
Internal ontrol of the Shrödinger equationCamille Laurent∗†AbstratIn this paper, we intend to present some already known results about the internal ontrolla-bility of the linear and nonlinear Shrödinger equation.After presenting the basi properties of the equation, we give a self ontained proof of theontrollability in dimension 1 using some propagation results. We then disuss how to obtain somesimilar results on a ompat manifold where the zone of ontrol satis�es the Geometri ControlCondition. We also disuss some known results and open questions when this ondition is notsatis�ed. Then, we present the links between the ontrollability and some resolvent estimates.Finally, we disuss the new di�ulties when we onsider the Nonlinear Shrödinger equation.Key words. Controllability, Linear Shrödinger equation, Nonlinear Shrödinger equationAMS subjet lassi�ations. 93B05, 35Q41, 35Q551 IntrodutionIn the ontrol of PDE, the aim is to bring the solution from an initial state to a �nal state �xed inadvane, with a ontrol term whih ould be, for instane, a soure (distributed or internal ontrol),boundary (boundary ontrol) or potential (bilinear ontrol) term, see Lions [38℄ or Coron [14℄ for ageneral introdution.In this paper, is presented some existing results about the internal ontrollability of the linearand nonlinear Shrödinger equation
i∂tu+∆u = f(u) + 1ω(x)g , (t, x) ∈ [0, T ] ×Mwhere M is an open set or a manifold, g is the ontrol and ω ⊂M is an open set.The main question will atually be the following: what are the onditions on ω and T that allowto get the ontrollability? We expet ω and T to be the smallest possible.It appears that the problem of ontrol will be strongly linked to the propagation of the energyof the solutions and will be therefore strongly linked to the geometry of ω with respet to M .More preisely, a ruial interest will be made to the following ondition, alled Geometri ControlCondition Any (generalized) geodesi, meets ω in a time t ≤ T0.In the presene of boundary (whih mainly, will not be onsidered in these notes), for Dirihletondition for instane, the generalized geodesis are onsidered bouning on the boundary followingthe laws of geometri optis. This assumption was �rst onsidered for the wave equation by Rauh
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and Taylor for a manifold [51℄ and by Bardos, Lebeau and Rauh [5℄ for bounded open set and thenproved to be su�ient for the Shrödinger equation by Lebeau [36℄. Lebeau [36℄ deals with boundaryontrol, but the same ideas lead to the same result for internal ontrol. The present artile intendsto give an almost omplete proof in the more simple ase without boundary, in the spirit of Dehman-Gérard-Lebeau [15℄. We will also disuss the link with resolvent estimates and the problems posedfor the semilinear equation.In the �rst Setion, we will present the main properties of the linear Shrödinger equation andexpress the ontrollability in terms of an observability estimate for the free equation, as usual in theHUM method.Then, in the seond Setion, we present some results of propagation for some solutions of theShrödinger equation. These results express the fat that the solutions propagate with in�nite speedaording to the geodesis of M . The two types of information that we are able to propagate arethe ompatness and the regularity. The �nal result asserts that a sequene of solutions whih isompat (resp. smooth) on an open set ω satisfying the Geometri Control Condition is ompat(resp. smooth) everywhere. We will �rst present an elementary proof in the one dimensional aseand then give the miroloal tools that are neessary to understand the higher dimensions in theboundaryless ase.In Setion 4, we will show how the previous propagation results allow to prove the ontrollabilityunder the Geometri Control Condition on a ompat manifold. We also prove that the HUM ontrolis as smooth as the initial data.It turns out that the Geometri Control Condition is su�ient but not neessary for the ontrol-lability of the linear Shrödinger equation. The neesary and su�ient ondition is a widely openproblem. We give some known results in that diretion.In Setion 5, we make the link between the ontrollability (whih is equivalent to observability)and some resolvent estimates for the stati Laplae operator:
∀λ ∈ R,∀u ∈ D(−∆), ‖u‖2L2 ≤M ‖(∆ − λ)u‖2L2 +m ‖1ωu‖2L2This point of view not only is interesting for giving alternative proof of the observability but alsoturns out to be very useful for the link with observablity of the disretized operator, to make the linkwith other equations (as the wave equation)...In Setion 6, we present the new problems for the nonlinear equation. We give a sketh of theusual proof of stabilisation, without refering to the funtional spaes neessary in that problems.The Appendix presents some tehnial steps used in the proofs.Remark 1.1. This paper represents the notes of a ourse about the ontrol of the Shrödinger equationgiven by the author at the summer shool PASI-CIPPDE in Santiago de Chile. It was mainly intendedto students or young researher, not speialists of the subjet. Therefore, it does not pretend to bea general survey of the latest results in the �eld, but rather an aessible introdution to the subjet.The result presented are mainly not from the author. Moreover, we have sometimes sari�ed theoptimality or the generality of the results to make the presentation more elementary. In partiular,we only deal with manifolds without boundaries, even if most of the results presented here remain truefor a manifold with boundary and for ontrol from the boundary.2 The linear equationWe deal with the internal ontrollability of the linear Shrödinger equation. If M is a ompatmanifold or a domain of Rd and ω ⊂ M an open set. The problem is, given u0 and u1 funtions2



on M (in a ertain funtional spae), an we �nd a ontrol g supported in [0, T ] × ω, suh that thesolution of
{
i∂tu+∆u = 1ωg

u(0) = u0
(1)satis�es u(T ) = u1?The problems an be, for instane, formulated for u0, u1 ∈ L2(M) with a ontrol in L1([0, T ], L2(M))where the Cauhy problem is well posed thanks to semi-group theory, with additional boundary on-ditions if neessary. By linearity and bakward wellposedness, the problem an easily be redued tothe ase u1 = 0. Moreover, by duality, the HUM method, whih will be desribed in Setion 4 (seealso Lions [38℄ or Tusnak-Weiss [59℄ for more abstrat framework) gives that the ontrollability in
L2 is equivalent to the observability estimate

‖v0‖2L2 ≤ CT

∫

[0,T ]
‖1ω(x)v‖2L2(M) dt(2)for v solution of the free equation

{
i∂tv +∆v = 0

v(0) = v0.
(3)The argument is atually lose to the fat that an operator A is onto if its dual satis�es ‖x‖ ≤
C ‖A∗x‖.Note that the observability is also a property interesting for itself sine it quanti�es the problem of�nding a omplete solution from the knowledge of its evolution on a subdomain ω. If the observabilityholds, there is even an expliit algorithm that allows to �nd the initial data from the observation (seefor instane Ito-Ramdani-Tusnak [27℄ using time reversal algorithm). Therefore, the ontrollabilitywill be losely linked to the study of the propagation of the information for solution of the Shrödingerequation.First, the Shrödinger equation is meant to desribe the evolution of a quantum partile and thephysial heuristi is the following:A partile with small pulsation h, loated in phase spae lose to a point x0 and a diretion ξ0(take for instane a wave paket u0 = 1

hd/4 e
−

|x−x0|
2

2h ei
x·ξ0
h ) will travel at speed 1/h aording to thegeodesi (or straight line in the �at ase) starting at x0 in diretion ξ0, eventually bouning on thepossible boundary. It is lear that this heuristi is not ompletely true sine there are some limitationsfor the loalization in phase spae due to the Unertainty priniple. Moreover, the propagation isonly true for short times after whih some dispersion ours (of the order of h or better the Ehrenfesttime h| log(h)|, see the survey of Anantharaman-Maía [3℄ for further omments and referenes). Butthis propagation at "in�nite" speed gives the idea that the global geometry will be very important.Note that using the splitting ∂2t +∆2 = (−i∂t +∆)(i∂t +∆), some ontrollability results for theShrödinger equation an easily be transfered to the ase of the plate equation (see Lebeau [36℄).The main purpose of this notes is to give some geometri onditions on ω that ensure the observ-ability and therefore the ontrollability. Then, another interesting problem is to �nd the best ω (withsome appropriate onstaints) for whih the ost of ontrol is minimal. This problem was investigatedin Privat-Trélat-Zuazua [60℄ (see also the referenes therein).Notation:The one dimensional torus will be denoted by T1 = R/Z and L2(T1), often denoted by L2, isthe spae of L2 periodi funtions. M will denote a ompat manifold without boundary with aRiemannian metri. 3



The in�nitesimal generator of i∂2x (resp. i∆ where ∆ is the Laplae-Beltrami operator M) isdenoted by eit∂2
x (resp. eit∆). Hene u = eit∂

2
xu0 is the solution of

{
i∂tu+ ∂2xu = 0

u(0) = u0.We have ‖u(t)‖Hs = ‖u0‖Hs for every s ∈ R and t ∈ R.Denote Dr the operator de�ned on D′(T1) by
D̂ru(n) = sgn(n)|n|rû(n) if n ∈ Z∗

= û(0) if n = 0.
(4)where û is the Fourier transform or u.3 Propagation of ompatness3.1 In 1 DimensionIn this setion, we give an elementary proof of some theorems of propagation of ompatness in thease of dimension 1. In the next subsetion, will be desribed the original and more involved prooffrom Dehman-Gerard-Lebeau [15℄ in higer dimension using miroloal analysis. The one dimensionalversion has also been onsidered in [34℄ with some Bourgain spaes in the ontext of nonlinearontrollability and stabilization.Theorem 3.1. Let un be a sequene of smooth solutions of

i∂tun + ∂2xun = fnwith
‖un‖L2([0,T ],L2(T1)) ≤ C, ‖un‖L2([0,T ],H−1(T1)) → 0 and ‖fn‖L2([0,T ],H−1(T1)) → 0.Moreover, we assume that there is a non empty open set ω ⊂ T1 suh that un → 0 in L2([0, T ], L2(ω)).Then un → 0 in L2

loc([0, T ], L
2(T1)).Proof. Let us onsider the real valued funtions ϕ ∈ C∞(T1) and Ψ ∈ C∞

0 (]0, T [), whih will behosen later. Set Bu = ϕ(x)D−1 and A = Ψ(t)B where D−1 is the operator de�ned in (4). We have
A∗ = Ψ(t)D−1ϕ(x).Denote L the Shrödinger operator L = i∂t + ∂2x. We write by a lassial way

αn = (Lun, A
∗un)L2(]0,T [×T1) − (Aun, Lun, )L2(]0,T [×T1)

= ([A, ∂2x]un, un)L2(]0,T [×T1) − i(Ψ′(t)Bun, un)L2(]0,T [×T1).We have also
αn = (fn, A

∗un)L2(]0,T [×T1) − (Aun, fn)L2(]0,T [×T1).We obtain
∣∣(fn, A∗un)L2(]0,T [×T1)

∣∣ ≤ ‖fn‖L2([0,T ],H−1)‖A∗un‖L2([0,T ],H1)

≤ ‖fn‖L2([0,T ],H−1)‖un‖L2([0,T ],L2).(5) 4



Then, ∣∣(fn, A∗un)L2(]0,T [×T1)

∣∣ → 0 when n → ∞. The same estimate holds for the other term andgives αn → 0. Similarly, the term (Ψ′(t)Bun, un)L2(]0,T [×T1) onverges to zero.Finally, we get
([A, ∂2x]un, un)L2(]0,T [×T1) → 0 when n→ ∞.Sine D−1 ommutes with ∂2x, we have

[A, ∂2x] = −2Ψ(t)(∂xϕ)∂xD
−1 −Ψ(t)(∂2xϕ)D

−1.Making the same estimates as in (5), we get
(Ψ(t)(∂2xϕ)D

−1un, un)L2(]0,T [×T1) → 0.Moreover, −i∂xD−1 is atually the orthogonal projetion on the subspae of funtions with û(0) = 0.Using weak onvergene, we easily obtain that ûn(0)(t) tends to 0 in L2([0, T ]) and indeed,
(Ψ(t)(∂xϕ)ûn(0)(t), un)L2(]0,T [×T1) → 0.The �nal result is that for any ϕ ∈ C∞(T1) and Ψ ∈ C∞

0 (]0, T [)

(Ψ(t)(∂xϕ)un, un)L2(]0,T [×T1) → 0.Notie that the funtions whih an be written ∂xϕ are indeed all the funtions ψ that ful�ll ∫
T1 ψ = 0.For example, take any f ∈ C∞

0 (ω) and any x0 ∈ T1, then ψ(x) = f(x)− f(x− x0) an be written by
ψ = ∂xϕ. The strong onvergene in L2([0, T ], L2(ω)) implies

(Ψ(t)fun, un)L2(]0,T [×T1) → 0.Then for any x0 ∈ T1

(Ψ(t)f(.− x0)un, un)L2(]0,T [×T1) → 0.We lose the proof by onstruting a partition of the unity of T1 with funtions with support smallerthan ω.Remark 3.1. The previous theorem allows a soure term fn bounded in a lower order Sobolev norm(only L2H−1 while un is bounded in L2L2). This fat an be extremely useful in a nonlinear ontext,where the soure term omes from the nonlinearity.A losely related result that an be useful in other situations is the propagation of the regularity.For some solution of the Shrödinger equation with soure term, we reover some regularity informa-tion from an open set ω to the whole irle. We write Proposition 13 of [15℄ in the one dimensionalsetting, whih an be obtained with a proof very similar to Theorem 3.1.Theorem 3.2. Let T > 0 and u ∈ L2([0, T ],Hr(T1)), r ∈ R, solution of
i∂tu+ ∂2xu = f ∈ L2([0, T ],Hr)Additionally, we assume that there exist an open set ω and ρ ≤ 1

2 suh that u ∈ L2
loc(]0, T [,H

r+ρ(ω)).Then, we have u ∈ L2
loc(]0, T [,H

r+ρ(T1)).This kind of result an be very useful if f is either zero or a nonlinear term of u. This allows toiterate the result to get the smoothness of some solution u smooth on [0, T ]× ω.5



3.2 The higher dimensionsThe proof of Theorem 3.1 ontains all the ingredients of the following theorem whih is due toDehman-Gérard-Lebeau [15℄, with the assumption of Geometri Control Condition:Assumption 3.1 (Geometri Control Condition). We say that an open set ω ⊂ M satis�es theGeometri Control Condition if there exists T0 ≥ 0 suh that any geodesi with veloity one issued at
t = 0 meets ω in a time 0 ≤ t ≤ T0.Theorem 3.3. [Dehman-Gérard-Lebeau℄ Let M be a ompat manifold and ω ⊂ M satisfying theGeometri Control Condition. Then, the same result of Theorem 3.1 holds.The proof is quite similar to the one we have presented for Theorem 3.1 exept that it requires theuse of miroloal analysis. The propagation happens in the phase spae (x, ξ) ∈ T ∗M and not onlyin spae as in dimension 1. The link with the geometry is made using pseudodi�erential operators(see Alinha-Gérard [1℄ for an introdution).For a symbol f(x, ξ) on the phase-spae T ∗M , we will denote with big letter F (x,D) one pseu-dodi�erential operator with prinipal symbol f(x, ξ). We will mainly use the three following fats1. Any pseudodi�erential operator of order r sends Hs(M) into Hs−r(M).2. For a1(x,D) and a2(x,D) two pseudodi�erential operators of respetive orders r1 and r2, theommutator [a1(x,D), a2(x,D)] is a pseudodi�erential operator of order r1+ r2−1 of prinipalsymbol 1

i {a1, a2} = 1
iHa1a2 where {·, ·} is the Poisson braket and Ha1 the Hamiltonian �eldof a1. The Hamiltonian of a funtion a1(x, ξ) on the otangent bundle T ∗M an be expressedin oordinates as Ha1 =
∑

i
∂a1
∂ξi

∂
∂xi

− ∂a1
∂xi

∂
∂ξi

.3. The prinipal symbol of the Laplae-Beltrami operator p(x,D) = −∆ is p(x, ξ) = |ξ|2x where
| · |2x is the metri on T ∗M inherited from the Riemannian metri.The following modi�ations have to be made to the 1D proof to get the same result in higherdimension:� we pik B as a pseudodi�erential operator of order −1 on M and A = Ψ(t)B. However, Bhas the same e�et on Sobolev spaes thanks to fat 1, and therefore, the same estimates willremain true.� From the same omputation, we obtain

(Ψ(t)[B,∆]un, un)L2 → 0.(6)� The symbol of [B,∆] is 1
iHpb where Hp is the Hamiltonian of the symbol p(x, ξ) = |ξ|2x thanksto fat 2.If p is the symbol orresponding to the norm of the �at metri p = |ξ|2 =∑i ξ

2
i , then the Hamiltoniantrajetory starting from a point (x0, ξ0) is the straight line (in x) (x(t), ξ(t)) = (x0 +2tξ0, ξ0). In themore general ase, p = |ξ|2x where | · |x is the metri on T ∗M inherited from the Riemannian metri.The Hamiltonian �ow desribes the geodesi �ow and x(t) is a geodesi, up to renormalisation.This allows to prove that there is a propagation of the information along the �ow of H|ξ|2x

, that isalong the geodesi �ow of the manifold. There are several ways (essentially equivalent) to prove thispropagation of ompatness. The �rst, that we will sketh, is to mimik what we did for dimension
1. The propagation an be made step by step in the phase-spae. The �nal result of the omputation6



we made (namely (6)) is that for any pseudodi�erential operator of order 0, whose prinipal symbolan be written q = 1
iHpb with b of order −1, we have (Ψ(t)Q(x,D)un, un)L2 → 0 as n → +∞. Toapply this in dimension 1, we just notied that a lass of symbols that an be written q = Hpb isthe one of the form q = f(x) − f(x − x0). If f is supported in a neighborhood of a point y0, itallows to get information around y1 = y0 + x0 from information around y0. The equivalent of thisfat in higher dimension is presented in the following geometri lemma, whih, this time, is in thephase-spae T ∗M :Lemma 3.1. Let ρ0 ∈ T ∗M \0, Γ(t) be the biarateristi starting at ρ0 for the symbol p(x, ξ) = |ξ|2x(i.e. the solution of Γ̇(t) = Hp(Γ(t)), Γ(0) = ρ0). Then, there exists ε > 0 suh that if 0 < t < ε,

ρ1 = Γ(t), and V1 a small onial neighborhood of ρ1, there exists a neighborhood V0 of ρ0 suh thatfor any symbol c(x, ξ) homogeneous of order 0, supported in V0, there exists another symbol b(x, ξ)homogeneous of order −1 suh that
Hpb(x, ξ) = c(x, ξ) + r(x, ξ)(7)where r is of order 0 and supported in V1.We give a sketh of the proof in the appendix, whih mostly relies on solving a transport equation.Note that this propagation an easily be globalized (that is without the ε) by using a ompatnessargument and by iterating the proess of propagation.We an then use this lemma to propagate the information from a neighborhood of ρ1 to a neigh-borhood of ρ0.If ρ1 ∈ ω, the strong onvergene of un on ω implies

(Ψ(t)R(x,D)un, un)L2 → 0Moreover, the previous omputation gave (Ψ(t)[B,∆]un, un)L2 → 0. Using identity (7) for thesymbols, this gives �nally
(Ψ(t)C(x,D)un, un)L2 → 0where c(x, ξ) an be hosen equal to 1 around ρ0. We have proved the strong onvergene in amiroloal region lose to ρ0.The Geometri Control Condition states that any point ρ0 ∈ T ∗M an be linked with a biarater-isti to another point in T ∗ω. Then, by iterating the previous result, we get that for any ρ0 ∈ T ∗M ,we an �nd c(x, ξ) equal to 1 around ρ0 suh that (Ψ(t)C(x,D)un, un)L2 → 0. By performing apartition of the unity of T ∗M , we an onlude the proof of Theorem 3.3 as in dimension 1.This propagation an also be expressed from the point of view of miroloal defet measure intro-dued by P. Gérard [23℄ and L. Tartar [57℄. For a sequene un weakly onvergent to 0 in L2, an assoi-ated miroloal defet measure is a measure on ]0, T [×S∗M (where S∗M = {(x, ξ) ∈ T ∗M ||ξ|x = 1})so that

(A(t, x,Dx)un, un)L2([0,T ]×M) →
∫

S∗M
a0(t, x, ξ) dµ(t, x, ξ)for any tangential (i.e. not depending on the variable dual to the time t) pseudodi�erential operator

A(t, x,Dx) of order 0 with prinipal symbol a0. This measure represents the lous of onentrationof the energy of un is the phase spae. Therefore,� un → 0 in L2([0, T ], L2(ω)) an be expressed as µ ≡ 0 on ]0, T [×S∗ω.� ([A,∆]un, un)L2 → 0 for any A of order −1 is equivalent to Hpµ = 0, whih an be interpretatedas µ being invariant by the geodesi �ow.Therefore, the assumption of Geometri Control Condition gives that µ ≡ 0 and the strong onver-gene of un to 0 in L2([0, T ],M). 7



4 Linear ontrollability4.1 In 1 DimensionTheorem 4.1. Let ω be a non empty open set of T1 and T > 0. Then, there exists C > 0 suh that
‖u0‖2L2 ≤ CT

∫ T

0

∥∥∥1ω(x)eit∂
2
xu0

∥∥∥
2

L2
dt(8)for every u0 ∈ L2(T1).Remark 4.1. There are several methods to prove the previous theorem: miroloal analysis [36, 15℄,multiplier method [39℄, Carleman estimates [33℄, moment theory, et. We are going to present onethat is very lose to some miroloal ideas but without the tehniity of miroloal analysis (beausewe are in dimension 1). It ontains the ideas that give the result under Geometri Control Conditionin higher dimension. Another intersest is that it is quite robust to perturbation and allows to dealwith nonlinear problems as is done in [15℄ [34, 35℄.Proof. Initially, we will onsider smooth funtions. The result an be easily extended by density.We �rst prove the weaker estimate.

‖u0‖2L2 ≤ CT

∫ T

0

∥∥∥1ω(x)eit∂
2
xu0

∥∥∥
2

L2
dt+ CT ‖u0‖2H−2(9)We are going to apply the strategy of ompatness uniqueness, for whih we argue by ontradition.Let un,0 be a sequene of smooth funtion on T1 ontraditing (9) and un := eit∂

2
xun,0 be theassoiated linear solution, so that

∫ T

0

∥∥∥1ω(x)eit∂
2
xu0,n

∥∥∥
2

L2
dt+ ‖u0,n‖2H−2 ≤ 1

n
‖u0,n‖2L2 .(10)Sine the problem is linear, we an suppose that ‖un,0‖L2 = 1 (otherwise replae un,0 by

un,0/ ‖un,0‖L2). Estimate (10) implies u0,n → 0 in H−2. Interpolating between L2 and H−2, weget the same onvergene in H−1. Therefore, un → 0 in L2([0, T ],H−1(T1)) by onservation of thenorm H−1. Moreover, (10) gives also un → 0 in L2([0, T ], L2(ω)). So, we are in position to applyTheorem 3.1 with fn = 0 and obtain un → 0 in L2
loc([0, T ], L

2(T1)). This is in ontradition with
‖un,0‖L2 = 1 and proves (9).Now, we get bak to the proof of (8).Denote NT =

{
u0 ∈ L2

∣∣∣eit∂2
xu0 = 0 on ]0, T [×ω

}. NT is a linear subspae of L2(T1). We want toprove that NT = {0}. Let ε > 0 and u0 ∈ NT . For ε small enough suh that uε = eiε∂
2
xu0−u0

ε is inNT/2.Sine u0 ∈ L2, uε is bounded in H−2 uniformly in ε→ 0. Estimate (9) gives ‖uε‖2L2 ≤ CT/2 ‖uε‖2H−2 .By de�nition of eit∂2
x , ∂2xu0 ∈ L2 and u0 ∈ H2. This immediatly gives ∂2xu0 ∈ NT . Therefore,

NT is stable by ∂2x and only ontains smooth funtions. Applying again estimate (9) to ∂2xu0 when
u0 ∈ NT , we get ∥∥∂2xu0∥∥L2 ≤ CT ‖u0‖L2 . Indeed, the unit ball of NT (for the L2 topology) is boundedin H2 and therefore is ompat by the Rellih theorem. So, by the theorem of Riesz, NT is �nitedimensional. Therefore, the operator ∂2x sends NT into itself and admits an eigenvalue λ assoiatedto uλ. Moreover, ∂2xuλ = λuλ and uλ = 0 on ω implies uλ = 0 (by the Cauhy-Lipshitz theorem).This implies NT = {0}.To onlude the proof of Theorem 4.1, we argue again by ontradition. Let un,0 be a sequeneof smooth funtions on T1 of L2 norm 1 ontraditing (8) and un = eit∂

2
xun,0 the assoiated linear8



solution, hene
∫ T

0

∥∥∥1ω(x)eit∂
2
xu0,n

∥∥∥
2

L2
dt ≤ 1

n
‖u0,n‖2L2 ≤ 1

n
.(11)Let u = eit∂

2
xu0 be a weak limit of un (we easily get that u is also solution the Shrödinger equationand u0 is a weak limit of u0,n). (11) implies that u0 ∈ NT and so u0 = 0. So u0,n ⇀ 0 weaklyin L2 and by Rellih theorem, ‖u0,n‖H−2 → 0. Now applying our weak estimate (9) and (11) give

‖u0,n‖L2 → 0 whih is a ontradition.Applying the HUM method of J-L. Lions, the previous Theorem implies the exat ontrollabilityin L2 of the linear equation. More preisely, we an onstrut an isomorphism of ontrol S from L2to L2: for every state Ψ0 in L2, there exists Φ0 = S−1Ψ0 (Ψ0 = SΦ0) suh that if Φ is solution ofthe dual equation
{
i∂tΦ+ ∂2xΦ = 0

Φ(x, 0) = Φ0(x)
(12)and Ψ solution of

{
i∂tΨ+ ∂2xΨ = 1ωΦ

Ψ(T ) = 0
(13)we have Ψ(0) = Ψ0.Atually, multiplying (13) by Φ, integrating on [0, T ]×M and integrating by parts, we get

−i 〈Ψ(0),Φ0〉L2(M) =

∫ T

0

∫

M
|1ωΦ|2dxdtDenoting SΦ0 = −iΨ(0), this gives

〈SΦ0,Φ0〉L2(M) =

∫ T

0

∫

M
|1ωΦ|2dxdtThis automatially gives that S is nonnegative self adjoint and the observability estimates provesthat it is positive and an isomorphism of L2. The ontrollability follows diretly.Theorem 4.2. Let ω be a non empty open set of T1 and T > 0. Then, for every u0, u1 ∈ L2(T1)there exists a ontrol g ∈ L∞([0, T ], L2) supported in [0, T ]× ω suh that the solution of

{
i∂tu+∆u = g

u(0) = u0
(14)satis�es u(T ) = u1The previous theorem gives the existene of a ontrol in L2 whih drives a L2 data to 0. A naturalquestion is whether this ontrol is smoother if the data is smoother. This turns out to be true ifwe replae 1ω by a smooth funtion χω that satis�es χω(x) > C > 0 for x ∈ ω. This problem was�rst adressed for the wave equation in Dehman-Lebeau [16℄. The argument an be easily adaptedto the Shrödinger ase as it is done by the author in [34℄ and even to a more general framework inErvedoza-Zuazua [20℄.Now, we denote S the operator de�ned by SΦ0 = −iΨ(0) where Ψ is de�ned by (12) and (13)with replaing 1ω by χ2

ω (whih is atually BBt where B = χω, following the funtional analytiframework of HUM). 9



Theorem 4.3. Let S be de�ned as before with χω smooth. Then, S is an isomorphism of Hs forevery s ≥ 0.Proof. We easily see that S maps Hs into itself. So we just have to prove that SΦ0 ∈ Hs implies
Φ0 ∈ Hs. We use the formula

SΦ0 =

∫ T

0
e−it∂2

xχ2
ωe

it∂2
xΦ0 dt.Sine S−1 is ontinuous from L2 into itself, we get, using Lemma A.1 of the Appendix,

‖DsΦ0‖L2 ≤ C ‖SDsΦ0‖L2 ≤ C

∥∥∥∥
∫ T

0
e−it∂2

xχ2
ωe

it∂2
xDsΦ0

∥∥∥∥
L2

≤ C

∥∥∥∥Ds

∫ T

0
e−it∂2

xχ2
ωe

it∂2
xΦ0

∥∥∥∥
L2

+C

∥∥∥∥
∫ T

0
e−it∂2

x
[
χ2
ω,D

s
]
eit∂

2
xΦ0

∥∥∥∥
L2

≤ C ‖SΦ0‖Hs + Cs ‖Φ0‖Hs−1 .This yields us the desired result for s ∈ [0, 1]. We extend this result to every s ≥ 0 by iteration.4.2 Some omments about the higher dimensionsApplying a similar proof together with the propagation Theorem 3.3 allows to prove the ontrollabilityon a ompat manifold under the Geometri Control Condition. The only di�erene in the argumentis that in the proof of NT = {0}, we have to replae the Cauhy-Lipshitz theorem by a uniqueontinuation argument for ellipti equations ∆uλ = λuλ, whih is true for any ω 6= ∅ (see [65℄ forinstane). More preisely, we get the following ontrollability result:Theorem 4.4. Let ω ⊂ M where M is a ompat manifold and ω satis�es the Geometri ControlCondition. Then, the same result as Theorem 4.2 (ontrollability in L2) holds.This result of ontrollability was �rst proved by G. Lebeau [36℄ in the more ompliated ase ofa domain with boundary. He proved the boundary ontrollability of the Shrödinger equation underthe Geometri Control Condition similar to Assumption 3.1, where the geodesis have to be replaedby generalised rays of geometri optis bouning on the boundary. Note also that some other resultsassume stronger geometri assumptions than Geometri Control Condition but less regularity on theoe�ients and may then give more expliit results using for instane multiplier tehniques (see forinstane Zuazua [62℄, Mahtyngier [39℄ or Lasieka-Triggiani [32℄) or Carleman estimates (see forinstane Lasieka-Triggiani-Zhang [33℄).The Geometri Control Condition is known to be neessary and su�ient for the ontrollabilityof the wave equation sine the results of Bardos-Lebeau-Rauh [5℄ (note that the neessary part anbring subtelties if we hoose 1ω instead of a smooth funtion χω, see [37℄ for the example of theontrol from half of the sphere). Atually, for any geodesi, it is possible to onstrut a sequene ofsolutions of the wave equation that onentrates on this ray. (see Ralston [48℄ with a geometri optisolution or Burq-Gérard [8℄ using miroloal defet measure). For the Shrödinger equation, thiskind of onstrution is, in general, only possible for some small times of the order of hn (or betterthe Ehrenfest time hn| log(hn)|) for some data osillating at sale hn → 0, whih is not su�ient toontradit observability. 10



However, for some spei� stable trajetories, the previous kind of onstrution is sometimepossible. For instane, Ralston [49℄ onstruted some approximate eigenfuntions (whih an ofourse be translated into solutions of the Shrödinger equation) that onentrate on a stable perioditrajetory satisfying additional assumptions. By stable, we mean that the appliation of �rst returnof Poinaré has only some eigenvalues of modulus 1 whih are distints. This stability ours inpartiular in the ase of positive urvature. This yields us to onlude that any ω has to meet thisspei� trajetory if we want to get observability, making the Geometri Control Condition neessaryfor this trajetory. This stability assumption is quite natural beause we expet that a stable perioditrajetory will prevent the dispersion. Indeed, a high frequeny partile traveling on suh trajetorymight remain onentrated lose to the trajetory.For instane, on the sphere S2, the geodesis are the equators, whih are stable. There existexpliit quasimodes that onentrate on any suh meridian. Namely, writing S2 ⊂ R3
(x,y,z), weonsider the sequene of normalised eigenfuntions un = cn(x + iy)n, i.e. ‖un‖L2(S2) = 1 with

cn ≈ √
n (see [22℄ Setion 4.E.3 for a desription of the eigenfuntions of the sphere as the restritionof harmoni homogeneous polynomials of R3). Sine |un|2 = c2n(x

2 + y2)n = c2n(1 − z2)n, thissequene onentrates exponentially on the equator {z = 0}, ontraditing the observability if ω doesnot interset the equator. The Geometri Control Condition is therefore neessary and su�ient onthe sphere. Note that in the ase of the ball with Dirihlet boundary onditions for instane, thereexist also expliit eigenfuntions that are known to onentrate on the boundary so that the ontrolregion ω has to touh the boundary (see Lagnese [31℄ Lemma 3.1 where it is stated for the waveequation).Yet, if there are some unstable trajetory, the situation may be more ompliated beause ofdispersion.The result of Ja�ard [28℄, extended by Komornik [30℄ to higher dimensions, proves, for the torus
Td, that any non empty open set is enough to obtain the ontrollability in any time T > 0 (see also theprevious result of Haraux [24℄ when ω is a strip in a retangle and the artile of Tenenbaum-Tusnak[58℄ where they obtain estimates for the boundary ontrol problem on retangles). Yet, it an happenthat suh open set does not satisfy the Geometri Control Condition. Note also that a di�erent proofof the same result was given by Burq and Zworski [10℄ and allows to give other examples of domainswhere Geometri Control Condition is not neessary, as the Bunimovith stadium. We give a veryelementary and general proof of Burq (see [10℄) that a strip is su�ient for the torus T2, that is theresult of Haraux [24℄.Theorem 4.5 (Burq). Let M1, M2 be two ompat manifolds (possibly with boundary). Let ω1 ⊂M1that satis�es an observability estimate like (2) in time T .Then, the same result as Theorem 4.2 holds true (i.e. ontrollability in L2) for ω = ω1 ×M2.Proof. For �xed x1, we deompose u0 aording to the eigenfuntions ϕk (with their respetiveeigenvalues λk) of ∆2 on M2, where ck are funtions in L2(M1)

u0(x1, x2) =
∑

k

ck(x1)ϕk(x2).This gives
[
eit∆u0

]
(x1, x2) =

∑

k

[
eit∆1ck

]
(x1)e

itλkϕk(x2).

11



By Planherel formula, the respetive L2 norms an be written
‖u0‖2L2(M1×M2)

=
∑

k

‖ck‖2L2(M1)

∥∥eit∆u0
∥∥2
L2(ω1×M2)

=
∑

k

∥∥eit∆1ck
∥∥2
L2(ω1)For eah k ∈ N, the observability estimate on ω1 gives

‖ck‖2L2(M1)
≤ CT

∫ T

0

∥∥eit∆1ck
∥∥2
L2(ω1)

.By summing up, we get the expeted estimate
‖u0‖2L2(M1×M2)

≤ CT

∫ T

0

∥∥eit∆u0
∥∥2
L2(ω1×M2)

.Note also that the previous theorem an be used as a �rst step to give another proof of the resultof Ja�ard and Komornik that any open subset is enough for observability on Td (see Burq-Zworski[9℄). A more preise desription is also given by Maía [40℄ for dimension 2 and Anantharaman-Maía[2℄ for higher dimension, using 2-miroloal defet measures.Therefore, it seems very temptative to make the onjeture that the good ondition is that ωmeets all stable trajetories. However, quite surprisingly, Colin de Verdière and Parisse [13℄ managedto onstrut some sequene of eigenfuntions onentrating logarithmially on an unstable perioditrajetory of a spei� negative urved surfae with boundary.Therefore, it seems that the global dynami of the geodesi �ow has to be taken into aount.Determining the set of trajetories that an be missed by the ontrol zone is very ompliated andimplies a good understanding of the global dynami of the geodesi �ow.Sine eigenfuntions are partiular solutions of Shrödinger equation, the observability is stronglylinked to the spreading of high energy eigenfuntions. Some progress has been reently made in thissubjet (in partiular, in relation with the Quantum Unique Ergodiity onjeture) and it ouldertainly be transfered to ontrollability problems. This is done for instane in the work of Anan-tharaman and Rivière [4℄ in negative urvature using entropy properties. We also refer to the reentsurvey of Anantharaman and Maía [3℄.It seems also that to permit some possible loss of derivative (that is to ontrol only some smootherdata with a less regular ontrol) an be a natural setting in some geometries where "few" trajetoriesmiss ω. For instane, the artile of Burq [7℄ proves the ontrollability in an open set with a �nitenumber of onvex holes assuming some further assumptions. The boundary ontrol is supported inthe exterior boundary (of the big open set). Therefore, there exist some trapped trajetories goingbak and forth between the holes, whih are very unstable. There is ontrollability but with loss of
ε derivatives, that is we an ontrol data in Hε while the regularity of the ontrol produe a prioridata in L2. These kind of results are very onsistent with some resolvent estimates whih give a lossof log(λ) at frequeny λ when the trapped set is a hyperboli trajetory (see Christianson [12℄) or a"very small set" (see Nonnenmaher-Zworski [46℄).Finally, note that if we only aim the approximate ontrollability, we only need to prove uniqueontinuation result for the free Shrödinger equation. It is atually the fat that an operator has adense image if its dual is injetive. More preisely, the approximate ontrollability is equivalent toanswer: 12



Let u solution of i∂tu+∆u = 0, does u ≡ 0 on ]0, T [×ω imply u ≡ 0 ?This happens to be true for any non empty open set ω. It easily follows from Holmgren theoremfor analyti metri or from more ompliated unique ontinuation results in more general metri, seefor instane Robbiano-Zuily [52℄. But the problem is that the approximate ontrollability does notgive any information on the ost of the ontrol to get lose to the target. However, without geometriassumption on ω, it is sometime possible to quantify the ost of this approximate ontrol to get atdistane ε. It appears that the ost explodes exponentially with 1/ε, as an be dedued by dualityfrom Phung [47℄ Theorem 3.1.5 Links with some resolvent estimatesIn the previous subsetion, we have obtained the ontrollability of the linear Shrödinger equationfrom an observability estimate. It turns out that this observability estimate is equivalent to someresolvent estimates.In partiular, we have the following theorem proved by Miller [44℄, following ideas of Burq andZworski [10℄:Theorem 5.1 (Burq-Zworski, Miller). The system (14) is exatly ontrollable in L2 in �nite time ifand only if there exist M > 0, m > 0 so that
∀λ ∈ R,∀u ∈ D(−∆), ‖u‖2L2 ≤M ‖(∆− λ)u‖2L2 +m ‖1ωu‖2L2 .(15)Atually, we an give an estimate on the time T and ost of ontrol CT of the observabilityestimate with respet to M and m. Although, there is not a omplete equivalene: the onstants Mand m an be written depending on the time and ost of ontrol, but these two expressions are notinverse one of the other.Atually, the proof is very general and an be put in an abstrat setting for self-adjoint operator.We follow [44℄.Proof. We prove the observability estimate (2) for a time T > 0 (that will depend on M), sine itis equivalent to ontrollability. Let χ ∈ C1

0 (R) to be spei�ed later, u0 ∈ D(−∆) and u(t) = eit∆u0.
v(t) = χ(t)u(t) is solution of i∂tv + ∆v = iχ̇(t)u(t) := f(t). The Fourier transform of f is f̂(τ) =
(−τ +∆)v̂(τ). We apply the resolvent estimate (15) to f̂(τ) with τ = λ and get

‖v̂(τ)‖2L2 ≤M
∥∥∥f̂(τ)

∥∥∥
2

L2
+m ‖1ω v̂(τ)‖2L2 .After integration in τ , the Planherel formula gives

∫

R

‖v(t)‖2L2 dt ≤M

∫

R

‖f(t)‖2L2 dt+m

∫

R

‖1ωv(t)‖2L2 dt.Realling the expression of v and f gives
∫

R

(χ(t)2 −Mχ̇(t)2) ‖u(t)‖2L2 dt ≤ m

∫

R

χ(t)2 ‖1ωu(t)‖2L2 dt.Now, we speify χ(t) = φ(t/T ) for φ ∈ C∞(]0, 1[) not zero. By the onservation of L2 norm, we get
IT ‖u0‖2L2 ≤ m ‖φ‖L∞

∫ T

0
‖1ωu(t)‖2L2 dt13



with IT =
∫ T
0 (χ(t)2 −Mχ̇(t)2) =

‖φ‖2
L2

T

(
T 2 −M

‖φ̇‖2

L2

‖φ‖2
L2

). This expression an be made positive for
T large enough. Atually, by optimizing φ ∈ C∞

0 (]0, 1[), i.e. minφ∈C∞
0

(]0,1[)

∥∥∥φ̇
∥∥∥
L2
/ ‖φ‖L2 = π (whihis obtained with some sequene onverging to sin(πt)), it is possible to obtain the ontrollability fora time T > π

√
M with a onstant CT = 2mT/(T 2 −Mπ2) in (2) (see Theorem 5.1 of [44℄).Now, let us prove the onverse result: observability implies resolvent estimate.Denote v(t) = (eit∆ − eitλ

)
u0 solution of

v̇(t) = i∆eit∆u0 − iλeitλu0 = i(∆− λ)eit∆u0 + iλ(eit∆ − eitλ)u0 := eit∆f + iλv(t)where f = i(∆ − λ)u0. So, sine v(0) = 0, we have v(t) =
∫ t
0 e

i(t−s)λeis∆f ds and therefore,
‖1ωv(t)‖L2 ≤ ‖v(t)‖L2 ≤ t ‖f‖L2 .We apply the observability estimate to u0

‖u0‖2L2 ≤ CT

∫ T

0

∥∥1ωeit∆u0
∥∥2
L2 ≤ 2CT

∫ T

0
‖1ωv(t)‖2L2 + 2CT

∫ T

0

∥∥∥1ωeitλu0
∥∥∥
2

L2

≤ CT
2T 3

3
‖(∆− λ)u0‖2L2 + 2CTT ‖1ωu0‖2L2 ,this gives the result with M = 2CTT

3/3 and m = 2CTT .Remark 5.1. Note that estimate (15) ould, in priniple, never be used diretly to prove ontrollabilityin arbitrary short time, sine it would require M to be arbitrary small with a large m eventually. Thisis not possible beause it would for instane imply ‖u‖L2 ≤ ε ‖∆u‖L2 for any u ∈ C∞
0 (ωc) and ε > 0.However, it is possible sometimes to prove (15) with M arbitrary small, but for some λ, |λ| ≥ R0,depending on M . The following property an be used:Assuming (15) holds for |λ| ≥ R0 and 1ωϕ = 0 implies ϕ = 0 for any ϕ eigenvalue of ∆, thenthe Shrödinger equation is ontrollable in time T > π

√
M .This is Property 6.6.4 from the book of Tusnak-Weiss [59℄. It is obtained by showing that,for v spetrally loalised at high frequeny (depending on M and R0), the resolvent estimate (15)is automatially true for |λ| ≤ R0 by basi spetral inequalities. Sine the assumption gives it for

|λ| ≤ R0, we get the resolvent estimate for any λ ∈ R and for v loalised at high frequeny. This givesontrollability for data at high frequeny. Sine the ontrollability is true for the remaining �nitedimensional subspae of data spetrally loalised at low frequeny, the global ontrollability an beobtained by a theorem of simultaneous ontrollability (Theorem 6.4.2 of [59℄). The seond assumptionof uniqueness for eigenfuntions is always true for any ω 6= ∅ by unique ontinuation for elliptioperators of order 2, but we have hosen to give it in an abstrat setting.The point of view of ontrollability through resolvent estimates an be very useful for variousreasons:� Their proof an be easier than diret observability. For instane, if we use miroloal arguments,we an use some measures whih do not depend on time, and whih are semilassi. Moreover,in [10℄, the authors developed a strategy whih allows to use existing resolvent estimates as ablak-box to get others whih ould be useful in other situation. Roughly speaking, if loally thegeometri situation is the same as in another geometri setting where you know some resolventestimates, you an use them as a blak-box.14



� To make proofs of ontrollability by the resolvent an be easier to make the link between theobservability of the ontiuous system and the observability of a disretised system oming fromnumerial analysis. This approah was used �rst by Ervedoza-Zheng-Zuazua [19℄, see also Miller[45℄ for later improvements and referenes.� It an give informations about the ost of the ontrol when the time of ontrol goes to zero,espeially when we only aim at ontrolling the "high frequeny" part of the funtion. In thatase, some resolvent estimates are only needed for large λ, see Miller [44℄.� It an make some links between ontrollability of di�erent equations. For example, it gives avery simple proof that the ontrollability of the wave equation implies the ontrollability ofthe Shrödinger equation in arbitrary small time. Indeed, the proof of Theorem 5.1 is verygeneral and an be applied to any self-adjoint operator A and ontrol operator B (bounded oradmissible see [44℄ or [50℄). In partiular, if we apply it to the wave operator A =

(
0 Id
∆ 0

)with a ontrol operator B =

(
0
1ω

), we see that the ontrollability of the wave equation in
H1 × L2 is equivalent to the following resolvent estimate

∀λ ∈ R,∀(u0, u1) ∈ D(A),

‖u0‖2H1 + ‖u1‖2L2 ≤M2

(
‖u1 − λu0‖2H1 + ‖∆u0 − λu1‖2L2

)
+m2 ‖1ωu1‖2L2 .(16)By taking u1 = λu0 = λu, we get a resolvent estimate for ∆

∀λ ∈ R,∀u ∈ D(−∆), ‖λu‖2L2 ≤M2

∥∥(∆− λ2)u
∥∥2
L2 +m2 ‖λ1ωu‖2L2 .(17)We immediatly get that (17) implies the resolvent estimate (15) with M arbitrary small and

λ > R0 with R0 = R0(M) large enough. But sine −∆ is positive, the same result is alsotrue for λ < −R0 with R0 large enough, by basi spetral theory estimates. This gives (15)uniformly for |λ| ≥ R0 with a �xed small M and eventually large m. By using Remark 5.1and unique ontinuation for eigenfuntions of ∆ (whih is atually a onsequene of (17) for
λ 6= 0), we get the general ase. Indeed we have proved that the ontrollability of the waveequation implies (15) and therefore the ontrollability of the Shrödinger equation. Note thatthis impliation an also be proved by the so-alled "transmutation method" (see Phung [47℄and Miller [44, 43℄) whih writes a solution to the Shrödinger equation as an integral kernelusing the solution of the wave equation. This method seems more preise to estimate the ostof ontrollability when T is small.Therefore, Theorem 4.4 an be dedued diretly from the related result of Bardos-Lebeau-Rauh[5℄ for the wave equation.Note also that it is possible to prove the equivalene between (17) and (16), see Yamamoto-Zhou[61℄, Ramdani-Takahashi-Tenenbaum-Tusnak [50℄ by using the equivalene to observability of"wave-pakets" or Miller [45℄ with a link with the resolvent estimates for √−∆.Note also that, quite surprisingly, Duykaerts-Miller [18℄ showed that the ontrollability of theShrödinger equation does not neessarily imply the ontrollability of the heat equation, evenif it is the ase in many geometri situations.
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6 The semilinear equationIn this part, we aim at giving a short overview of the tehniques and problems for the ontrol andstabilization of semilinear Shrödinger equations.6.1 The Nonlinear Shrödinger EquationIn this setion, we will disuss semilinear Shrödinger equations of the form
i∂tu+∆u = f(|u|2)u.They an arise in various physial problems as Bose-Einstein ondentate, propagation of wave en-veloppe in nonlinear opti or non linear propagation (as tsunami) et. The global well-posednessof this equation is a ompliated topi and depends onsiderably on the nonlinearity f and on thespatial domain where the equation is onsidered. We refer the reader to the expository books ofCazenave [11℄ or Tao [56℄ whih are good introdutions to the funtional spaes that are usually usedfor these problems, namely the Strihartz and Bourgain spaes. Note also that there is a strongrelation (still not ompletely understood) between the dispersive properties of the free Shrödingerequation and the geometry of the geodesi �ow.If f is a real valued funtion, two quantities are formally onserved by the equation:
‖u‖L2 , the mass,

E(u) =
∫
|∇u|2 dx+

∫
F (|u|2) dx, the H1 energy,where F is a primitive of f .These quantities will be ruial to prove some stabilisation results. Note that the sign of F willbe important in the ase where the nonlinear equation an only be solved in H1.6.2 General strategy6.2.1 Loal ontrollabilityConerning the internal ontrollability, some loal results an, in general, be obtained from the linearresult by a perturbation argument. The idea is mainly using a �xed point argument in the funtionalsetting inherited from the wellposedness result. This was �rst done for the nonlinear wave equationby Zuazua [63℄ and in Dehman-Lebeau-Zuazua [17℄ for stronger nonlinearities. This is also donefor Nonlinear Shrödinger equations, using Strihartz estimates in Gérard-Dehman-Lebeau [15℄ orBourgain spaes in Rosier-Zhang [54℄ and Laurent [34, 35℄.More preisely, for the ontrol to 0, the strategy is the following. We want to �nd a solution of

{
i∂tu+∆u = f(|u|2)u+ 1ωg

u(0) = u0
(18)satisfying u(T ) = 0.We will look for g of the form 1ωΦ where Φ = eit∆Φ0 is solution of (12). We split u = v + Ψwhere v ontains the nonlinear part and Ψ ontains the ontrol:

{
i∂tΨ+∆Ψ = 1ωΦ

Ψ(T ) = 0
(19)and so

{
i∂tv +∆v = f(|u|2)u

v(T ) = 0
(20) 16



We notie that all the system only depends on Φ0. We denote LΦ0 = u(0) = Ψ(0)+v(0) = SΦ0+KΦ0,where S is again the linear inversible HUM operator de�ned in (12) and (13) and K is a nonlinearoperator. We are looking for Φ0 suh that LΦ0 = u0, that is Φ0 = S−1u0 − S−1KΦ0 := BΦ0. So,the main task is to �nd a �xed point for B by showing that it is ontrating on a su�iently smallball. This an be ahieved if u0 is small and using many boot strap arguments showing that if u0and Φ0 are small, the solutions Ψ, u, and v will remain small in the funtional spae adapted to thenonlinearity. The di�ulties ome mainly from the nonlinear estimates that are required.Note that the ontrol from the boundary is for the moment quite less studied in the nonlinearframework, mainly beause the Cauhy problem for nonhomogeneous boundary onditions is lessunderstood. We an ite the work of Rosier-Zhang [55℄ on retangles and also [53℄ by the sameauthors whih takes advantage of the dispersion in Rd for a ontrol through all the boundary.6.2.2 Global ontrollabilityObtaining the ontrollability for large data is in general muh more subtle.First, we an expet to get the result for arbitrary short time if the nonlinearity is not too large,as globally Lipshitz (or log-Lipshitz as in [21℄ for the nonlinear heat equation). This strategy wasquite well desribed in the review artile of Zuazua [64℄. Up to the knowledge of the author, it is stillnot proved.If the nonlinearity is not globally Lipshitz, and if ω is not the whole spae, there is no availableresult of ontrol in arbitrary small time, unlike the linear ase. The most ommon strategy is theone by stabilization and loal ontrol. It was applied by Dehman-Lebeau-Zuazua [15℄ for ompatsurfaes using Strihartz estimates and by the author [34, 35℄ in some ontexts where Bourgainspaes are needed, as in dimension 3 and in dimension 1 at the L2 regularity. The idea is to �nda good stabilizing term to bring the solution lose to zero. During that time, we take as a ontrolthe stabilization term given by the stabilized equation. By ombining the previous onstrutionwith a loal ontrollability near zero, we obtain the global ontrollability to zero for large data.Additionaly, we notie that the bakward equation i∂tu −∆u = −f(|u|2)u ful�lls exatly the sameonditions for ontrolling to zero. The same reasonning as before allows to get ontrol to zero forthis bakward equation. By reversing the time, it gives a ontrol to get from zero to our expeted�nal state. Combining these both results gives the global ontrollability in large time. This strategyis illustrated in Figure 1 where the term energy is either the L2 norm or the H1 energy.Energy
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Stabilization Loal ontrol tFigure 1: Global strategy by stabilization17



The di�ulty is to prove that the stabilization is indeed e�etive. To be more onrete, weonsider the example of the 1-dimensional torus treated by the author in [34℄, where it is possible tosolve the ubi nonlinear equation in L2. The aim is to stabilize the equation in L2. Atually, the fatto onsider L2 solutions requires using Bourgain spaes (see [6℄), whih are funtional spaes speiallydesigned to ontain the dispersive properties of the Shrödinger operator. Sine this is not the topiof this survey, we will not preise the funtional spaes, but all the existene and propagation (ofompatness and regularity) have to be stated in these spaes.A natural damping for the L2 norm leads to the following system
{
i∂tu+∆u+ iχω(x)

2u = ±|u|2u
u(0) = u0 ∈ L2.where χω is a smooth funtion supported in ω.So, we have the deay estimate

‖u(T )‖2L2 = ‖u0‖2L2 − 2

∫ T

0
‖χωu(t)‖2L2 dt.To obtain an exponential deay of the type ‖u(t)‖L2 ≤ Ce−γt, it is su�ient to prove the observabilityestimate

‖u0‖2L2 ≤ C

∫ T

0
‖χω(x)u‖2L2 dt(21)for some bounded u0. This means that at eah step [0, T ], a ertain proportion of the energy is"burnt".A possible proof for suh result is the ompatness-uniqueness argument similar to the one per-formed in the linear ase as in the proof of Theorem 4.1. We argue by ontradition and assume thatthere exists a bounded sequene of solutions satisfying

∫ T

0
‖χω(x)un‖2L2 dt ≤ 1

n
‖un,0‖2L2 .(22)This time, sine the equation is nonlinear, we have to distinguish two ases (up to a subsequene):Let αn = ‖un,0‖L2 → α, then α > 0 or α = 0.First ase α > 0:� We denote u a weak limit of un. We apply a propagation of ompatness, similar to Theorem3.1, to prove that the onvergene is atually strong in L2

loc([0, T ], L
2). An additional di�ulty isarised by the fat that the soure term fn = ±|un|2un lies in some ompliated funtional spaesas the Bourgain spaes, whih imposes a modi�ation in the funtional framework of Theorem3.1. Then, the strong onvergene in L2

loc([0, T ], L
2) an be easily transfered to C([0, T ], L2)using that the �ow map is Lipshitz.Note that in other situations (this does not happen in L2 for dimension 1), the sequene ofsolutions an be proved to be linearizable: some ompatness results allow to prove that thesoure term is strongly onvergent in a suitable spae whih shows that un − vn is stronglyonvergent in the natural funtional spae, where vn is solution of the linear equation for theinitial data. Then, it is possible to apply propagation of ompatness for the linear equation.� The argument of uniqueness using the linear spae NT does not work sine the equation isnonlinear. So, it remains to prove the following unique ontinuation result:18



The only solution in L2 of
{
i∂tu+∆u = ±|u|2u

u = 0 on [0, T ]× ω
(23)is u ≡ 0.A �rst step for showing suh result is the propagation of regularity similar to Theorem 3.2 (butin the setting of Bourgain spaes) whih would allow us to redue the unique ontinuation resultto smooth funtions. But even for smooth funtions, this unique ontinuation result possessessome big di�ulties in high dimensions. They are desribed in Subsetion 6.3.� The strong onvergene of un to u = 0 in C([0, T ], L2) ontradits the fat that α > 0.Seond ase α = 0:If we do the hange of unknown wn = un/αn whih satis�es ‖wn(0)‖L2 = 1, this should solve

i∂twn +∆wn + iχ2
ωwn = ±α2

n|wn|2wn.A boot strap argument allows to take advantage of the smallness of α2
n in front of the nonlinearityto onlude that α2

n|wn|2wn onverges to 0 in the Bourgain spae and the solution is almost linear.The solution wn still satis�es the loal onvergene on ω
∫ T

0
‖χω(x)wn‖2L2 dt ≤ 1

n
.We an then onlude easily as in the linear ase and get a ontradition to ‖wn(0)‖L2 = 1.In some more ompliated geometries, see [15℄ [35℄, this strategy allows to prove some globalstabilization and ontrollability results under the two onditions1. ω ful�lls the Geometri Control Condition.2. ω ful�lls some unique ontinuation property similar to (23). We refer to subsetion 6.3 for somefurther omments.Another strategy that was proposed by the author [35℄ is by suessive ontrols lose to traje-tories. The idea is still to �nd some ontrol that make the solution tends to zero, but this time, weuse suessive ontrols near free trajetories. We prove that there exists a �xed ε suh that for anyfree trajetory leading ũ0 to ũ1, we an ontrol ũ0 to a �nal state uf with ‖uf − ũ1‖E ≤ ε, where

E is an "energy". Sine the energy is onserved for eah free trajetory, we an hoose uf so that
‖uf‖E ≤ ‖ũ0‖E − ε. The energy is then dereasing at eah step and we obtain a ontrol to 0. By(almost) reversibility, we an do the same proess to go from zero to the expeted �nal state. Thisstrategy is illustrated on �gure 2. We have simpli�ed a little the exposition beause the onservednonlinear H1 energy is not exatly the H1 norm for the nonlinear Shrödiner equation. In this shemeof proof, the di�ulty is to show the loal ontrollability near free trajetories. Moreover, if we wantthe strategy to work, we need an uniform ε for all the trajetories in a ball of H1, that is with aweak regularity. In partiular, we need to get some observability estimates uniform in the norm ofthe potentials V1 and V2 for solutions u of

i∂tu+∆u+ V1u+ V2u = 0.Sine V1 and V2 ome from the linearization of an arbitrary bounded trajetory, we an not assume anyadditional regularity. This fat generates a lot of ompliations for the propagation of ompatnessand regularity and the unique ontinuation. Yet, it an give some additional informations like the fatthat the reahable set in any �xed time is open and the smallness assumption for loal ontrollabilityis only neessary in some lower order norms than the energy norm.19
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Figure 2: Global strategy by using suesive ontrols6.3 Unique ontinuationIn this subsetion, we desribe shortly the di�ulties in proving the unique ontinuation property(23).One of the main tools to prove unique ontinuation is Carleman estimates. In the ase ofShrödinger equation, they allow to prove some loal unique ontinuation property aross somehypersurfae:Let u be a solution of i∂tu + ∆u + V1u + V2ū = 0 suh that loally u(t, x) = 0 for ϕ(x) ≥ 0,
t ∈ [0, T ], near to a point x0 where ϕ(x0) = 0, then u = 0 near x0.However, unlike the ellipti or paraboli ase, ϕ has to ful�ll some geometri onditions, mainly
Hess ϕ > 0. This ondition is losely related to the strit pseudoonvexity ondition whih isneessary to get Carleman estimates (see Zuily [65℄). However, sine the Shrödinger operator isanisotropi, in our setting, pseudoonvexity needs only to be taken in the spatial variable, as provedmore generally by Isakov [26℄ (see also [35℄ and [33℄ for some expliit omputation). Given an openset ω, the onstrution of the funtions ϕ that would allow to produe a global unique ontinuationresult as (23) is not trivial. It is very restritive with respet to the zone of ontrol. One would desiresome global result as: if ω satis�es the Geometri Control Condition, then the unique ontinuation(23) holds, but there is no suh result for the moment so far. In fat, Miller [42℄ gave some geometriexamples of bounded open sets where the onstrution of pseudoonvex funtion for the wave operator(with boundary ontrol) is impossible while Geometri Control Condition is ful�lled.Some improvements on the geometri zone for unique ontinuation an be made by onsideringsome weak Carleman estimate, where the funtion ϕ ful�lls only Hess ϕ ≥ 0. For instane, inMerado-Osses-Rosier [41℄ they prove unique ontinuation on retangles where
ω = {x = (x1, . . . , xn) |x1 ∈ [0, ε]} is a strip (see also [35℄ by the author for the same result in somemanifolds), by taking ϕ(x) = x1.Note that there exist some unique ontinuation results for partially analyti oe�ients [52℄. Thishas been reently used by Joly and the author [29℄ for the stabilization of the nonlinear wave equationwith only the Geometri Control Condition. An extension of this result for nonlinear Shrödingerequations would be very interesting.

20



A AppendixProof of Lemma 3.1. We have to solve a transport equation with soure term and with onstraintsof support. Sine p is positive homogeneous of order 2, there exists q ellipti homogeneous of order
1 suh that q2 = p (atually, the prinipal symbol of q is |ξ|x).We have {p, b} = −

{
b, q2

}
= −Hbq

2 = −2qHbq = 2qHqb. Sine q is ellipti, we have to �nd b and rsuh that Hqb =
c
2q +

r
2q .We are left with the following problem:Let q real homogeneous ellipti of order 1, c̃ homogeous of order −1, supported in a small onineighborhood V0 of ρ0. We have to �nd b and r̃ of order −1, with r̃ supported in a neighborhood V1as in the Lemma suh that

Hqb = c̃+ r̃.We would like to apply the homogeneous Darboux theorem (see Theorem 21.1.9 of [25℄). So we haveto guarantee that Hq and ξ · ∂
∂ξ are linearly independent.Indeed, if we denote G(x) = gij(x) as the matrix of the o�ients of σ(∆) =

∑
gijξiξj =

tξGξ,we have ∂ξσ(∆) = Gξ whih is not zero if ξ 6= 0 (G is invertible). So Hq has a omponent along ∂
∂xand it is therefore independent of ξ · ∂

∂ξ .Therefore, there exists a loal sympleti homogeneous transformation, entered in ρ0
Φ(x, ξ) = (y1(x, ξ), ..., yn(x, ξ), η1(x, ξ), ..., ηn(x, ξ))with yi homogeneous in ξ of order 0, ηi homogeneous in ξ of order 1, η1(x, ξ) = q(x, ξ) and y(ρ0) = 0.From now on, the funtions on T ∗M are de�ned with the new oordinates (yi, ηi). We have

Hq = Hη1 = ∂
∂y1

. Sine ρ1 = Γ(t0), in the new oordinates, it gives ρ1 = ρ0 + t0
∂

∂y1
.We an hoose ε small enough and V1 onial neighborhood of ρ1 = Γ(t0), 0 < t0 < ε, suh that{

V1 + t ∂
∂y1

, t ∈ [−2ε, ε]
} is inluded in the domain of the hart Φ . Selet ε1 with 0 < ε1 < t0/2 anda onial open set O ⊂ R2d−1 suh that ρ1+]− ε1, ε1[×O ⊂ V1. We hoose next V0 =]− ε1, ε1[×O.For a c̃ supported in V0, we de�ne:

b̃(y1, · · · , yn, η1, · · · , ηn) =
∫ y1

−∞
c̃(t, y2, · · · , yn, η1, · · · , ηn) dt(24)Then, b̃ is supported in {V0 + t ∂

∂y1
; t ∈ [0,+∞[

}.Let Ψ ∈ C∞(R) so that Ψ(t) = 1 for t ≤ t0 − ε1 and Ψ(t) = 0 for t ≥ t0 + ε1.Set b(y, η) = Ψ(y1)̃b(y, η), as it was already de�ned on the domain of the hart Φ.We ompute
Hqb(y, η) =

∂

∂y1
b = Ψ(y1)c̃(y, η) + Ψ′(y1)̃b(y, η).Sine Ψ(y1) = 1 on y1 ≤ t0 − ε1, partiularly on V0, we have
Ψ(y1)c̃(y, η) = c̃(y, η)Moreover, r̃ := Ψ′(y1)̃b is supported in

{t0 − ε1 ≤ y1 ≤ t0 + ε1} ∩
{
V0 + t

∂

∂y1
; t ∈ [0,+∞[

}
= ρ1+]− ε1, ε1[×O ⊂ V1.21



support of c̃ Hq =
∂

∂y1
ρ0 ρ1

support of r̃Figure 3: Propagation of information in phase spaeAdditionaly, if the symbol c̃ is homogeneous of order −1 in η, by the formula (24), r̃ and b̃ arealso of order −1. By the homogeneous hange of variable, it is also the ase in the ξ variable. Wean hek that all the symbols previously de�ned are ompatly supported in the oordinate harts(up to dilation in the variable η) and they an be extended to T ∗M \ {0} in a smooth way.For sake of ompleteness, we give a proof of the ommutator estimate used in the proof of theTheorem 4.3, in the ase of dimension 1. Note that this ould be understood as a onsequene that
Dr de�ned by (4) is a pseudodi�erential operator of order r.Lemma A.1. Let f denote the operator of multipliation by f ∈ C∞(T1). Then, [Dr, f ] maps
Hs(T1) into Hs−r+1(T1) for any s, r ∈ R.Proof. Denote |k|≀ = |k| if k 6= 0 and 1 otherwise. We also write sgn(0) = 1. We have

D̂r(fu)(n) = sgn(n) |n|r≀ ∑
k

f̂(n− k)û(k)

f̂Dru(n) =
∑

k

f̂(n− k)sgn(k) |k|r≀ û(k).And then
̂[Dr, f ]u(n) =

∑

k

f̂(n− k)(sgn(n) |n|r≀ − sgn(k) |k|r≀ )û(k)
∣∣∣ ̂[Dr, f ]u(n)

∣∣∣ ≤ C
∑

k

|f̂(n− k)||n − k|(|n|r−1
≀ + |k|r−1

≀ )|û(k)|.Using |n|2ρ≀ ≤ C |n− k|2|ρ|≀ |k|2ρ≀ for any ρ ∈ R, we get
‖[Dr, f ]u‖2Hs−r+1 ≤ C

∑

n

|n|2s≀

(∑

k

∣∣∣f̂(n− k)(n− k)
∣∣∣ |û(k)|

)2

+ C
∑

n

(∑

k

|n− k||s−r+1|
≀ |k|s≀

∣∣∣f̂(n − k)(n − k)
∣∣∣ |û(k)|

)2

≤ C
∑

n

(∑

k

|n− k||s|≀ |k|s≀
∣∣∣f̂(n− k)(n− k)

∣∣∣ |û(k)|
)2(25)

+ C
∑

n

(∑

k

|n− k||s−r+1|
≀ |k|s≀

∣∣∣f̂(n − k)(n − k)
∣∣∣ |û(k)|

)2

.(26) 22



We estimate (25) using Cauhy-Shwarz inequality, and as well for (26).
(25) ≤ C

∑

n

(∑

k

|n− k||s|≀ |f̂(n− k)(n − k)|
)

×
(∑

k

|n− k||s|≀ |f̂(n− k)(n − k)| |k|2s≀ |û(k)|2
)

≤ C

(∑

k

|k||s|≀ |kf̂(k)|
)2(∑

k

|k|2s≀ |û(k)|2
)

≤ Cf ‖u‖2Hs .
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