×M)

)
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where 〈·, ·〉 is the twisted duality 〈(u0, u1), (v1, v0)〉L2×H−1,L2×H1 =
∫
M u1v0−

∫
M u0v1−

∫
MW0(0, x)u0v0.

By specifying to v0 and ‖v1‖L2 = 1, this gives �rst by duality.

‖u0‖L2 = sup
‖v1‖L2=1

∫
M
u0v1 ≤ CeC

∗
R

(
‖u‖L2(]0,ε[×M) + ‖f‖L2(]0,ε[×M)

)
.

Then, with v1 = 0 and ‖v0‖H1 = 1, we get

‖u1‖H−1 = sup
‖v0‖H1=1

∫
M
u1v0 ≤ sup

‖v0‖H1=1

∫
M

(
u1v0 −

∫
M
W0(0, x)u0v0 +

∫
M
W0(0, x)u0v0

)
≤ sup

‖v0‖H1=1

〈(u0, u1), (0, v0)〉L2×H−1,L2×H1 + sup
‖v0‖H1=1

∫
M
W0(0, x)u0v0

≤ CeC
∗
R

(
‖u‖L2(]0,ε[×M) + ‖f‖L2(]0,ε[×M)

)
+ C ‖W0‖L∞ ‖u0‖L2 .

So, �nally, we have

‖(u0, u1)‖L2×H−1 ≤ CeC
∗
R

(
‖u‖L2(]0,ε[×M) + ‖f‖L2(]0,ε[×M)

)
. (6.8)

In the particular case where the perturbation is independent on time, we have

CR + CR∗ ≤ C max
{
‖V ‖L∞(M) , ‖W0‖L∞(M) , ‖W1‖L∞(M) , ‖div(W1)‖L∞(M)

}
.

The combination of Theorem 6.3, together with estimates (6.7) and (6.8) gives the sought result.

The following Lemma is contained in Lebeau [Leb92] p22, see also Lemma 11.38 pp 221 of [ABB12].
We give the proof for sake of completeness.

Lemma 6.4. Let γ[0, 1]→M be a smooth path without self intersection of length `0 so that γ(s) ∈M for s ∈]0, 1[
γ(0) = x0 and γ(1) = x1 belong to ∂M
γ̇(0) and γ̇(1) are orthogonal to ∂M

Then, there are some coordinates (w, l) ∈ BRn−1(0, ε)× [0, `0] in an open neighborhood U near γ([0, 1]) so
that

� γ([0, 1]) = {w = 0} × [0, `0],

� the metric g is of the form m(l, w) =

(
1 0
0 m′(l)

)
+OMn(R)(|w|),

� in coordinates, we haveM∩ U = BRn−1(0, ε)× [0, `0] for some ε > 0.

Proof. The path γ is of length `0 so, we can reparametrize it by γ : [0, `0] → M such that γ is unitary
(that is ‖γ̇(s)‖γ(s) = 1) Moreover, since γ does not have self intersection, there exist U a neighborhood (in

the topology ofM) of γ and a di�eomorphism ψ (in the structure ofM) such that

� ψ(U) ⊂ {(x, y) ∈ Rn |x ∈ [−ε, `0 + ε], |y| ≤ ε},

� ψ(γ(s)) = (s, 0),

� ψ(U) = {(x, y) ∈ Rn, f1(y) ≤ x ≤ f2(y) |x ∈ [−ε, `0 + ε], |y| ≤ ε} for some smooth functions fi lo-
cally de�ned

Up to making the change of variable (x, y) 7→ (x − f1(y), y), we can moreover impose f1 = 0 and change
f2 by f2 − f1.

Then, we make some change of variable to diagonalize the metric on γ. By unitarity of the coordinates,
the metric on γ has the form

m(x, 0) =

(
1 l(x)

tl(x) g(x)

)
,
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where l is a line vector and g is a positive de�nite matrix. We perform the change of variable Φ : (x, y) 7→

(x̃, ỹ) = (x− ax · y, y). In y = 0, we have DΦ(x, 0) =

(
1 −ax
0 Id

)
with tDΦ(x, 0) =

(
1 0
−tax Id

)
(in

particular, the change of variable is valid for small y) and DΦ(x, 0)−1 =

(
1 ax
0 Id

)
with tDΦ(x, 0)−1 =(

1 0
tax Id

)
. Moreover, in the new coordinates, the set in {ỹ = 0} and the metric there is given by

tDΦ(x, 0)−1m(x, 0)DΦ(x, 0)−1 =

(
1 l(x) + a(x)

tl(x) +t a(x) ∗

)
So, we choose a(x) = −l(x) so that in this new coordinates m(x, 0) is of the form

m(x, 0) =

(
1 0
0 ∗

)
. (6.9)

We notice that since γ̇(0) is orthogonal to ∂M which is de�ned locally by {x = 0}, we have l(0) = 0
(γ̇(0) = (1, 0) so it implies t(0, y)m(0, 0)γ̇(0) =t l(0)y for all y). In particular, Φ restricted to {x = 0} is
the identity.

This implies that in this new coordinates, M is still de�ned near γ by 0 ≤ x ≤ f2(y) (now, we still
denote (x, y) for (x̃, ỹ)). We still have f2(0) = `0. Morever, since γ̇(`0) = (1, 0) is orthogonal to ∂M which
is de�ned locally by {x = f2(y)} and using that m(x, 0) is of the form (6.9), we get df2(0) = 0.

Finally, making the change of variable (x, y) 7→ ( `0
f(y)x, y), which is the identity on γ, we get thatM is

given 0 ≤ x ≤ `0. Moreover, since df(0) = 0, the metric is not changed on γ.
The expected property of m is then obtained by the mean value theorem using the diagonal form (6.9)

on γ.

6.2 The Schrödinger equation

Now, we turn to the Schrödinger equation. The result are quite similar to the wave equation except for
two facts.

The �rst one is that there is no minimal time. This is quite natural with the in�nite speed of propa-
gation. In the proof, this appears in the fact that the principal symbol is |ξ|2g. Therefore, a hypersurface
{ϕ(t, x) = 0} is non characteristic if ∇xϕ 6= 0, without assumption on the time derivative.

The second di�erence is that the remainder term involving the H1((−T, T ),M) norm involves some
derivative in time and space which do not have the same weight. Hence, since ∂tu = i∆gu, this term will
actually count for two derivatives in space.

Theorem 6.5. Let M be a compact Riemannian manifold with (or without) boundary, ∆g the Laplace-
Beltrami operator onM, and

P = i∂t + ∆g + V

with V depending analytically on the variable t in a neighborhood of (−T, T ). Assume moreover that
V ∈ L∞((−T, T );W 2,∞(M)).

For any nonempty open subset ω of M and any T > 0, there exist C, κ, µ0 > 0 such that for any
u0 ∈ H2 ∩H1

0 , f ∈ L2((−T, T );H2(M)) and associated solution u of i∂tu+ ∆gu+ V u = f in (−T, T )×M,
u|∂M = 0 in (T, T )× ∂M,
u(0) = u0 inM,

(6.10)

we have, for any µ ≥ µ0,

‖u0‖L2 ≤ Ceκµ
(
‖u‖L2((−T,T );H1(ω)) + ‖f‖L2((−T,T );H2(M))

)
+
C

µ
‖u0‖H2 . (6.11)

If moreover all coe�cients of P are analytic in t and x, and ∂M = ∅, there exists ϕ̃ ∈ C∞0 ((−T, T )× ω)
such that for any s ∈ R, we have

‖u0‖L2 ≤ Ceκµ
(
‖ϕu‖H−s((−T,T )×M) + ‖f‖L2((−T,T );H2(M))

)
+
C

µ
‖u0‖H2 . (6.12)
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If ∂M 6= ∅ and Γ is a non empty open subset of ∂M, then for any T > 0, there exist C, κ, µ0 > 0 such
that for any u0 ∈ H2 ∩H1

0 , and associated solution u of (6.10), we have, for any µ ≥ µ0,

‖u0‖L2 ≤ Ceκµ
(
‖∂νu‖L2((−T,T )×Γ) + ‖f‖L2((−T,T );H2(M))

)
+
C

µ
‖u0‖H2 . (6.13)

Finally, if V is time-independent then we have the following stronger result. There exist C0, κ, µ0 > 0 such
that for any u0 ∈ H2 ∩H1

0 (M), f ∈ L2((−T, T )×M) and associated solution u of (6.10), and for any V

bounded in the x-variable, estimates (6.11) and (6.13) hold uniformly for all µ ≥ µ0 max{1, ‖V ‖
2
3

L∞} with
constant

C = C0 exp
(
C0 ‖V ‖W 2,∞(M)

)
.

As in the case of the wave equation, the previous Theorem is a combination of the following Theorem
and energy estimates for the Schrödinger equation.

Theorem 6.6. Let M be a compact Riemannian manifold with (or without) boundary, ∆g the Laplace-
Beltrami operator on M, and P = ∆g + R with R = R(t, x, ∂t, ∂x) is a di�erential operator of order one
on (−T, T )×M, bounded in the x-variable and depending analytically on the variable t ∈ (−T, T ) at any
x ∈M.

For any nonempty open subset ω of M and any T > 0, there exist ε, C, κ, µ0 > 0 such that for any
u ∈ H1((−T, T )×M) and f ∈ L2((−T, T )×M) solving{

Pu = f in (−T, T )×M,
u|∂M = 0 in (−T, T )× ∂M,

(6.14)

the same estimates as Theorem 6.3 hold.
In the case that R = W0∂t + W1 · ∇ + V does not depend on t, the dependence on the size of the

coe�cients of R remains the same as Theorem 6.3.

Proof of Theorem 6.6. The proof is quite similar to the one for the wave equation, so we only sketch the
main steps of the proof. The main di�erence will be that T can be chosen arbitrary. Pick t0 arbitrary
with t0 < T , this time without any relation with `0.

We use the same coordinate charts as de�ned in the proof of Theorem 6.1 for the wave equation. Then,
the principal symbol of the Schrödinger operator will be

p(w, xn, τ, ξw, ξn) = −〈m(w, xn)ξ, ξ〉, ξ = (ξw, ξn).

Therefore, p is a quadratic form with real coe�cients that is de�nite on the set {τ = 0}. Remark
1.9 allows to get that any non characteristic hypersurface is strictly pseudoconvex. So, with the same
de�nition of φε, we get

p(w, xn, dφε(t, w, xn)) = −`20
ε2

b4
〈m′(xn)w,w〉

((w
b

)2

+
( t
t0

)2
)−1

|ψ′|2 − 1

+O(|w|2)

(
1 +

ε2`20
b4
|w|2

((w
b

)2

+
( t
t0

)2
)−1

|ψ′|2
)
.

But, for w small enough, we still have

−1 +O(|w|2) ≤ −1/2

−〈m′(xn)w,w〉+O(|w|2)|w|2 ≤ 0.

In particular, with the same notations as for the wave equation, there exists b small enough so that for
any ε ∈ [0, 1]), and any (t, w, xn) ∈ D × [0, `0], we have

p(w, xn, dφε(t, w, xn)) ≤ −1

2
.
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So, applying the same reasoning as for the wave equation, we obtain the existence of some κ, C, µ0 and
ε > 0 so that we have

‖u‖L2(]−ε,ε[×M) ≤ Ce
κµ ‖∂νu‖L2(]−T,T [×Γ) +

C

µ
‖u‖H1(]−T,T [×M)

for any µ ≥ µ0.
The dependence on the lower order term R follows the same way as for the wave equation.

Proof of Theorem 6.5. Since the multiplication by V acts on H1
0 and H2 if V ∈W 2,∞(M), using Duhamel

formula and a Gronwall argument allows to obtain, for s ∈ [−T, T ],

‖u0‖L2(M) ≤ CeC‖V ‖L∞(M)

(
‖u(s)‖L2(M) + ‖f‖L2((−T,T )×M)

)
‖u(s)‖H2(M) ≤ CeC‖V ‖W2,∞(M)

(
‖u0‖H2 + ‖f‖L2((−T,T );H2(M))

)
.

Integrating in time, it gives

‖u0‖L2(M) ≤ CeC‖V ‖L∞(M)

(
‖u‖L2((−ε,ε)×M) + ‖f‖L2((−T,T )×M)

)
‖u‖L2((−T,T );H2(M)) ≤ CeC‖V ‖W2,∞

(
‖u0‖H2 + ‖f‖L2((−T,T );H2(M))

)
.

To estimate ∂tu, we notice that ∂tu = i(∆ + V )u− if . Therefore, we only need to estimate ‖∆u‖L2 .

‖∂tu‖L2((−T,T )×M) ≤ C ‖u‖L2((−T,T );H2) + C ‖V ‖L∞(M) ‖u‖L2((−T,T )×M) + ‖f‖L2(]−T,T [×M)

≤ CeC‖V ‖W2,∞(M)

(
‖u0‖H2 + ‖f‖L2((−T,T );H2(M))

)
.

So, this gives

‖u‖H1((−T,T )×M) ≤ Ce
C‖V ‖W2,∞(M)

(
‖u0‖H2 + ‖f‖L2((−T,T );H2(M))

)
.

This gives the estimates of the Theorem when combined with Theorem 6.6.

A Two elementary technical lemmata

In the above proof, we used the following elementary lemma (see e.g. [LRL12]).

Lemma A.1. Let K be a compact set and f, g, h three continuous real valued functions on K. Assume
that f ≥ 0 on K, and g > 0 on {f = 0}. Then, there exists A0, C > 0 such that for all A ≥ A0, we have
g +Af − 1

Ah ≥ C on K.

Lemma A.1 is a consequence of the following variant.

Lemma A.2. Let K be a compact set and f a continuous real valued function on K. Let g and h be two
bounded function de�ned on K. Assume that f ≥ 0 on K, and there exists V an open neighborhood of
{f = 0} in K so that g > c on V for one constant c > 0. Then, there exists A0, C > 0 such that for all
A ≥ A0, we have g +Af − 1

Ah ≥ C on K.

We also used the following result.

Lemma A.3. Let C1, C2, and α be positive. Then, there exists K > 0 such that for all µ0 > 0, for any
a, b, c > 0 such that there the following estimates hold

b ≤ C2c, a ≤ c, and a ≤ eC1µb+
1

µα
c, for all µ ≥ µ0,
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we have

a ≤ D1

log
(
c
b + 1

)α c, with D1 = (2C1)α max {K,µα0 } ,

and

c ≤ eD2( ca )
1/α

b, with D2 = D
1/α
1 = 2C1 max

{
K1/α, µ0

}
.

Proof. Dividing all inequalities by c, setting y = a/c and x = b/c, it su�ces to prove(
x ≤ C2, y ≤ 1, y ≤ eC1µx+ µ−α for all µ ≥ µ0

)
=⇒ y ≤ D1

log
(

1
x + 1

)α =⇒ 1

x
≤ e(

D1
y )

1/α

.

Note that the second implication is straightforward since the second assertion is equivalent to 1
x ≤

e(
D1
y )

1/α

− 1. To prove the �rst implication, we set

µ(x) :=
1

2C1
log

(
1

x
+ 1

)
,

so that eC1µ(x)x =
(

1
x + 1

)1/2
x = (1 + x)1/2x1/2. Denoting now C3 = C3(C1, C2, α) = supx≤C2

(1 +

x)1/2x1/2µ(x)α < +∞, we have eC1µ(x)x ≤ C3

µ(x)α . As a consequence, if µ(x) ≥ µ0, then we have y ≤ (C3+1)
µ(x)α ,

which is the sought estimate.

If now µ(x) ≤ µ0, that is 1
2C1

log
(

1
x + 1

)
≤ µ0, we have 1 ≤

(
2C1µ0

log( 1
x+1)

)α
Then, the assump-

tion y ≤ 1 directly implies y ≤
(

2C1µ0

log( 1
x+1)

)α
. This concludes the proof of the lemma for D1 =

(2C1)α max {C3 + 1, µα0 }.

B Elementary complex analysis

We recall that we identify C and R2 with z = x+ iy = (x, y) and denote

Q1 = {z ∈ C,Re(z) > 0, Im(z) > 0}.

Lemma B.1. Let f0, f1 ∈W 1,∞(R+) such that |f ′0(x)|, |f ′1(x)| ≤ C for some C > 0 and almost all x ∈ R+.
Then, the function de�ned for (x, y) ∈ Q1 by

f(x, y) =
4xy

π

∫ ∞
0

ξf0(ξ)

((x− ξ)2 + y2)((x+ ξ)2 + y2)
dξ +

4xy

π

∫ ∞
0

ηf1(η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη (B.1)

satis�es |f(z)| ≤ 2C(1 + |z|) in Q1 \ (0, 0) together with

∆f = 0 in Q1, f(x, 0) = f0(x), f(0, y) = f1(y), x, y ∈ R+.

If moreover, f0(0) = f1(0), then f is continuous on Q1.

Remark that this theorem provides an existence result for the Poisson Problem on Q1 associated
to Lipschitz boundary conditions. The Phragmén-Lindelöf theorem B.4 below provides an associated
uniqueness result in the class of functions having a sub-quadratic growth at in�nity.

The next lemma is a key point in the proof of the local estimate.

Lemma B.2. Let R > 0, δ > 0, κ > 0, ε > 0 and c1 > 0. Then, there exists d0 = d0(δ, κ,R, ε, c1)
such that for any d < d0, there exists β0(δ, κ,R, ε, c1, d), such that for any 0 < β < β0, the following two
assertions hold:
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� the function

f1(y) = Ry1[0,γ)(y) + 1[γ,+∞)(y) min
{
Ry,max(−κ,−9δy,− ε

y
) + c1y

2 +
β2

y

}
.

is continuous for all γ ≤ β

(R+9δ)
1
2
(in the application γ = τ0

µ ).

� the function f then given by Lemma B.1 associated to f1 and f0 = 0 satis�es

f(x, y) ≤ −8δy, for
d

4
≤ |(x, y)| ≤ 2d.

Proof of Lemma B.1. Let us �rst justify the form (B.1) of the solution. From the green functionGC(z, z′) =
(2π)−1 ln |z′ − z| in C, we �rst construct a Green function in Q1 using the so-called �image points� z̄, −z
and −z̄. This yields

GQ1
(z, z′) :=

1

2π
ln |z′ − z| − 1

2π
ln |z′ − z̄| − 1

2π
ln |z′ + z̄|+ 1

2π
ln |z′ + z|,

that is, with z = (x, y) and z′ = (ξ, η),

GQ1
((x, y), (ξ, η)) :=

1

4π
ln
(
(ξ − x)2 + (η − y)2

)
− 1

4π
ln
(
(ξ − x)2 + (η + y)2

)
− 1

4π
ln
(
(ξ + x)2 + (η − y)2

)
+

1

4π
ln
(
(ξ + x)2 + (η + y)2

)
.

For �xed z ∈ Q1, the last three terms are smooth in z′ ∈ Q1 so that −∆z′GQ1
(z, z′) = δz′=z. Moreover,

for z′ = (ξ, η) ∈ ∂Q1, either ξ = 0 or η = 0 so that GQ1
= 0 for z′ ∈ Q1.

Now we compute

∂GQ1

∂ξ

∣∣
ξ=0

= −4xy

π

η

(x2 + (y + η)2)(x2 + (y − η)2)
,

∂GQ1

∂η

∣∣
η=0

= −4xy

π

ξ

((x− ξ)2 + y2)((x+ ξ)2 + y2)
.

The representation formula for solutions of ∆f = 0 in Q1 and f |∂Q1 = f̃ writes

f(z) =

∫
∂Q1

∂GQ1

∂ν∂Q1

(z, z′)|z′∈∂Q1 f̃(z′)dz′,

which justi�es (B.1).

Let us now estimate for (x, y) ∈ Q1 the term∣∣∣∣4xyπ
∫ ∞

0

ηf1(η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη

∣∣∣∣ ≤ 4xy

π

∫ ∞
0

ηC(1 + η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη

≤ C (2/π arctan(y/x) + y)

≤ C (1 + y) ,

where we used Lemma B.3 in the second inequality. The other term containing f0 can be estimated as
well in Q1 by C (1 + x) so that

|f(z)| ≤ C (2 + x+ y) ≤ 2C (1 + |z|) , z = (x, y) ∈ Q1.

That ∆f = 0 follows from the de�nition of GQ1
as a Green function, and it only remains to check the

boundary values of f . For this, according to the symmetry, it su�ces to prove that for all x0, y0 > 0, we
have

lim
(x,y)→(x0,0)

(Tf1)(x, y) = 0, lim
(x,y)→(0,y0)

(Tf1)(x, y) = f1(y0). (B.2)
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with

(Tf1)(x, y) :=
4xy

π

∫ ∞
0

ηf1(η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη.

Since f ′1 ∈ L∞(R+), we have
|f1(η)| ≤ |f1(0)|+ η‖f ′1‖L∞ .

Hence, according to the de�nition of T , we obtain

|(Tf1)| ≤ |f1(0)|T (1) + ‖f ′1‖L∞T (η). (B.3)

Using Lemma B.3, this implies

|(Tf1)(x, y)| ≤ |f1(0)|2/π arctan(y/x) + ‖f ′1‖L∞y,

and thus (Tf1)(x, y)→ 0 as (x, y)→ (x0, 0), which yields the �rst part of (B.2).
To prove the second part of (B.2), we write

|f1(η)− f1(y0)| ≤ |η − y0|‖f ′1‖L∞ .

This implies

|Tf1(x, y)− 2/π arctan(y/x)f1(y0)| = |Tf1 − T (f1(y0))| ≤ ‖f ′1‖L∞T (|η − y0|). (B.4)

We now study the term

T (|η − y0|)(x, y) =
4xy

π

∫ ∞
0

η|η − y0|
(x2 + (y + η)2)(x2 + (y − η)2)

dη

=
4xy

π

∫ y0

0

η(y0 − η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη

+
4xy

π

∫ ∞
y0

η(η − y0)

(x2 + (y + η)2)(x2 + (y − η)2)
dη

= 2
4xy

π

∫ y0

0

η(y0 − η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη

+
4xy

π

∫ ∞
0

η(η − y0)

(x2 + (y + η)2)(x2 + (y − η)2)
dη

= 2
4xy

π

∫ y0

0

η(y0 − η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη + T (η − y0)(x, y).

With Lemma B.3, we have T (η − y0)(x, y) = y − 2/π arctan(y/x)y0 → 0 as (x, y)→ (0, y0). Moreover, we
have

4xy

π

∫ y0

0

η(y0 − η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη =

1

π

∫ y0

0

− x(y0 − η)

x2 + (y + η)2
+

x(y0 − η)

x2 + (y − η)2
dη

(see the proof of Lemma B.3). The term
∫ y0

0
x(y0−η)
x2+(y+η)2 dη vanishes when (x, y)→ (0, y0). Concerning the

second term, we have

1

π

∫ y0

0

x(y0 − η)

x2 + (y − η)2
dη =

1

π

∫ (y0−y)/x

−y/x
(y0 − y − xs)

ds

1 + s2

=
y0 − y
π

(
arctan

(
y0 − y
x

)
+ arctan

(y
x

))
− x

2π
ln

(
x2 + (y0 − y)2

x2 + y2

)
,

which vanishes when (x, y)→ (0, y0). The last three estimate prove T (|η−y0|)(x, y)→ 0 as (x, y)→ (0, y0).
In view of (B.4), this implies

lim
(x,y)→(0,y0)

|Tf1(x, y)− 2/π arctan(y/x)f1(y0)| = 0
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which is the second part of (B.2).
For the continuity, by symmetry and translation by a constant, it is su�cient to prove that if f1(0) = 0,

then Tf1(x, y) converges to zero as (x, y) converges to zero. This is implied by (B.3). This concludes the
proof of the Lemma.

Proof of Lemma B.2. Let us de�ne

Iβ :=

[
β
√

2/δ,min(
δ

2c1
,
κ

9δ
,

√
ε

3
√
δ

)

]
,

and notice that Iβ 6= ∅ for β ≤ β0 with β0 = β0(δ, κ, c1, ε) su�ciently small. We �rst prove that for all

γ ≤ β
√

4/δ, we have

f1(y) = −9δy + c1y
2 +

β2

y
on Iβ , (B.5)

and

Iβ ⊂ {f1 ≤ −8δy}, (B.6)

and, a fortiori for γ ≤ β

(R+9δ)
1
2
≤ β

√
4/δ.

For this, notice that y ∈ Iβ implies y ≤ δ/(4c1) and y ≥ β
√

4/δ which yields

−δy
2

2
+ c1y

3 ≤ −δ
4
y2 ≤ −β2.

As a consequence,

−δ
2
y + c1y

2 +
β2

y
≤ 0, and hence − 9δy + c1y

2 +
β2

y
≤ −8.5δy ≤ 0 ≤ Ry. (B.7)

In particular, (B.5) implies (B.6). Moreover, for y ∈ Iβ , we have −κ ≤ −9δy together with − ε
y ≤ −9δy,

so that max(−κ,−9δy,− ε
y ) = −9δy. This proves (B.5) with the help of (B.7).

Let us now check the continuity of f1. First remark that both Ry and min
{
Ry,max(−κ,−9δy,− ε

4y )+

c1y
2 + β2

y

}
are continuous. Second, we prove that both functions coincide for y ≤ γ which provides the

continuity of f1. For 0 ≤ y ≤ γ ≤ β

(R+9δ)
1
2
, we have (9δ + R − c1y)y2 ≤ β2 and we obtain Ry ≤ −9δy +

c1y
2 + β2

y . For β ≤ β0 we have Iβ 6= ∅ so that y ≤ β
√

4/δ ≤ min( κ9δ ,
√
ε

3
√
δ
), and max(−κ,−9δy,− ε

y ) = −9δy

for y ≤ γ. As a consequence, we have

Ry = min
{
Ry,max(−κ,−9δy,− ε

y
) + c1y

2 +
β2

y

}
, for 0 ≤ y ≤ γ,

and f1 is continuous for all β ≤ β0 and γ ≤ β

(R+9δ)
1
2
.

Since f1 is continuous and globally Lipschitz, it satis�es all assumptions of lemma (B.1) (and f0 = 0),
so that we can de�ne f by

f(x, y) =
4xy

π

∫ ∞
0

ηf1(η)

(x2 + (y + η)2)(x2 + (y − η)2)
dη

Setting f̃ = f + 8.5δy, we now prove an upper bound for f̃ . Using the second formula of Lemma B.3, we
have

f̃(x, y) =
4xy

π

∫ ∞
0

η(f1(η) + 8.5δη)

(x2 + (y + η)2)(x2 + (y − η)2)
dη

=
4xy

π

∫
R+\Iβ

· · · dη +
4xy

π

∫
Iβ

· · · dη.
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According to (B.6), we have

4xy

π

∫
Iβ

η(f1(η) + 8.5δη)

(x2 + (y + η)2)(x2 + (y − η)2)
dη ≤ 0. (B.8)

Next, for small β, we have R+ \ Iβ = [0, Dβ ] ∪ [D,+∞], with Dβ := β
√

4/δ < D := min( δ
2c1
, κ9δ ,

√
ε

6
√
δ
).

Since f1(y) ≤ Ry, we have

4xy

π

∫ ∞
D

· · · ≤ 4xy

π

∫ ∞
D

(R+ 8.5δ)η2

(x2 + (y + η)2)(x2 + (y − η)2)
dη.

If 0 ≤ y ≤ D/2 and η ≥ D, we have (y − η)2 ≥ (η −D/2)2 and (y + η)2 ≥ η2, so we estimate

4xy

π

∫ ∞
D

· · · ≤ 16xy

π

∫ ∞
D

(R+ 8.5δ)η2

η2(η −D/2)2
dη = C(δ, κ,R, ε, c1)xy

So, if x ≤ νD and y ≤ D/2, this implies

4xy

π

∫ ∞
D

· · · ≤ νC(δ, κ,R, ε, c1)D(δ, κ, ε, c1)y ≤ δy/4 (B.9)

as soon as ν ≤ δ
4CD . Now we �x 2d0 := 2d0(δ, κ,R, ε, c1) = min{νD,D/2}. For any d ≤ d0, we have (B.9)

for all (x, y) such that |(x, y)| ≤ 2d.

Finally, we study the term 4xy
π

∫Dβ
0
· · · dη. For β su�ciently small (namely β ≤ d

√
δ

16 ), we have d
4−Dβ ≥

d
8 (recall thatDβ = β

√
4/δ). As a consequence, for (x, y) such that d4 ≤ |(x, y)| ≤ 2d, and for all η ∈ [0, Dβ ],

the triangle inequality yields

(x2 + (y + η)2) ≥ (
d

4
−Dβ)2 ≥ d2

82
, (x2 + (y − η)2) ≥ (

d

4
−Dβ)2 ≥ d2

82
.

Still using that f1(y) ≤ Ry, we have

4xy

π

∫ Dβ

0

· · · ≤ 4xy

π

∫ Dβ

0

(R+ 8.5δ)η2

(x2 + (y + η)2)(x2 + (y − η)2)
dη

≤ 4xy

π

(
8

d

)4

(R+ 8.5δ)

∫ Dβ

0

η2dη

≤ 4xy

π

(
8

d

)4

(R+ 8.5δ)
D3
β

3

≤ C ′(R, δ, d)β3y

Now, for all β ≤
(

δ
4C′(R,δ,d)

)1/3

this is less than δy/4.

This together with (B.8) and (B.9) implies that f̃(x, y) ≤ δy/2 for (x, y) such that d
4 ≤ |(x, y)| ≤ 2d,

that is

f(x, y) ≤ −8δy, for
d

4
≤ |(x, y)| ≤ 2d.

This concludes the proof of the lemma.

Lemma B.3. For all x, y > 0, we have

4xy

π

∫ ∞
0

η

(x2 + (y + η)2)(x2 + (y − η)2)
dη = 2/π arctan(y/x)

4xy

π

∫ ∞
0

η2

(x2 + (y + η)2)(x2 + (y − η)2)
dη = y.
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Proof of Lemma B.3. First notice that

4xyη

(x2 + (y + η)2)(x2 + (y − η)2)
= − x

x2 + (y + η)2
+

x

x2 + (y − η)2
.

Hence, we obtain

4xy

∫ N

0

η

(x2 + (y + η)2)(x2 + (y − η)2)
dη =

∫ N

0

− x

x2 + (y + η)2
+

x

x2 + (y − η)2
dη

= −
∫ (N+y)/x

y/x

1

1 + s2
ds+

∫ y/x

(y−N)/x

1

1 + s2
ds

= − arctan((N + y)/x)) + arctan(y/x)

+ arctan(y/x)− arctan((y −N)/x))

→ 2 arctan(y/x), as N →∞,

since x, y > 0.

Concerning the second equation, we have∫ N

0

4xyη2

(x2 + (y + η)2)(x2 + (y − η)2)
dη =

∫ N

0

− xη

x2 + (y + η)2
+

xη

x2 + (y − η)2
dη

= −
∫ N

−N

xη

x2 + (y + η)2
dη = −

∫ N+y

−N+y

x(s− y)

x2 + s2
ds

= −
∫ N+y

−N+y

xs

x2 + s2
ds+

∫ N+y

−N+y

xy

x2 + s2
ds.

Since the integrand is an odd function, we have
∫ N+y

−N+y
xs

x2+s2 ds =
∫ −N+y

−N−y
xs

x2+s2 ds which converges to zero
as N →∞. Moreover, we have∫ N−y

−N−y

xy

x2 + s2
ds = y

∫ (N−y)/x

(−N−y)/x

1

1 + s2
ds→ πy, as N →∞,

which concludes the proof of the lemma.

The following is a version of the Phragmén Lindelöf principle for subharmonic functions in a sector of
the complex plane. We prove it as a consequence of the maximum principle for subharmonic functions in
bounded domains. Note that the usual Phragmén Lindelöf theorem (see [PL08] or [SS03, Theorem 3.4])
can be deduced from this one.

Lemma B.4. Let φ be a subharmonic function in Q1, continuous in Q̄1. Assume that there exist ε > 0
and C > 0 such that

φ(z) ≤ C(1 + |z|2−ε), z ∈ Q1, (B.10)

φ(z) ≤ 0, z ∈ ∂Q1 = R+ ∪ iR+. (B.11)

Then φ(z) ≤ 0 for all z ∈ Q1.

Note that the power 2− ε with ε > 0 is sharp: the result is false for ε = 0, as showed by the harmonic
function (x, y) 7→ xy.

Proof. First note that the sector Q1 can be rotated, say to quadrant

Q = {z ∈ C, arg(z) ∈ [−π
4
,
π

4
]}.
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We set v := Re(z2− ε2 ) (with the principal determination of the logarithm) which is harmonic in Q. We
have v(r, θ) := r2− ε2 cos((2− ε/2)θ) ≥ r2− ε2 cos((2− ε/2)π/4) with cos((2− ε/2)π/4) > 0. Let

uδ(z) = φ(z)− δv(z),

which is also subharmonic in Q. We have lim supz∈Q,|z|→∞ u(z) = −∞. As a consequence, there exists

R > 0 such that uδ(z) < 0 on {|z| ≥ R} ∩Q. Now, on the bounded set QR = Q∩ {|z| ≤ R}, we apply the
maximum principle to the function uδ, satisfying uδ ≤ 0 on ∂QR. This yields uδ ≤ 0 on QR and hence
uδ ≤ 0 on Q. Finally letting δ tend to zero, we obtain the sought result.
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