
Internal 
ontrol of the S
hrödinger equationCamille Laurent∗†Abstra
tIn this paper, we intend to present some already known results about the internal 
ontrolla-bility of the linear and nonlinear S
hrödinger equation.After presenting the basi
 properties of the equation, we give a self 
ontained proof of the
ontrollability in dimension 1 using some propagation results. We then dis
uss how to obtain somesimilar results on a 
ompa
t manifold where the zone of 
ontrol satis�es the Geometri
 ControlCondition. We also dis
uss some known results and open questions when this 
ondition is notsatis�ed. Then, we present the links between the 
ontrollability and some resolvent estimates.Finally, we dis
uss the new di�
ulties when we 
onsider the Nonlinear S
hrödinger equation.Key words. Controllability, Linear S
hrödinger equation, Nonlinear S
hrödinger equationAMS subje
t 
lassi�
ations. 93B05, 35Q41, 35Q551 Introdu
tionIn the 
ontrol of PDE, the aim is to bring the solution from an initial state to a �nal state �xed inadvan
e, with a 
ontrol term whi
h 
ould be, for instan
e, a sour
e (distributed or internal 
ontrol),boundary (boundary 
ontrol) or potential (bilinear 
ontrol) term, see Lions [38℄ or Coron [14℄ for ageneral introdu
tion.In this paper, is presented some existing results about the internal 
ontrollability of the linearand nonlinear S
hrödinger equation
i∂tu+∆u = f(u) + 1ω(x)g , (t, x) ∈ [0, T ] ×Mwhere M is an open set or a manifold, g is the 
ontrol and ω ⊂M is an open set.The main question will a
tually be the following: what are the 
onditions on ω and T that allowto get the 
ontrollability? We expe
t ω and T to be the smallest possible.It appears that the problem of 
ontrol will be strongly linked to the propagation of the energyof the solutions and will be therefore strongly linked to the geometry of ω with respe
t to M .More pre
isely, a 
ru
ial interest will be made to the following 
ondition, 
alled Geometri
 ControlCondition Any (generalized) geodesi
, meets ω in a time t ≤ T0.In the presen
e of boundary (whi
h mainly, will not be 
onsidered in these notes), for Diri
hlet
ondition for instan
e, the generalized geodesi
s are 
onsidered boun
ing on the boundary followingthe laws of geometri
 opti
s. This assumption was �rst 
onsidered for the wave equation by Rau
h
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and Taylor for a manifold [51℄ and by Bardos, Lebeau and Rau
h [5℄ for bounded open set and thenproved to be su�
ient for the S
hrödinger equation by Lebeau [36℄. Lebeau [36℄ deals with boundary
ontrol, but the same ideas lead to the same result for internal 
ontrol. The present arti
le intendsto give an almost 
omplete proof in the more simple 
ase without boundary, in the spirit of Dehman-Gérard-Lebeau [15℄. We will also dis
uss the link with resolvent estimates and the problems posedfor the semilinear equation.In the �rst Se
tion, we will present the main properties of the linear S
hrödinger equation andexpress the 
ontrollability in terms of an observability estimate for the free equation, as usual in theHUM method.Then, in the se
ond Se
tion, we present some results of propagation for some solutions of theS
hrödinger equation. These results express the fa
t that the solutions propagate with in�nite speeda

ording to the geodesi
s of M . The two types of information that we are able to propagate arethe 
ompa
tness and the regularity. The �nal result asserts that a sequen
e of solutions whi
h is
ompa
t (resp. smooth) on an open set ω satisfying the Geometri
 Control Condition is 
ompa
t(resp. smooth) everywhere. We will �rst present an elementary proof in the one dimensional 
aseand then give the mi
rolo
al tools that are ne
essary to understand the higher dimensions in theboundaryless 
ase.In Se
tion 4, we will show how the previous propagation results allow to prove the 
ontrollabilityunder the Geometri
 Control Condition on a 
ompa
t manifold. We also prove that the HUM 
ontrolis as smooth as the initial data.It turns out that the Geometri
 Control Condition is su�
ient but not ne
essary for the 
ontrol-lability of the linear S
hrödinger equation. The ne
esary and su�
ient 
ondition is a widely openproblem. We give some known results in that dire
tion.In Se
tion 5, we make the link between the 
ontrollability (whi
h is equivalent to observability)and some resolvent estimates for the stati
 Lapla
e operator:
∀λ ∈ R,∀u ∈ D(−∆), ‖u‖2L2 ≤M ‖(∆ − λ)u‖2L2 +m ‖1ωu‖2L2This point of view not only is interesting for giving alternative proof of the observability but alsoturns out to be very useful for the link with observablity of the dis
retized operator, to make the linkwith other equations (as the wave equation)...In Se
tion 6, we present the new problems for the nonlinear equation. We give a sket
h of theusual proof of stabilisation, without refering to the fun
tional spa
es ne
essary in that problems.The Appendix presents some te
hni
al steps used in the proofs.Remark 1.1. This paper represents the notes of a 
ourse about the 
ontrol of the S
hrödinger equationgiven by the author at the summer s
hool PASI-CIPPDE in Santiago de Chile. It was mainly intendedto students or young resear
her, not spe
ialists of the subje
t. Therefore, it does not pretend to bea general survey of the latest results in the �eld, but rather an a

essible introdu
tion to the subje
t.The result presented are mainly not from the author. Moreover, we have sometimes sa
ri�ed theoptimality or the generality of the results to make the presentation more elementary. In parti
ular,we only deal with manifolds without boundaries, even if most of the results presented here remain truefor a manifold with boundary and for 
ontrol from the boundary.2 The linear equationWe deal with the internal 
ontrollability of the linear S
hrödinger equation. If M is a 
ompa
tmanifold or a domain of Rd and ω ⊂ M an open set. The problem is, given u0 and u1 fun
tions2



on M (in a 
ertain fun
tional spa
e), 
an we �nd a 
ontrol g supported in [0, T ] × ω, su
h that thesolution of
{
i∂tu+∆u = 1ωg

u(0) = u0
(1)satis�es u(T ) = u1?The problems 
an be, for instan
e, formulated for u0, u1 ∈ L2(M) with a 
ontrol in L1([0, T ], L2(M))where the Cau
hy problem is well posed thanks to semi-group theory, with additional boundary 
on-ditions if ne
essary. By linearity and ba
kward wellposedness, the problem 
an easily be redu
ed tothe 
ase u1 = 0. Moreover, by duality, the HUM method, whi
h will be des
ribed in Se
tion 4 (seealso Lions [38℄ or Tu
snak-Weiss [59℄ for more abstra
t framework) gives that the 
ontrollability in
L2 is equivalent to the observability estimate

‖v0‖2L2 ≤ CT

∫

[0,T ]
‖1ω(x)v‖2L2(M) dt(2)for v solution of the free equation

{
i∂tv +∆v = 0

v(0) = v0.
(3)The argument is a
tually 
lose to the fa
t that an operator A is onto if its dual satis�es ‖x‖ ≤
C ‖A∗x‖.Note that the observability is also a property interesting for itself sin
e it quanti�es the problem of�nding a 
omplete solution from the knowledge of its evolution on a subdomain ω. If the observabilityholds, there is even an expli
it algorithm that allows to �nd the initial data from the observation (seefor instan
e Ito-Ramdani-Tu
snak [27℄ using time reversal algorithm). Therefore, the 
ontrollabilitywill be 
losely linked to the study of the propagation of the information for solution of the S
hrödingerequation.First, the S
hrödinger equation is meant to des
ribe the evolution of a quantum parti
le and thephysi
al heuristi
 is the following:A parti
le with small pulsation h, lo
ated in phase spa
e 
lose to a point x0 and a dire
tion ξ0(take for instan
e a wave pa
ket u0 = 1

hd/4 e
−

|x−x0|
2

2h ei
x·ξ0
h ) will travel at speed 1/h a

ording to thegeodesi
 (or straight line in the �at 
ase) starting at x0 in dire
tion ξ0, eventually boun
ing on thepossible boundary. It is 
lear that this heuristi
 is not 
ompletely true sin
e there are some limitationsfor the lo
alization in phase spa
e due to the Un
ertainty prin
iple. Moreover, the propagation isonly true for short times after whi
h some dispersion o

urs (of the order of h or better the Ehrenfesttime h| log(h)|, see the survey of Anantharaman-Ma
ía [3℄ for further 
omments and referen
es). Butthis propagation at "in�nite" speed gives the idea that the global geometry will be very important.Note that using the splitting ∂2t +∆2 = (−i∂t +∆)(i∂t +∆), some 
ontrollability results for theS
hrödinger equation 
an easily be transfered to the 
ase of the plate equation (see Lebeau [36℄).The main purpose of this notes is to give some geometri
 
onditions on ω that ensure the observ-ability and therefore the 
ontrollability. Then, another interesting problem is to �nd the best ω (withsome appropriate 
onstaints) for whi
h the 
ost of 
ontrol is minimal. This problem was investigatedin Privat-Trélat-Zuazua [60℄ (see also the referen
es therein).Notation:The one dimensional torus will be denoted by T1 = R/Z and L2(T1), often denoted by L2, isthe spa
e of L2 periodi
 fun
tions. M will denote a 
ompa
t manifold without boundary with aRiemannian metri
. 3



The in�nitesimal generator of i∂2x (resp. i∆ where ∆ is the Lapla
e-Beltrami operator M) isdenoted by eit∂2
x (resp. eit∆). Hen
e u = eit∂

2
xu0 is the solution of

{
i∂tu+ ∂2xu = 0

u(0) = u0.We have ‖u(t)‖Hs = ‖u0‖Hs for every s ∈ R and t ∈ R.Denote Dr the operator de�ned on D′(T1) by
D̂ru(n) = sgn(n)|n|rû(n) if n ∈ Z∗

= û(0) if n = 0.
(4)where û is the Fourier transform or u.3 Propagation of 
ompa
tness3.1 In 1 DimensionIn this se
tion, we give an elementary proof of some theorems of propagation of 
ompa
tness in the
ase of dimension 1. In the next subse
tion, will be des
ribed the original and more involved prooffrom Dehman-Gerard-Lebeau [15℄ in higer dimension using mi
rolo
al analysis. The one dimensionalversion has also been 
onsidered in [34℄ with some Bourgain spa
es in the 
ontext of nonlinear
ontrollability and stabilization.Theorem 3.1. Let un be a sequen
e of smooth solutions of

i∂tun + ∂2xun = fnwith
‖un‖L2([0,T ],L2(T1)) ≤ C, ‖un‖L2([0,T ],H−1(T1)) → 0 and ‖fn‖L2([0,T ],H−1(T1)) → 0.Moreover, we assume that there is a non empty open set ω ⊂ T1 su
h that un → 0 in L2([0, T ], L2(ω)).Then un → 0 in L2

loc([0, T ], L
2(T1)).Proof. Let us 
onsider the real valued fun
tions ϕ ∈ C∞(T1) and Ψ ∈ C∞

0 (]0, T [), whi
h will be
hosen later. Set Bu = ϕ(x)D−1 and A = Ψ(t)B where D−1 is the operator de�ned in (4). We have
A∗ = Ψ(t)D−1ϕ(x).Denote L the S
hrödinger operator L = i∂t + ∂2x. We write by a 
lassi
al way

αn = (Lun, A
∗un)L2(]0,T [×T1) − (Aun, Lun, )L2(]0,T [×T1)

= ([A, ∂2x]un, un)L2(]0,T [×T1) − i(Ψ′(t)Bun, un)L2(]0,T [×T1).We have also
αn = (fn, A

∗un)L2(]0,T [×T1) − (Aun, fn)L2(]0,T [×T1).We obtain
∣∣(fn, A∗un)L2(]0,T [×T1)

∣∣ ≤ ‖fn‖L2([0,T ],H−1)‖A∗un‖L2([0,T ],H1)

≤ ‖fn‖L2([0,T ],H−1)‖un‖L2([0,T ],L2).(5) 4



Then, ∣∣(fn, A∗un)L2(]0,T [×T1)

∣∣ → 0 when n → ∞. The same estimate holds for the other term andgives αn → 0. Similarly, the term (Ψ′(t)Bun, un)L2(]0,T [×T1) 
onverges to zero.Finally, we get
([A, ∂2x]un, un)L2(]0,T [×T1) → 0 when n→ ∞.Sin
e D−1 
ommutes with ∂2x, we have

[A, ∂2x] = −2Ψ(t)(∂xϕ)∂xD
−1 −Ψ(t)(∂2xϕ)D

−1.Making the same estimates as in (5), we get
(Ψ(t)(∂2xϕ)D

−1un, un)L2(]0,T [×T1) → 0.Moreover, −i∂xD−1 is a
tually the orthogonal proje
tion on the subspa
e of fun
tions with û(0) = 0.Using weak 
onvergen
e, we easily obtain that ûn(0)(t) tends to 0 in L2([0, T ]) and indeed,
(Ψ(t)(∂xϕ)ûn(0)(t), un)L2(]0,T [×T1) → 0.The �nal result is that for any ϕ ∈ C∞(T1) and Ψ ∈ C∞

0 (]0, T [)

(Ψ(t)(∂xϕ)un, un)L2(]0,T [×T1) → 0.Noti
e that the fun
tions whi
h 
an be written ∂xϕ are indeed all the fun
tions ψ that ful�ll ∫
T1 ψ = 0.For example, take any f ∈ C∞

0 (ω) and any x0 ∈ T1, then ψ(x) = f(x)− f(x− x0) 
an be written by
ψ = ∂xϕ. The strong 
onvergen
e in L2([0, T ], L2(ω)) implies

(Ψ(t)fun, un)L2(]0,T [×T1) → 0.Then for any x0 ∈ T1

(Ψ(t)f(.− x0)un, un)L2(]0,T [×T1) → 0.We 
lose the proof by 
onstru
ting a partition of the unity of T1 with fun
tions with support smallerthan ω.Remark 3.1. The previous theorem allows a sour
e term fn bounded in a lower order Sobolev norm(only L2H−1 while un is bounded in L2L2). This fa
t 
an be extremely useful in a nonlinear 
ontext,where the sour
e term 
omes from the nonlinearity.A 
losely related result that 
an be useful in other situations is the propagation of the regularity.For some solution of the S
hrödinger equation with sour
e term, we re
over some regularity informa-tion from an open set ω to the whole 
ir
le. We write Proposition 13 of [15℄ in the one dimensionalsetting, whi
h 
an be obtained with a proof very similar to Theorem 3.1.Theorem 3.2. Let T > 0 and u ∈ L2([0, T ],Hr(T1)), r ∈ R, solution of
i∂tu+ ∂2xu = f ∈ L2([0, T ],Hr)Additionally, we assume that there exist an open set ω and ρ ≤ 1

2 su
h that u ∈ L2
loc(]0, T [,H

r+ρ(ω)).Then, we have u ∈ L2
loc(]0, T [,H

r+ρ(T1)).This kind of result 
an be very useful if f is either zero or a nonlinear term of u. This allows toiterate the result to get the smoothness of some solution u smooth on [0, T ]× ω.5



3.2 The higher dimensionsThe proof of Theorem 3.1 
ontains all the ingredients of the following theorem whi
h is due toDehman-Gérard-Lebeau [15℄, with the assumption of Geometri
 Control Condition:Assumption 3.1 (Geometri
 Control Condition). We say that an open set ω ⊂ M satis�es theGeometri
 Control Condition if there exists T0 ≥ 0 su
h that any geodesi
 with velo
ity one issued at
t = 0 meets ω in a time 0 ≤ t ≤ T0.Theorem 3.3. [Dehman-Gérard-Lebeau℄ Let M be a 
ompa
t manifold and ω ⊂ M satisfying theGeometri
 Control Condition. Then, the same result of Theorem 3.1 holds.The proof is quite similar to the one we have presented for Theorem 3.1 ex
ept that it requires theuse of mi
rolo
al analysis. The propagation happens in the phase spa
e (x, ξ) ∈ T ∗M and not onlyin spa
e as in dimension 1. The link with the geometry is made using pseudodi�erential operators(see Alinha
-Gérard [1℄ for an introdu
tion).For a symbol f(x, ξ) on the phase-spa
e T ∗M , we will denote with big letter F (x,D) one pseu-dodi�erential operator with prin
ipal symbol f(x, ξ). We will mainly use the three following fa
ts1. Any pseudodi�erential operator of order r sends Hs(M) into Hs−r(M).2. For a1(x,D) and a2(x,D) two pseudodi�erential operators of respe
tive orders r1 and r2, the
ommutator [a1(x,D), a2(x,D)] is a pseudodi�erential operator of order r1+ r2−1 of prin
ipalsymbol 1

i {a1, a2} = 1
iHa1a2 where {·, ·} is the Poisson bra
ket and Ha1 the Hamiltonian �eldof a1. The Hamiltonian of a fun
tion a1(x, ξ) on the 
otangent bundle T ∗M 
an be expressedin 
oordinates as Ha1 =
∑

i
∂a1
∂ξi

∂
∂xi

− ∂a1
∂xi

∂
∂ξi

.3. The prin
ipal symbol of the Lapla
e-Beltrami operator p(x,D) = −∆ is p(x, ξ) = |ξ|2x where
| · |2x is the metri
 on T ∗M inherited from the Riemannian metri
.The following modi�
ations have to be made to the 1D proof to get the same result in higherdimension:� we pi
k B as a pseudodi�erential operator of order −1 on M and A = Ψ(t)B. However, Bhas the same e�e
t on Sobolev spa
es thanks to fa
t 1, and therefore, the same estimates willremain true.� From the same 
omputation, we obtain

(Ψ(t)[B,∆]un, un)L2 → 0.(6)� The symbol of [B,∆] is 1
iHpb where Hp is the Hamiltonian of the symbol p(x, ξ) = |ξ|2x thanksto fa
t 2.If p is the symbol 
orresponding to the norm of the �at metri
 p = |ξ|2 =∑i ξ

2
i , then the Hamiltoniantraje
tory starting from a point (x0, ξ0) is the straight line (in x) (x(t), ξ(t)) = (x0 +2tξ0, ξ0). In themore general 
ase, p = |ξ|2x where | · |x is the metri
 on T ∗M inherited from the Riemannian metri
.The Hamiltonian �ow des
ribes the geodesi
 �ow and x(t) is a geodesi
, up to renormalisation.This allows to prove that there is a propagation of the information along the �ow of H|ξ|2x

, that isalong the geodesi
 �ow of the manifold. There are several ways (essentially equivalent) to prove thispropagation of 
ompa
tness. The �rst, that we will sket
h, is to mimi
k what we did for dimension
1. The propagation 
an be made step by step in the phase-spa
e. The �nal result of the 
omputation6



we made (namely (6)) is that for any pseudodi�erential operator of order 0, whose prin
ipal symbol
an be written q = 1
iHpb with b of order −1, we have (Ψ(t)Q(x,D)un, un)L2 → 0 as n → +∞. Toapply this in dimension 1, we just noti
ed that a 
lass of symbols that 
an be written q = Hpb isthe one of the form q = f(x) − f(x − x0). If f is supported in a neighborhood of a point y0, itallows to get information around y1 = y0 + x0 from information around y0. The equivalent of thisfa
t in higher dimension is presented in the following geometri
 lemma, whi
h, this time, is in thephase-spa
e T ∗M :Lemma 3.1. Let ρ0 ∈ T ∗M \0, Γ(t) be the bi
ara
teristi
 starting at ρ0 for the symbol p(x, ξ) = |ξ|2x(i.e. the solution of Γ̇(t) = Hp(Γ(t)), Γ(0) = ρ0). Then, there exists ε > 0 su
h that if 0 < t < ε,

ρ1 = Γ(t), and V1 a small 
oni
al neighborhood of ρ1, there exists a neighborhood V0 of ρ0 su
h thatfor any symbol c(x, ξ) homogeneous of order 0, supported in V0, there exists another symbol b(x, ξ)homogeneous of order −1 su
h that
Hpb(x, ξ) = c(x, ξ) + r(x, ξ)(7)where r is of order 0 and supported in V1.We give a sket
h of the proof in the appendix, whi
h mostly relies on solving a transport equation.Note that this propagation 
an easily be globalized (that is without the ε) by using a 
ompa
tnessargument and by iterating the pro
ess of propagation.We 
an then use this lemma to propagate the information from a neighborhood of ρ1 to a neigh-borhood of ρ0.If ρ1 ∈ ω, the strong 
onvergen
e of un on ω implies

(Ψ(t)R(x,D)un, un)L2 → 0Moreover, the previous 
omputation gave (Ψ(t)[B,∆]un, un)L2 → 0. Using identity (7) for thesymbols, this gives �nally
(Ψ(t)C(x,D)un, un)L2 → 0where c(x, ξ) 
an be 
hosen equal to 1 around ρ0. We have proved the strong 
onvergen
e in ami
rolo
al region 
lose to ρ0.The Geometri
 Control Condition states that any point ρ0 ∈ T ∗M 
an be linked with a bi
ara
ter-isti
 to another point in T ∗ω. Then, by iterating the previous result, we get that for any ρ0 ∈ T ∗M ,we 
an �nd c(x, ξ) equal to 1 around ρ0 su
h that (Ψ(t)C(x,D)un, un)L2 → 0. By performing apartition of the unity of T ∗M , we 
an 
on
lude the proof of Theorem 3.3 as in dimension 1.This propagation 
an also be expressed from the point of view of mi
rolo
al defe
t measure intro-du
ed by P. Gérard [23℄ and L. Tartar [57℄. For a sequen
e un weakly 
onvergent to 0 in L2, an asso
i-ated mi
rolo
al defe
t measure is a measure on ]0, T [×S∗M (where S∗M = {(x, ξ) ∈ T ∗M ||ξ|x = 1})so that

(A(t, x,Dx)un, un)L2([0,T ]×M) →
∫

S∗M
a0(t, x, ξ) dµ(t, x, ξ)for any tangential (i.e. not depending on the variable dual to the time t) pseudodi�erential operator

A(t, x,Dx) of order 0 with prin
ipal symbol a0. This measure represents the lo
us of 
on
entrationof the energy of un is the phase spa
e. Therefore,� un → 0 in L2([0, T ], L2(ω)) 
an be expressed as µ ≡ 0 on ]0, T [×S∗ω.� ([A,∆]un, un)L2 → 0 for any A of order −1 is equivalent to Hpµ = 0, whi
h 
an be interpretatedas µ being invariant by the geodesi
 �ow.Therefore, the assumption of Geometri
 Control Condition gives that µ ≡ 0 and the strong 
onver-gen
e of un to 0 in L2([0, T ],M). 7



4 Linear 
ontrollability4.1 In 1 DimensionTheorem 4.1. Let ω be a non empty open set of T1 and T > 0. Then, there exists C > 0 su
h that
‖u0‖2L2 ≤ CT

∫ T

0

∥∥∥1ω(x)eit∂
2
xu0

∥∥∥
2

L2
dt(8)for every u0 ∈ L2(T1).Remark 4.1. There are several methods to prove the previous theorem: mi
rolo
al analysis [36, 15℄,multiplier method [39℄, Carleman estimates [33℄, moment theory, et
. We are going to present onethat is very 
lose to some mi
rolo
al ideas but without the te
hni
ity of mi
rolo
al analysis (be
ausewe are in dimension 1). It 
ontains the ideas that give the result under Geometri
 Control Conditionin higher dimension. Another intersest is that it is quite robust to perturbation and allows to dealwith nonlinear problems as is done in [15℄ [34, 35℄.Proof. Initially, we will 
onsider smooth fun
tions. The result 
an be easily extended by density.We �rst prove the weaker estimate.

‖u0‖2L2 ≤ CT

∫ T

0

∥∥∥1ω(x)eit∂
2
xu0

∥∥∥
2

L2
dt+ CT ‖u0‖2H−2(9)We are going to apply the strategy of 
ompa
tness uniqueness, for whi
h we argue by 
ontradi
tion.Let un,0 be a sequen
e of smooth fun
tion on T1 
ontradi
ting (9) and un := eit∂

2
xun,0 be theasso
iated linear solution, so that

∫ T

0

∥∥∥1ω(x)eit∂
2
xu0,n

∥∥∥
2

L2
dt+ ‖u0,n‖2H−2 ≤ 1

n
‖u0,n‖2L2 .(10)Sin
e the problem is linear, we 
an suppose that ‖un,0‖L2 = 1 (otherwise repla
e un,0 by

un,0/ ‖un,0‖L2). Estimate (10) implies u0,n → 0 in H−2. Interpolating between L2 and H−2, weget the same 
onvergen
e in H−1. Therefore, un → 0 in L2([0, T ],H−1(T1)) by 
onservation of thenorm H−1. Moreover, (10) gives also un → 0 in L2([0, T ], L2(ω)). So, we are in position to applyTheorem 3.1 with fn = 0 and obtain un → 0 in L2
loc([0, T ], L

2(T1)). This is in 
ontradi
tion with
‖un,0‖L2 = 1 and proves (9).Now, we get ba
k to the proof of (8).Denote NT =

{
u0 ∈ L2

∣∣∣eit∂2
xu0 = 0 on ]0, T [×ω

}. NT is a linear subspa
e of L2(T1). We want toprove that NT = {0}. Let ε > 0 and u0 ∈ NT . For ε small enough su
h that uε = eiε∂
2
xu0−u0

ε is inNT/2.Sin
e u0 ∈ L2, uε is bounded in H−2 uniformly in ε→ 0. Estimate (9) gives ‖uε‖2L2 ≤ CT/2 ‖uε‖2H−2 .By de�nition of eit∂2
x , ∂2xu0 ∈ L2 and u0 ∈ H2. This immediatly gives ∂2xu0 ∈ NT . Therefore,

NT is stable by ∂2x and only 
ontains smooth fun
tions. Applying again estimate (9) to ∂2xu0 when
u0 ∈ NT , we get ∥∥∂2xu0∥∥L2 ≤ CT ‖u0‖L2 . Indeed, the unit ball of NT (for the L2 topology) is boundedin H2 and therefore is 
ompa
t by the Relli
h theorem. So, by the theorem of Riesz, NT is �nitedimensional. Therefore, the operator ∂2x sends NT into itself and admits an eigenvalue λ asso
iatedto uλ. Moreover, ∂2xuλ = λuλ and uλ = 0 on ω implies uλ = 0 (by the Cau
hy-Lips
hitz theorem).This implies NT = {0}.To 
on
lude the proof of Theorem 4.1, we argue again by 
ontradi
tion. Let un,0 be a sequen
eof smooth fun
tions on T1 of L2 norm 1 
ontradi
ting (8) and un = eit∂

2
xun,0 the asso
iated linear8



solution, hen
e
∫ T

0

∥∥∥1ω(x)eit∂
2
xu0,n

∥∥∥
2

L2
dt ≤ 1

n
‖u0,n‖2L2 ≤ 1

n
.(11)Let u = eit∂

2
xu0 be a weak limit of un (we easily get that u is also solution the S
hrödinger equationand u0 is a weak limit of u0,n). (11) implies that u0 ∈ NT and so u0 = 0. So u0,n ⇀ 0 weaklyin L2 and by Relli
h theorem, ‖u0,n‖H−2 → 0. Now applying our weak estimate (9) and (11) give

‖u0,n‖L2 → 0 whi
h is a 
ontradi
tion.Applying the HUM method of J-L. Lions, the previous Theorem implies the exa
t 
ontrollabilityin L2 of the linear equation. More pre
isely, we 
an 
onstru
t an isomorphism of 
ontrol S from L2to L2: for every state Ψ0 in L2, there exists Φ0 = S−1Ψ0 (Ψ0 = SΦ0) su
h that if Φ is solution ofthe dual equation
{
i∂tΦ+ ∂2xΦ = 0

Φ(x, 0) = Φ0(x)
(12)and Ψ solution of

{
i∂tΨ+ ∂2xΨ = 1ωΦ

Ψ(T ) = 0
(13)we have Ψ(0) = Ψ0.A
tually, multiplying (13) by Φ, integrating on [0, T ]×M and integrating by parts, we get

−i 〈Ψ(0),Φ0〉L2(M) =

∫ T

0

∫

M
|1ωΦ|2dxdtDenoting SΦ0 = −iΨ(0), this gives

〈SΦ0,Φ0〉L2(M) =

∫ T

0

∫

M
|1ωΦ|2dxdtThis automati
ally gives that S is nonnegative self adjoint and the observability estimates provesthat it is positive and an isomorphism of L2. The 
ontrollability follows dire
tly.Theorem 4.2. Let ω be a non empty open set of T1 and T > 0. Then, for every u0, u1 ∈ L2(T1)there exists a 
ontrol g ∈ L∞([0, T ], L2) supported in [0, T ]× ω su
h that the solution of

{
i∂tu+∆u = g

u(0) = u0
(14)satis�es u(T ) = u1The previous theorem gives the existen
e of a 
ontrol in L2 whi
h drives a L2 data to 0. A naturalquestion is whether this 
ontrol is smoother if the data is smoother. This turns out to be true ifwe repla
e 1ω by a smooth fun
tion χω that satis�es χω(x) > C > 0 for x ∈ ω. This problem was�rst adressed for the wave equation in Dehman-Lebeau [16℄. The argument 
an be easily adaptedto the S
hrödinger 
ase as it is done by the author in [34℄ and even to a more general framework inErvedoza-Zuazua [20℄.Now, we denote S the operator de�ned by SΦ0 = −iΨ(0) where Ψ is de�ned by (12) and (13)with repla
ing 1ω by χ2

ω (whi
h is a
tually BBt where B = χω, following the fun
tional analyti
framework of HUM). 9



Theorem 4.3. Let S be de�ned as before with χω smooth. Then, S is an isomorphism of Hs forevery s ≥ 0.Proof. We easily see that S maps Hs into itself. So we just have to prove that SΦ0 ∈ Hs implies
Φ0 ∈ Hs. We use the formula

SΦ0 =

∫ T

0
e−it∂2

xχ2
ωe

it∂2
xΦ0 dt.Sin
e S−1 is 
ontinuous from L2 into itself, we get, using Lemma A.1 of the Appendix,

‖DsΦ0‖L2 ≤ C ‖SDsΦ0‖L2 ≤ C

∥∥∥∥
∫ T

0
e−it∂2

xχ2
ωe

it∂2
xDsΦ0

∥∥∥∥
L2

≤ C

∥∥∥∥Ds

∫ T

0
e−it∂2

xχ2
ωe

it∂2
xΦ0

∥∥∥∥
L2

+C

∥∥∥∥
∫ T

0
e−it∂2

x
[
χ2
ω,D

s
]
eit∂

2
xΦ0

∥∥∥∥
L2

≤ C ‖SΦ0‖Hs + Cs ‖Φ0‖Hs−1 .This yields us the desired result for s ∈ [0, 1]. We extend this result to every s ≥ 0 by iteration.4.2 Some 
omments about the higher dimensionsApplying a similar proof together with the propagation Theorem 3.3 allows to prove the 
ontrollabilityon a 
ompa
t manifold under the Geometri
 Control Condition. The only di�eren
e in the argumentis that in the proof of NT = {0}, we have to repla
e the Cau
hy-Lips
hitz theorem by a unique
ontinuation argument for ellipti
 equations ∆uλ = λuλ, whi
h is true for any ω 6= ∅ (see [65℄ forinstan
e). More pre
isely, we get the following 
ontrollability result:Theorem 4.4. Let ω ⊂ M where M is a 
ompa
t manifold and ω satis�es the Geometri
 ControlCondition. Then, the same result as Theorem 4.2 (
ontrollability in L2) holds.This result of 
ontrollability was �rst proved by G. Lebeau [36℄ in the more 
ompli
ated 
ase ofa domain with boundary. He proved the boundary 
ontrollability of the S
hrödinger equation underthe Geometri
 Control Condition similar to Assumption 3.1, where the geodesi
s have to be repla
edby generalised rays of geometri
 opti
s boun
ing on the boundary. Note also that some other resultsassume stronger geometri
 assumptions than Geometri
 Control Condition but less regularity on the
oe�
ients and may then give more expli
it results using for instan
e multiplier te
hniques (see forinstan
e Zuazua [62℄, Ma
htyngier [39℄ or Lasie
ka-Triggiani [32℄) or Carleman estimates (see forinstan
e Lasie
ka-Triggiani-Zhang [33℄).The Geometri
 Control Condition is known to be ne
essary and su�
ient for the 
ontrollabilityof the wave equation sin
e the results of Bardos-Lebeau-Rau
h [5℄ (note that the ne
essary part 
anbring subtelties if we 
hoose 1ω instead of a smooth fun
tion χω, see [37℄ for the example of the
ontrol from half of the sphere). A
tually, for any geodesi
, it is possible to 
onstru
t a sequen
e ofsolutions of the wave equation that 
on
entrates on this ray. (see Ralston [48℄ with a geometri
 opti
solution or Burq-Gérard [8℄ using mi
rolo
al defe
t measure). For the S
hrödinger equation, thiskind of 
onstru
tion is, in general, only possible for some small times of the order of hn (or betterthe Ehrenfest time hn| log(hn)|) for some data os
illating at s
ale hn → 0, whi
h is not su�
ient to
ontradi
t observability. 10



However, for some spe
i�
 stable traje
tories, the previous kind of 
onstru
tion is sometimepossible. For instan
e, Ralston [49℄ 
onstru
ted some approximate eigenfun
tions (whi
h 
an of
ourse be translated into solutions of the S
hrödinger equation) that 
on
entrate on a stable periodi
traje
tory satisfying additional assumptions. By stable, we mean that the appli
ation of �rst returnof Poin
aré has only some eigenvalues of modulus 1 whi
h are distin
ts. This stability o

urs inparti
ular in the 
ase of positive 
urvature. This yields us to 
on
lude that any ω has to meet thisspe
i�
 traje
tory if we want to get observability, making the Geometri
 Control Condition ne
essaryfor this traje
tory. This stability assumption is quite natural be
ause we expe
t that a stable periodi
traje
tory will prevent the dispersion. Indeed, a high frequen
y parti
le traveling on su
h traje
torymight remain 
on
entrated 
lose to the traje
tory.For instan
e, on the sphere S2, the geodesi
s are the equators, whi
h are stable. There existexpli
it quasimodes that 
on
entrate on any su
h meridian. Namely, writing S2 ⊂ R3
(x,y,z), we
onsider the sequen
e of normalised eigenfun
tions un = cn(x + iy)n, i.e. ‖un‖L2(S2) = 1 with

cn ≈ √
n (see [22℄ Se
tion 4.E.3 for a des
ription of the eigenfun
tions of the sphere as the restri
tionof harmoni
 homogeneous polynomials of R3). Sin
e |un|2 = c2n(x

2 + y2)n = c2n(1 − z2)n, thissequen
e 
on
entrates exponentially on the equator {z = 0}, 
ontradi
ting the observability if ω doesnot interse
t the equator. The Geometri
 Control Condition is therefore ne
essary and su�
ient onthe sphere. Note that in the 
ase of the ball with Diri
hlet boundary 
onditions for instan
e, thereexist also expli
it eigenfun
tions that are known to 
on
entrate on the boundary so that the 
ontrolregion ω has to tou
h the boundary (see Lagnese [31℄ Lemma 3.1 where it is stated for the waveequation).Yet, if there are some unstable traje
tory, the situation may be more 
ompli
ated be
ause ofdispersion.The result of Ja�ard [28℄, extended by Komornik [30℄ to higher dimensions, proves, for the torus
Td, that any non empty open set is enough to obtain the 
ontrollability in any time T > 0 (see also theprevious result of Haraux [24℄ when ω is a strip in a re
tangle and the arti
le of Tenenbaum-Tu
snak[58℄ where they obtain estimates for the boundary 
ontrol problem on re
tangles). Yet, it 
an happenthat su
h open set does not satisfy the Geometri
 Control Condition. Note also that a di�erent proofof the same result was given by Burq and Zworski [10℄ and allows to give other examples of domainswhere Geometri
 Control Condition is not ne
essary, as the Bunimovit
h stadium. We give a veryelementary and general proof of Burq (see [10℄) that a strip is su�
ient for the torus T2, that is theresult of Haraux [24℄.Theorem 4.5 (Burq). Let M1, M2 be two 
ompa
t manifolds (possibly with boundary). Let ω1 ⊂M1that satis�es an observability estimate like (2) in time T .Then, the same result as Theorem 4.2 holds true (i.e. 
ontrollability in L2) for ω = ω1 ×M2.Proof. For �xed x1, we de
ompose u0 a

ording to the eigenfun
tions ϕk (with their respe
tiveeigenvalues λk) of ∆2 on M2, where ck are fun
tions in L2(M1)

u0(x1, x2) =
∑

k

ck(x1)ϕk(x2).This gives
[
eit∆u0

]
(x1, x2) =

∑

k

[
eit∆1ck

]
(x1)e

itλkϕk(x2).

11



By Plan
herel formula, the respe
tive L2 norms 
an be written
‖u0‖2L2(M1×M2)

=
∑

k

‖ck‖2L2(M1)

∥∥eit∆u0
∥∥2
L2(ω1×M2)

=
∑

k

∥∥eit∆1ck
∥∥2
L2(ω1)For ea
h k ∈ N, the observability estimate on ω1 gives

‖ck‖2L2(M1)
≤ CT

∫ T

0

∥∥eit∆1ck
∥∥2
L2(ω1)

.By summing up, we get the expe
ted estimate
‖u0‖2L2(M1×M2)

≤ CT

∫ T

0

∥∥eit∆u0
∥∥2
L2(ω1×M2)

.Note also that the previous theorem 
an be used as a �rst step to give another proof of the resultof Ja�ard and Komornik that any open subset is enough for observability on Td (see Burq-Zworski[9℄). A more pre
ise des
ription is also given by Ma
ía [40℄ for dimension 2 and Anantharaman-Ma
ía[2℄ for higher dimension, using 2-mi
rolo
al defe
t measures.Therefore, it seems very temptative to make the 
onje
ture that the good 
ondition is that ωmeets all stable traje
tories. However, quite surprisingly, Colin de Verdière and Parisse [13℄ managedto 
onstru
t some sequen
e of eigenfun
tions 
on
entrating logarithmi
ally on an unstable periodi
traje
tory of a spe
i�
 negative 
urved surfa
e with boundary.Therefore, it seems that the global dynami
 of the geodesi
 �ow has to be taken into a

ount.Determining the set of traje
tories that 
an be missed by the 
ontrol zone is very 
ompli
ated andimplies a good understanding of the global dynami
 of the geodesi
 �ow.Sin
e eigenfun
tions are parti
ular solutions of S
hrödinger equation, the observability is stronglylinked to the spreading of high energy eigenfun
tions. Some progress has been re
ently made in thissubje
t (in parti
ular, in relation with the Quantum Unique Ergodi
ity 
onje
ture) and it 
ould
ertainly be transfered to 
ontrollability problems. This is done for instan
e in the work of Anan-tharaman and Rivière [4℄ in negative 
urvature using entropy properties. We also refer to the re
entsurvey of Anantharaman and Ma
ía [3℄.It seems also that to permit some possible loss of derivative (that is to 
ontrol only some smootherdata with a less regular 
ontrol) 
an be a natural setting in some geometries where "few" traje
toriesmiss ω. For instan
e, the arti
le of Burq [7℄ proves the 
ontrollability in an open set with a �nitenumber of 
onvex holes assuming some further assumptions. The boundary 
ontrol is supported inthe exterior boundary (of the big open set). Therefore, there exist some trapped traje
tories goingba
k and forth between the holes, whi
h are very unstable. There is 
ontrollability but with loss of
ε derivatives, that is we 
an 
ontrol data in Hε while the regularity of the 
ontrol produ
e a prioridata in L2. These kind of results are very 
onsistent with some resolvent estimates whi
h give a lossof log(λ) at frequen
y λ when the trapped set is a hyperboli
 traje
tory (see Christianson [12℄) or a"very small set" (see Nonnenma
her-Zworski [46℄).Finally, note that if we only aim the approximate 
ontrollability, we only need to prove unique
ontinuation result for the free S
hrödinger equation. It is a
tually the fa
t that an operator has adense image if its dual is inje
tive. More pre
isely, the approximate 
ontrollability is equivalent toanswer: 12



Let u solution of i∂tu+∆u = 0, does u ≡ 0 on ]0, T [×ω imply u ≡ 0 ?This happens to be true for any non empty open set ω. It easily follows from Holmgren theoremfor analyti
 metri
 or from more 
ompli
ated unique 
ontinuation results in more general metri
, seefor instan
e Robbiano-Zuily [52℄. But the problem is that the approximate 
ontrollability does notgive any information on the 
ost of the 
ontrol to get 
lose to the target. However, without geometri
assumption on ω, it is sometime possible to quantify the 
ost of this approximate 
ontrol to get atdistan
e ε. It appears that the 
ost explodes exponentially with 1/ε, as 
an be dedu
ed by dualityfrom Phung [47℄ Theorem 3.1.5 Links with some resolvent estimatesIn the previous subse
tion, we have obtained the 
ontrollability of the linear S
hrödinger equationfrom an observability estimate. It turns out that this observability estimate is equivalent to someresolvent estimates.In parti
ular, we have the following theorem proved by Miller [44℄, following ideas of Burq andZworski [10℄:Theorem 5.1 (Burq-Zworski, Miller). The system (14) is exa
tly 
ontrollable in L2 in �nite time ifand only if there exist M > 0, m > 0 so that
∀λ ∈ R,∀u ∈ D(−∆), ‖u‖2L2 ≤M ‖(∆− λ)u‖2L2 +m ‖1ωu‖2L2 .(15)A
tually, we 
an give an estimate on the time T and 
ost of 
ontrol CT of the observabilityestimate with respe
t to M and m. Although, there is not a 
omplete equivalen
e: the 
onstants Mand m 
an be written depending on the time and 
ost of 
ontrol, but these two expressions are notinverse one of the other.A
tually, the proof is very general and 
an be put in an abstra
t setting for self-adjoint operator.We follow [44℄.Proof. We prove the observability estimate (2) for a time T > 0 (that will depend on M), sin
e itis equivalent to 
ontrollability. Let χ ∈ C1

0 (R) to be spe
i�ed later, u0 ∈ D(−∆) and u(t) = eit∆u0.
v(t) = χ(t)u(t) is solution of i∂tv + ∆v = iχ̇(t)u(t) := f(t). The Fourier transform of f is f̂(τ) =
(−τ +∆)v̂(τ). We apply the resolvent estimate (15) to f̂(τ) with τ = λ and get

‖v̂(τ)‖2L2 ≤M
∥∥∥f̂(τ)

∥∥∥
2

L2
+m ‖1ω v̂(τ)‖2L2 .After integration in τ , the Plan
herel formula gives

∫

R

‖v(t)‖2L2 dt ≤M

∫

R

‖f(t)‖2L2 dt+m

∫

R

‖1ωv(t)‖2L2 dt.Re
alling the expression of v and f gives
∫

R

(χ(t)2 −Mχ̇(t)2) ‖u(t)‖2L2 dt ≤ m

∫

R

χ(t)2 ‖1ωu(t)‖2L2 dt.Now, we spe
ify χ(t) = φ(t/T ) for φ ∈ C∞(]0, 1[) not zero. By the 
onservation of L2 norm, we get
IT ‖u0‖2L2 ≤ m ‖φ‖L∞

∫ T

0
‖1ωu(t)‖2L2 dt13



with IT =
∫ T
0 (χ(t)2 −Mχ̇(t)2) =

‖φ‖2
L2

T

(
T 2 −M

‖φ̇‖2

L2

‖φ‖2
L2

). This expression 
an be made positive for
T large enough. A
tually, by optimizing φ ∈ C∞

0 (]0, 1[), i.e. minφ∈C∞
0

(]0,1[)

∥∥∥φ̇
∥∥∥
L2
/ ‖φ‖L2 = π (whi
his obtained with some sequen
e 
onverging to sin(πt)), it is possible to obtain the 
ontrollability fora time T > π

√
M with a 
onstant CT = 2mT/(T 2 −Mπ2) in (2) (see Theorem 5.1 of [44℄).Now, let us prove the 
onverse result: observability implies resolvent estimate.Denote v(t) = (eit∆ − eitλ

)
u0 solution of

v̇(t) = i∆eit∆u0 − iλeitλu0 = i(∆− λ)eit∆u0 + iλ(eit∆ − eitλ)u0 := eit∆f + iλv(t)where f = i(∆ − λ)u0. So, sin
e v(0) = 0, we have v(t) =
∫ t
0 e

i(t−s)λeis∆f ds and therefore,
‖1ωv(t)‖L2 ≤ ‖v(t)‖L2 ≤ t ‖f‖L2 .We apply the observability estimate to u0

‖u0‖2L2 ≤ CT

∫ T

0

∥∥1ωeit∆u0
∥∥2
L2 ≤ 2CT

∫ T

0
‖1ωv(t)‖2L2 + 2CT

∫ T

0

∥∥∥1ωeitλu0
∥∥∥
2

L2

≤ CT
2T 3

3
‖(∆− λ)u0‖2L2 + 2CTT ‖1ωu0‖2L2 ,this gives the result with M = 2CTT

3/3 and m = 2CTT .Remark 5.1. Note that estimate (15) 
ould, in prin
iple, never be used dire
tly to prove 
ontrollabilityin arbitrary short time, sin
e it would require M to be arbitrary small with a large m eventually. Thisis not possible be
ause it would for instan
e imply ‖u‖L2 ≤ ε ‖∆u‖L2 for any u ∈ C∞
0 (ωc) and ε > 0.However, it is possible sometimes to prove (15) with M arbitrary small, but for some λ, |λ| ≥ R0,depending on M . The following property 
an be used:Assuming (15) holds for |λ| ≥ R0 and 1ωϕ = 0 implies ϕ = 0 for any ϕ eigenvalue of ∆, thenthe S
hrödinger equation is 
ontrollable in time T > π

√
M .This is Property 6.6.4 from the book of Tu
snak-Weiss [59℄. It is obtained by showing that,for v spe
trally lo
alised at high frequen
y (depending on M and R0), the resolvent estimate (15)is automati
ally true for |λ| ≤ R0 by basi
 spe
tral inequalities. Sin
e the assumption gives it for

|λ| ≤ R0, we get the resolvent estimate for any λ ∈ R and for v lo
alised at high frequen
y. This gives
ontrollability for data at high frequen
y. Sin
e the 
ontrollability is true for the remaining �nitedimensional subspa
e of data spe
trally lo
alised at low frequen
y, the global 
ontrollability 
an beobtained by a theorem of simultaneous 
ontrollability (Theorem 6.4.2 of [59℄). The se
ond assumptionof uniqueness for eigenfun
tions is always true for any ω 6= ∅ by unique 
ontinuation for ellipti
operators of order 2, but we have 
hosen to give it in an abstra
t setting.The point of view of 
ontrollability through resolvent estimates 
an be very useful for variousreasons:� Their proof 
an be easier than dire
t observability. For instan
e, if we use mi
rolo
al arguments,we 
an use some measures whi
h do not depend on time, and whi
h are semi
lassi
. Moreover,in [10℄, the authors developed a strategy whi
h allows to use existing resolvent estimates as abla
k-box to get others whi
h 
ould be useful in other situation. Roughly speaking, if lo
ally thegeometri
 situation is the same as in another geometri
 setting where you know some resolventestimates, you 
an use them as a bla
k-box.14



� To make proofs of 
ontrollability by the resolvent 
an be easier to make the link between theobservability of the 
ontiuous system and the observability of a dis
retised system 
oming fromnumeri
al analysis. This approa
h was used �rst by Ervedoza-Zheng-Zuazua [19℄, see also Miller[45℄ for later improvements and referen
es.� It 
an give informations about the 
ost of the 
ontrol when the time of 
ontrol goes to zero,espe
ially when we only aim at 
ontrolling the "high frequen
y" part of the fun
tion. In that
ase, some resolvent estimates are only needed for large λ, see Miller [44℄.� It 
an make some links between 
ontrollability of di�erent equations. For example, it gives avery simple proof that the 
ontrollability of the wave equation implies the 
ontrollability ofthe S
hrödinger equation in arbitrary small time. Indeed, the proof of Theorem 5.1 is verygeneral and 
an be applied to any self-adjoint operator A and 
ontrol operator B (bounded oradmissible see [44℄ or [50℄). In parti
ular, if we apply it to the wave operator A =

(
0 Id
∆ 0

)with a 
ontrol operator B =

(
0
1ω

), we see that the 
ontrollability of the wave equation in
H1 × L2 is equivalent to the following resolvent estimate

∀λ ∈ R,∀(u0, u1) ∈ D(A),

‖u0‖2H1 + ‖u1‖2L2 ≤M2

(
‖u1 − λu0‖2H1 + ‖∆u0 − λu1‖2L2

)
+m2 ‖1ωu1‖2L2 .(16)By taking u1 = λu0 = λu, we get a resolvent estimate for ∆

∀λ ∈ R,∀u ∈ D(−∆), ‖λu‖2L2 ≤M2

∥∥(∆− λ2)u
∥∥2
L2 +m2 ‖λ1ωu‖2L2 .(17)We immediatly get that (17) implies the resolvent estimate (15) with M arbitrary small and

λ > R0 with R0 = R0(M) large enough. But sin
e −∆ is positive, the same result is alsotrue for λ < −R0 with R0 large enough, by basi
 spe
tral theory estimates. This gives (15)uniformly for |λ| ≥ R0 with a �xed small M and eventually large m. By using Remark 5.1and unique 
ontinuation for eigenfun
tions of ∆ (whi
h is a
tually a 
onsequen
e of (17) for
λ 6= 0), we get the general 
ase. Indeed we have proved that the 
ontrollability of the waveequation implies (15) and therefore the 
ontrollability of the S
hrödinger equation. Note thatthis impli
ation 
an also be proved by the so-
alled "transmutation method" (see Phung [47℄and Miller [44, 43℄) whi
h writes a solution to the S
hrödinger equation as an integral kernelusing the solution of the wave equation. This method seems more pre
ise to estimate the 
ostof 
ontrollability when T is small.Therefore, Theorem 4.4 
an be dedu
ed dire
tly from the related result of Bardos-Lebeau-Rau
h[5℄ for the wave equation.Note also that it is possible to prove the equivalen
e between (17) and (16), see Yamamoto-Zhou[61℄, Ramdani-Takahashi-Tenenbaum-Tu
snak [50℄ by using the equivalen
e to observability of"wave-pa
kets" or Miller [45℄ with a link with the resolvent estimates for √−∆.Note also that, quite surprisingly, Duy
kaerts-Miller [18℄ showed that the 
ontrollability of theS
hrödinger equation does not ne
essarily imply the 
ontrollability of the heat equation, evenif it is the 
ase in many geometri
 situations.

15



6 The semilinear equationIn this part, we aim at giving a short overview of the te
hniques and problems for the 
ontrol andstabilization of semilinear S
hrödinger equations.6.1 The Nonlinear S
hrödinger EquationIn this se
tion, we will dis
uss semilinear S
hrödinger equations of the form
i∂tu+∆u = f(|u|2)u.They 
an arise in various physi
al problems as Bose-Einstein 
ondentate, propagation of wave en-veloppe in nonlinear opti
 or non linear propagation (as tsunami) et
. The global well-posednessof this equation is a 
ompli
ated topi
 and depends 
onsiderably on the nonlinearity f and on thespatial domain where the equation is 
onsidered. We refer the reader to the expository books ofCazenave [11℄ or Tao [56℄ whi
h are good introdu
tions to the fun
tional spa
es that are usually usedfor these problems, namely the Stri
hartz and Bourgain spa
es. Note also that there is a strongrelation (still not 
ompletely understood) between the dispersive properties of the free S
hrödingerequation and the geometry of the geodesi
 �ow.If f is a real valued fun
tion, two quantities are formally 
onserved by the equation:
‖u‖L2 , the mass,

E(u) =
∫
|∇u|2 dx+

∫
F (|u|2) dx, the H1 energy,where F is a primitive of f .These quantities will be 
ru
ial to prove some stabilisation results. Note that the sign of F willbe important in the 
ase where the nonlinear equation 
an only be solved in H1.6.2 General strategy6.2.1 Lo
al 
ontrollabilityCon
erning the internal 
ontrollability, some lo
al results 
an, in general, be obtained from the linearresult by a perturbation argument. The idea is mainly using a �xed point argument in the fun
tionalsetting inherited from the wellposedness result. This was �rst done for the nonlinear wave equationby Zuazua [63℄ and in Dehman-Lebeau-Zuazua [17℄ for stronger nonlinearities. This is also donefor Nonlinear S
hrödinger equations, using Stri
hartz estimates in Gérard-Dehman-Lebeau [15℄ orBourgain spa
es in Rosier-Zhang [54℄ and Laurent [34, 35℄.More pre
isely, for the 
ontrol to 0, the strategy is the following. We want to �nd a solution of

{
i∂tu+∆u = f(|u|2)u+ 1ωg

u(0) = u0
(18)satisfying u(T ) = 0.We will look for g of the form 1ωΦ where Φ = eit∆Φ0 is solution of (12). We split u = v + Ψwhere v 
ontains the nonlinear part and Ψ 
ontains the 
ontrol:

{
i∂tΨ+∆Ψ = 1ωΦ

Ψ(T ) = 0
(19)and so

{
i∂tv +∆v = f(|u|2)u

v(T ) = 0
(20) 16



We noti
e that all the system only depends on Φ0. We denote LΦ0 = u(0) = Ψ(0)+v(0) = SΦ0+KΦ0,where S is again the linear inversible HUM operator de�ned in (12) and (13) and K is a nonlinearoperator. We are looking for Φ0 su
h that LΦ0 = u0, that is Φ0 = S−1u0 − S−1KΦ0 := BΦ0. So,the main task is to �nd a �xed point for B by showing that it is 
ontra
ting on a su�
iently smallball. This 
an be a
hieved if u0 is small and using many boot strap arguments showing that if u0and Φ0 are small, the solutions Ψ, u, and v will remain small in the fun
tional spa
e adapted to thenonlinearity. The di�
ulties 
ome mainly from the nonlinear estimates that are required.Note that the 
ontrol from the boundary is for the moment quite less studied in the nonlinearframework, mainly be
ause the Cau
hy problem for nonhomogeneous boundary 
onditions is lessunderstood. We 
an 
ite the work of Rosier-Zhang [55℄ on re
tangles and also [53℄ by the sameauthors whi
h takes advantage of the dispersion in Rd for a 
ontrol through all the boundary.6.2.2 Global 
ontrollabilityObtaining the 
ontrollability for large data is in general mu
h more subtle.First, we 
an expe
t to get the result for arbitrary short time if the nonlinearity is not too large,as globally Lips
hitz (or log-Lips
hitz as in [21℄ for the nonlinear heat equation). This strategy wasquite well des
ribed in the review arti
le of Zuazua [64℄. Up to the knowledge of the author, it is stillnot proved.If the nonlinearity is not globally Lips
hitz, and if ω is not the whole spa
e, there is no availableresult of 
ontrol in arbitrary small time, unlike the linear 
ase. The most 
ommon strategy is theone by stabilization and lo
al 
ontrol. It was applied by Dehman-Lebeau-Zuazua [15℄ for 
ompa
tsurfa
es using Stri
hartz estimates and by the author [34, 35℄ in some 
ontexts where Bourgainspa
es are needed, as in dimension 3 and in dimension 1 at the L2 regularity. The idea is to �nda good stabilizing term to bring the solution 
lose to zero. During that time, we take as a 
ontrolthe stabilization term given by the stabilized equation. By 
ombining the previous 
onstru
tionwith a lo
al 
ontrollability near zero, we obtain the global 
ontrollability to zero for large data.Additionaly, we noti
e that the ba
kward equation i∂tu −∆u = −f(|u|2)u ful�lls exa
tly the same
onditions for 
ontrolling to zero. The same reasonning as before allows to get 
ontrol to zero forthis ba
kward equation. By reversing the time, it gives a 
ontrol to get from zero to our expe
ted�nal state. Combining these both results gives the global 
ontrollability in large time. This strategyis illustrated in Figure 1 where the term energy is either the L2 norm or the H1 energy.Energy
u1

u0

Stabilization Lo
al 
ontrol tFigure 1: Global strategy by stabilization17



The di�
ulty is to prove that the stabilization is indeed e�e
tive. To be more 
on
rete, we
onsider the example of the 1-dimensional torus treated by the author in [34℄, where it is possible tosolve the 
ubi
 nonlinear equation in L2. The aim is to stabilize the equation in L2. A
tually, the fa
tto 
onsider L2 solutions requires using Bourgain spa
es (see [6℄), whi
h are fun
tional spa
es spe
iallydesigned to 
ontain the dispersive properties of the S
hrödinger operator. Sin
e this is not the topi
of this survey, we will not pre
ise the fun
tional spa
es, but all the existen
e and propagation (of
ompa
tness and regularity) have to be stated in these spa
es.A natural damping for the L2 norm leads to the following system
{
i∂tu+∆u+ iχω(x)

2u = ±|u|2u
u(0) = u0 ∈ L2.where χω is a smooth fun
tion supported in ω.So, we have the de
ay estimate

‖u(T )‖2L2 = ‖u0‖2L2 − 2

∫ T

0
‖χωu(t)‖2L2 dt.To obtain an exponential de
ay of the type ‖u(t)‖L2 ≤ Ce−γt, it is su�
ient to prove the observabilityestimate

‖u0‖2L2 ≤ C

∫ T

0
‖χω(x)u‖2L2 dt(21)for some bounded u0. This means that at ea
h step [0, T ], a 
ertain proportion of the energy is"burnt".A possible proof for su
h result is the 
ompa
tness-uniqueness argument similar to the one per-formed in the linear 
ase as in the proof of Theorem 4.1. We argue by 
ontradi
tion and assume thatthere exists a bounded sequen
e of solutions satisfying

∫ T

0
‖χω(x)un‖2L2 dt ≤ 1

n
‖un,0‖2L2 .(22)This time, sin
e the equation is nonlinear, we have to distinguish two 
ases (up to a subsequen
e):Let αn = ‖un,0‖L2 → α, then α > 0 or α = 0.First 
ase α > 0:� We denote u a weak limit of un. We apply a propagation of 
ompa
tness, similar to Theorem3.1, to prove that the 
onvergen
e is a
tually strong in L2

loc([0, T ], L
2). An additional di�
ulty isarised by the fa
t that the sour
e term fn = ±|un|2un lies in some 
ompli
ated fun
tional spa
esas the Bourgain spa
es, whi
h imposes a modi�
ation in the fun
tional framework of Theorem3.1. Then, the strong 
onvergen
e in L2

loc([0, T ], L
2) 
an be easily transfered to C([0, T ], L2)using that the �ow map is Lips
hitz.Note that in other situations (this does not happen in L2 for dimension 1), the sequen
e ofsolutions 
an be proved to be linearizable: some 
ompa
tness results allow to prove that thesour
e term is strongly 
onvergent in a suitable spa
e whi
h shows that un − vn is strongly
onvergent in the natural fun
tional spa
e, where vn is solution of the linear equation for theinitial data. Then, it is possible to apply propagation of 
ompa
tness for the linear equation.� The argument of uniqueness using the linear spa
e NT does not work sin
e the equation isnonlinear. So, it remains to prove the following unique 
ontinuation result:18



The only solution in L2 of
{
i∂tu+∆u = ±|u|2u

u = 0 on [0, T ]× ω
(23)is u ≡ 0.A �rst step for showing su
h result is the propagation of regularity similar to Theorem 3.2 (butin the setting of Bourgain spa
es) whi
h would allow us to redu
e the unique 
ontinuation resultto smooth fun
tions. But even for smooth fun
tions, this unique 
ontinuation result possessessome big di�
ulties in high dimensions. They are des
ribed in Subse
tion 6.3.� The strong 
onvergen
e of un to u = 0 in C([0, T ], L2) 
ontradi
ts the fa
t that α > 0.Se
ond 
ase α = 0:If we do the 
hange of unknown wn = un/αn whi
h satis�es ‖wn(0)‖L2 = 1, this should solve

i∂twn +∆wn + iχ2
ωwn = ±α2

n|wn|2wn.A boot strap argument allows to take advantage of the smallness of α2
n in front of the nonlinearityto 
on
lude that α2

n|wn|2wn 
onverges to 0 in the Bourgain spa
e and the solution is almost linear.The solution wn still satis�es the lo
al 
onvergen
e on ω
∫ T

0
‖χω(x)wn‖2L2 dt ≤ 1

n
.We 
an then 
on
lude easily as in the linear 
ase and get a 
ontradition to ‖wn(0)‖L2 = 1.In some more 
ompli
ated geometries, see [15℄ [35℄, this strategy allows to prove some globalstabilization and 
ontrollability results under the two 
onditions1. ω ful�lls the Geometri
 Control Condition.2. ω ful�lls some unique 
ontinuation property similar to (23). We refer to subse
tion 6.3 for somefurther 
omments.Another strategy that was proposed by the author [35℄ is by su

essive 
ontrols 
lose to traje
-tories. The idea is still to �nd some 
ontrol that make the solution tends to zero, but this time, weuse su

essive 
ontrols near free traje
tories. We prove that there exists a �xed ε su
h that for anyfree traje
tory leading ũ0 to ũ1, we 
an 
ontrol ũ0 to a �nal state uf with ‖uf − ũ1‖E ≤ ε, where

E is an "energy". Sin
e the energy is 
onserved for ea
h free traje
tory, we 
an 
hoose uf so that
‖uf‖E ≤ ‖ũ0‖E − ε. The energy is then de
reasing at ea
h step and we obtain a 
ontrol to 0. By(almost) reversibility, we 
an do the same pro
ess to go from zero to the expe
ted �nal state. Thisstrategy is illustrated on �gure 2. We have simpli�ed a little the exposition be
ause the 
onservednonlinear H1 energy is not exa
tly the H1 norm for the nonlinear S
hrödiner equation. In this s
hemeof proof, the di�
ulty is to show the lo
al 
ontrollability near free traje
tories. Moreover, if we wantthe strategy to work, we need an uniform ε for all the traje
tories in a ball of H1, that is with aweak regularity. In parti
ular, we need to get some observability estimates uniform in the norm ofthe potentials V1 and V2 for solutions u of

i∂tu+∆u+ V1u+ V2u = 0.Sin
e V1 and V2 
ome from the linearization of an arbitrary bounded traje
tory, we 
an not assume anyadditional regularity. This fa
t generates a lot of 
ompli
ations for the propagation of 
ompa
tnessand regularity and the unique 
ontinuation. Yet, it 
an give some additional informations like the fa
tthat the rea
hable set in any �xed time is open and the smallness assumption for lo
al 
ontrollabilityis only ne
essary in some lower order norms than the energy norm.19



Energy
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Free traje
toryControled traje
tory
t

ε

Figure 2: Global strategy by using su

esive 
ontrols6.3 Unique 
ontinuationIn this subse
tion, we des
ribe shortly the di�
ulties in proving the unique 
ontinuation property(23).One of the main tools to prove unique 
ontinuation is Carleman estimates. In the 
ase ofS
hrödinger equation, they allow to prove some lo
al unique 
ontinuation property a
ross somehypersurfa
e:Let u be a solution of i∂tu + ∆u + V1u + V2ū = 0 su
h that lo
ally u(t, x) = 0 for ϕ(x) ≥ 0,
t ∈ [0, T ], near to a point x0 where ϕ(x0) = 0, then u = 0 near x0.However, unlike the ellipti
 or paraboli
 
ase, ϕ has to ful�ll some geometri
 
onditions, mainly
Hess ϕ > 0. This 
ondition is 
losely related to the stri
t pseudo
onvexity 
ondition whi
h isne
essary to get Carleman estimates (see Zuily [65℄). However, sin
e the S
hrödinger operator isanisotropi
, in our setting, pseudo
onvexity needs only to be taken in the spatial variable, as provedmore generally by Isakov [26℄ (see also [35℄ and [33℄ for some expli
it 
omputation). Given an openset ω, the 
onstru
tion of the fun
tions ϕ that would allow to produ
e a global unique 
ontinuationresult as (23) is not trivial. It is very restri
tive with respe
t to the zone of 
ontrol. One would desiresome global result as: if ω satis�es the Geometri
 Control Condition, then the unique 
ontinuation(23) holds, but there is no su
h result for the moment so far. In fa
t, Miller [42℄ gave some geometri
examples of bounded open sets where the 
onstru
tion of pseudo
onvex fun
tion for the wave operator(with boundary 
ontrol) is impossible while Geometri
 Control Condition is ful�lled.Some improvements on the geometri
 zone for unique 
ontinuation 
an be made by 
onsideringsome weak Carleman estimate, where the fun
tion ϕ ful�lls only Hess ϕ ≥ 0. For instan
e, inMer
ado-Osses-Rosier [41℄ they prove unique 
ontinuation on re
tangles where
ω = {x = (x1, . . . , xn) |x1 ∈ [0, ε]} is a strip (see also [35℄ by the author for the same result in somemanifolds), by taking ϕ(x) = x1.Note that there exist some unique 
ontinuation results for partially analyti
 
oe�
ients [52℄. Thishas been re
ently used by Joly and the author [29℄ for the stabilization of the nonlinear wave equationwith only the Geometri
 Control Condition. An extension of this result for nonlinear S
hrödingerequations would be very interesting.
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A AppendixProof of Lemma 3.1. We have to solve a transport equation with sour
e term and with 
onstraintsof support. Sin
e p is positive homogeneous of order 2, there exists q ellipti
 homogeneous of order
1 su
h that q2 = p (a
tually, the prin
ipal symbol of q is |ξ|x).We have {p, b} = −

{
b, q2

}
= −Hbq

2 = −2qHbq = 2qHqb. Sin
e q is ellipti
, we have to �nd b and rsu
h that Hqb =
c
2q +

r
2q .We are left with the following problem:Let q real homogeneous ellipti
 of order 1, c̃ homogeous of order −1, supported in a small 
oni
neighborhood V0 of ρ0. We have to �nd b and r̃ of order −1, with r̃ supported in a neighborhood V1as in the Lemma su
h that

Hqb = c̃+ r̃.We would like to apply the homogeneous Darboux theorem (see Theorem 21.1.9 of [25℄). So we haveto guarantee that Hq and ξ · ∂
∂ξ are linearly independent.Indeed, if we denote G(x) = gij(x) as the matrix of the 
o�
ients of σ(∆) =

∑
gijξiξj =

tξGξ,we have ∂ξσ(∆) = Gξ whi
h is not zero if ξ 6= 0 (G is invertible). So Hq has a 
omponent along ∂
∂xand it is therefore independent of ξ · ∂

∂ξ .Therefore, there exists a lo
al symple
ti
 homogeneous transformation, 
entered in ρ0
Φ(x, ξ) = (y1(x, ξ), ..., yn(x, ξ), η1(x, ξ), ..., ηn(x, ξ))with yi homogeneous in ξ of order 0, ηi homogeneous in ξ of order 1, η1(x, ξ) = q(x, ξ) and y(ρ0) = 0.From now on, the fun
tions on T ∗M are de�ned with the new 
oordinates (yi, ηi). We have

Hq = Hη1 = ∂
∂y1

. Sin
e ρ1 = Γ(t0), in the new 
oordinates, it gives ρ1 = ρ0 + t0
∂

∂y1
.We 
an 
hoose ε small enough and V1 
oni
al neighborhood of ρ1 = Γ(t0), 0 < t0 < ε, su
h that{

V1 + t ∂
∂y1

, t ∈ [−2ε, ε]
} is in
luded in the domain of the 
hart Φ . Sele
t ε1 with 0 < ε1 < t0/2 anda 
oni
al open set O ⊂ R2d−1 su
h that ρ1+]− ε1, ε1[×O ⊂ V1. We 
hoose next V0 =]− ε1, ε1[×O.For a c̃ supported in V0, we de�ne:

b̃(y1, · · · , yn, η1, · · · , ηn) =
∫ y1

−∞
c̃(t, y2, · · · , yn, η1, · · · , ηn) dt(24)Then, b̃ is supported in {V0 + t ∂

∂y1
; t ∈ [0,+∞[

}.Let Ψ ∈ C∞(R) so that Ψ(t) = 1 for t ≤ t0 − ε1 and Ψ(t) = 0 for t ≥ t0 + ε1.Set b(y, η) = Ψ(y1)̃b(y, η), as it was already de�ned on the domain of the 
hart Φ.We 
ompute
Hqb(y, η) =

∂

∂y1
b = Ψ(y1)c̃(y, η) + Ψ′(y1)̃b(y, η).Sin
e Ψ(y1) = 1 on y1 ≤ t0 − ε1, parti
ularly on V0, we have
Ψ(y1)c̃(y, η) = c̃(y, η)Moreover, r̃ := Ψ′(y1)̃b is supported in

{t0 − ε1 ≤ y1 ≤ t0 + ε1} ∩
{
V0 + t

∂

∂y1
; t ∈ [0,+∞[

}
= ρ1+]− ε1, ε1[×O ⊂ V1.21



support of c̃ Hq =
∂

∂y1
ρ0 ρ1

support of r̃Figure 3: Propagation of information in phase spa
eAdditionaly, if the symbol c̃ is homogeneous of order −1 in η, by the formula (24), r̃ and b̃ arealso of order −1. By the homogeneous 
hange of variable, it is also the 
ase in the ξ variable. We
an 
he
k that all the symbols previously de�ned are 
ompa
tly supported in the 
oordinate 
harts(up to dilation in the variable η) and they 
an be extended to T ∗M \ {0} in a smooth way.For sake of 
ompleteness, we give a proof of the 
ommutator estimate used in the proof of theTheorem 4.3, in the 
ase of dimension 1. Note that this 
ould be understood as a 
onsequen
e that
Dr de�ned by (4) is a pseudodi�erential operator of order r.Lemma A.1. Let f denote the operator of multipli
ation by f ∈ C∞(T1). Then, [Dr, f ] maps
Hs(T1) into Hs−r+1(T1) for any s, r ∈ R.Proof. Denote |k|≀ = |k| if k 6= 0 and 1 otherwise. We also write sgn(0) = 1. We have

D̂r(fu)(n) = sgn(n) |n|r≀ ∑
k

f̂(n− k)û(k)

f̂Dru(n) =
∑

k

f̂(n− k)sgn(k) |k|r≀ û(k).And then
̂[Dr, f ]u(n) =

∑

k

f̂(n− k)(sgn(n) |n|r≀ − sgn(k) |k|r≀ )û(k)
∣∣∣ ̂[Dr, f ]u(n)

∣∣∣ ≤ C
∑

k

|f̂(n− k)||n − k|(|n|r−1
≀ + |k|r−1

≀ )|û(k)|.Using |n|2ρ≀ ≤ C |n− k|2|ρ|≀ |k|2ρ≀ for any ρ ∈ R, we get
‖[Dr, f ]u‖2Hs−r+1 ≤ C

∑

n

|n|2s≀

(∑

k

∣∣∣f̂(n− k)(n− k)
∣∣∣ |û(k)|

)2

+ C
∑

n

(∑

k

|n− k||s−r+1|
≀ |k|s≀

∣∣∣f̂(n − k)(n − k)
∣∣∣ |û(k)|

)2

≤ C
∑

n

(∑

k

|n− k||s|≀ |k|s≀
∣∣∣f̂(n− k)(n− k)

∣∣∣ |û(k)|
)2(25)

+ C
∑

n

(∑

k

|n− k||s−r+1|
≀ |k|s≀

∣∣∣f̂(n − k)(n − k)
∣∣∣ |û(k)|

)2

.(26) 22



We estimate (25) using Cau
hy-S
hwarz inequality, and as well for (26).
(25) ≤ C

∑

n

(∑

k

|n− k||s|≀ |f̂(n− k)(n − k)|
)

×
(∑

k

|n− k||s|≀ |f̂(n− k)(n − k)| |k|2s≀ |û(k)|2
)

≤ C

(∑

k

|k||s|≀ |kf̂(k)|
)2(∑

k

|k|2s≀ |û(k)|2
)

≤ Cf ‖u‖2Hs .
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