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Chapter 1

Introduction and generalities

The focus is put here on second order operators and applications arising from physics, namely through the
operators A (Laplace operator), 82 — A (wave operator, or d’Alembert operator), i9; — A (Schrédinger
operator), J; — A (heat operator)...

There are many references on Carleman estimates and unique continuation. We mention here a nonex-
haustive list:

e this course was influenced by the course of Nicolas Lerner, that can be found on his website
http://webusers.imj-prg.fr/~ nicolas.lerner /m2carl.pdf,

e as well as the survey article by Jérome Le Rousseau and Gilles Lebeau | I;

e The most classical reference on unique continuation for partial differential operators is the Chapter
XXVIII of Lars Hérmander’s treatise | |. The latter gives a more general framework for what
is described in Chapter 2.

e the book of Claude Zuily | | is another classical reference;

e We also refer to the complete notes of Daniel Tataru available at
https://math.berkeley.edu/~ tataru/papers/ucpnotes.ps.

e finally, the presentation of Chapter 3, concerning the wave operator, is inspired by the article | ]

1.1 Motivation and applications

We start with presenting different applications to motivate the more technical parts of these notes. All
these applications are discussed in detail later on in the notes.

1.1.1 Tunneling estimates for eigenfunctions

Given a compact Riemannian manifold M with or without boundary dM, we consider the eigenfunction
problem

= Aghx = Mhx,  Palom = 0. (1.1)

It is known that the equation (—A, + 1)u = f,uloppm = 0 has for any fixed f € L?(M) a unique
solution u € H{(M) (consequence of the Riesz representation theorem in H{). The map (—A, +1)7!:
L*(M) — H}(M) is hence compact L? — L?, and this implies that the eigenfunction equation (1.1) has
solutions for only a discrete number of values of A. The latter are real, nonnegative, since — [ m(Agu)vdr =
S Vgu - Vgvda for u,v € H*(M) with ulopm = v|oam = 0.

This allows to introduce the eigenvalues \; € RT, for j € N. Compactness of (—A, + 1)~! also
implies that A\; — 400 as j — 400. These eigenvalues are delivered with associated eigenfunctions, i.e.
Y; € H*(M) N H(M) such that —Agep; = Ajap;, which, once L*-normalized, form a Hilbert basis of
L?(M), and in particular satisfy (vs,1;)r2(m) = [ i(@)¥;(z)dx = ;. Note that in dimension 1, these



eigenvalues/eigenfunctions are particularly simple. For instance, on the interval M = [0, L], for L > 0, we

have for j € N*
i\ [2 . Jm t 2
)\j = (L ) , qu(x) = Zsm <(L)1') ) A Wjj(m)‘ dr =1.

(one could also consider the even simpler boundaryless situation M = T! = R/27Z, for which we have
PiE(x) = (2m) "1/ 2e* ke and associated eigenvalues i = k?).

These eigenfunctions describe the resonant states of the domain (drum) M. They are also particularly
useful to describe solutions to evolution equations involving A,. We have solutions of the heat equation:

Oy —Ayu=0, onRS xInt(M X,
{ (% Q)u — 0 onRF x 8/\/(1 ) — ut,z)= Zuje Aty ().
’ * JEN

Similarly, solutions to the wave equation write

2 _
{ (9; Ag)z _ 8: gﬁ ﬁ i Iar.l/f/(lM) —  ut,x)= Zu;re’\/rftzpj () + u;eﬂ\/)‘»jtwj(w).
jEN
From these above considerations, it appears that an important question concerning eigenfunctions is
the following: where are the eigenfunctions %; localized? A preliminary question can be formulated as
follows:
Can eigenfunctions v; identically vanish on a nonempty open set w C M?

As a consequence of a unique continuation result for the Laplace operator, we shall see that this does never
happen. The next natural question is then

Can eigenfunctions v; asymptotically vanish on the (nonempty) open set w as j — +00?

and if so, at which rate? In the abovementioned one dimensional situation M = [0, L], with w = (a,b) C
[0, L], we have

/ ;12 (z)dx — ] as j — +oo.

L )
Indeed, we have
sin ((Z)x)

/ab|¢j|2(x)dx:z/ab dac:z/ab [;—;cos<(29;)xﬂdx

b—a 1 ) 2jm " b-a 1 .
= 7 —2]7 |:Sln ((L)Z‘):|a— 7 +O(]>, aSj—>—‘rOO.

That is to say that, in this particular situation, the eigenfunctions v; equidistribute in [0, L] asymptotically.
Of course, this very strong property does not hold in general; one may however want to quantify the
property ||9;]| L2(w) > 0. We shall actually prove that eigenfunctions never decay exponentially: namely,
for all nonempty open set w C M, there is C, x > 0 such that

2

[all oy = Ce™™Y2,

for all (A,1x) solutions to (1.1) with [|¢x[[12(rq) = 1. This is a manifestation of what is called “tunneling
effect” in quantum mechanics. One can prove that this is optimal in general (in the sense that there exist
(M, g,w) for which there are indeed eigenfunctions with ||1/)j\|L2(w) < C’e*”‘\/)‘;j, see Section 2.4.4). Of
course, this can be much improved in different situations, as in the 1D case discussed above, for which we
have a uniform lower bound ||z 12(,, > C-



1.1.2 Penetration of waves into the shadow region

In this section, we consider the wave equation outside a convex obstacle in R™. Namely, let O C R™ be a
bounded smooth open subset, and consider M = R™\ O. We consider the Laplace operator A and (¢, x)
the solution to the wave equation

O?u— Au=0, onR x Int(M),
u=0, onRxIM, (1.2)
(u, Opu) =0 = (ug,u1), on M.

The quantity u(t, z) might for instance model
e the displacement of a membrane;
e the intensity of a light;
e the pressure of a sound...

measured at point x € M and at time ¢.

Now, we consider a compact set X C M, and assume that the initial data (ug,u;) are supported in K.
If the set K is not too large, there is a whole region of M which does not intersect any ray of geometric
optics in M (i.e. straight line in Int(M), which reflects according to Snell-Descartes laws at the boundary
OM) passing through K. Taking an open set w in this shadow region, the question under consideration is
the following:

Can one recover (ug,u1) from the observation of u on the set (=7,7T) X w?

And if so, what is the time T required? By linearity of (1.2), this can be reformulated under the following
unique continuation question:

(u solution to (1.2), u|(—7r)xw =0) = (ug,uy) =07

(and hence u = 0).
We shall prove that this is false if T" is too small, but that this is actually the case if T" is large enough.
The limit time will be expressed as a natural geometric quantity.

1.1.3 Approximate controllability for the wave equation

In this section, we consider a wave equation in a compact manifold M (or the closure of a bounded open
set M C R™), controlled from a subdomain. Namely, given w C M a nonempty open set, the equation

02u— Agu=1,f, on (0,T) x Int(M),
u=0, on (0,T)xOM, (1.3)
(u, Opu)|t=0 = (uo,u1), on M.

The term f in this equation plays the role of a forcing term. Controllability problems concern the ability
of driving the solution u to (1.3) from the initial state (ug,u1) to a final target state (vo,v1) at time T,
using only the action of f on w. This property depends a priori on the data/target, and is too complicated.
More tractable questions, arising from applications in engineering are the following

Definition 1.1.1. We say that (1.3) is ezactly controllable from (w, T if for all data (ug,u1) € HE(M) x
L?*(M) and all target state (vg,v1) € Hi(M) x L?(M), there is a function f € L*((0,T) x w) such that
the solution to (1.3) satisfies (u, dyu)|t=1r = (vo, v1).

We say that (1.3) is approzimately controllable from (w, T) if for all data (ug, u1) € HE (M) x L2(M), all
target state (vo,v1) € Hg (M) x L?(M), and all precision £ > 0, there is a function f = f. € L*((0,T) X w)
such that the solution to (1.3) satisfies ||(u, O¢u)|t=1 — (vo,vl)”Hé(M)xLQ(M) <e.

Due to finite speed of propagation for waves, if @ # M, a minimal time will be required for control-
lability to hold. Here, we will mostly be interested in the (weaker) approximate controllability question.



Linearity of the equation shows it is enough to consider zero initial conditions (ug,u;) = (0,0). Introducing
the linear map
F:L?((0,T) xw) — HYM) x L3(M)
f — (u,@tu)|t:T,
where u denotes the solution of (1.3) associated to (ug,u1) = (0,0), approximate controllability is equiva-
lent to range(F) being dense in Hg(M) x L?(M). This can be reformulated as ker(F*) = {0}, where F*
is an appropriate adjoint (or dual) to F. After some work, one can identify F™* to be the map

F*:L2(M)x HY(M) — L?((0,T) x w)
(wo, w1) = W[0,7)xw

where w is the unique solution to

w=0, on(0,T)x0M, (1.4)

02w —Ayw =0, on (0,T) x Int(M),
0,7
M.

o
=

(w, dpw)|t=0 = (wo, w1),
Again, ker(F*) = {0} is the unique-continuation property
(w solution to (1.4), wl|@r)xw =0) = (wo,w1) =0,

which now appears to characterize the approximate controllability of (1.3).

1.1.4 Trend to equilibrium for the damped wave equation

& Prove energy goes to zero for all solutions?

1.1.5 Controllability of the heat equation

In this section, we discuss similar controllability issues as in Section 1.1.3, but for the heat equation

Owu—Agu=1,f, on (0,T) x Int(M),
u=20, on (0,T)x0M, (1.5)
’U,|t:0 = U, on M.

The term f again acts as a localized control on the state u (temperature). Because of the smoothing
properties of the heat equation (e.g., if ug € L2(M) and f € L?((0,T) x w) the solution of (1.5) will satisfy
for all t € (0,T") u(t, ) € C*° (Int(M) \ @)), it is hopeless to control exactly to any target ur in the state
space L?(M). Two alternatives are in order: approximate controllability and controllability to trajectories
(i.e. to target states v that are solutions at time T to the free heat equation (1.5) with f = 0).

Definition 1.1.2. We say that (1.5) is controllable to trajectories from (w,T) if for all ug, vy € L*(M),
there is a function f € L2((0,7T) x w) such that the solution to (1.5) satisfies ul;—r = eT®9vy (where
eTA91y denotes the solution at time 7" to the free heat equation (1.5) with f = 0 and initial datum wvp).

We say that (1.5) is null-controllable from (w,T) if for all data ug € L?(M), there is a function
f € L?((0,T) x w) such that the solution to (1.5) satisfies u|—7 = 0.

We say that (1.5) is approzimately controllable from (w,T) if for all data ug € L*(M), all target state
v € L?(M), and all precision & > 0, there is a function f = f. € L?((0,T) x w) such that the solution
to (1.5) satisfies [luli=1 — vi12(pq) < &

Linearity of the equation (1.5) implies that controllability to trajectories is equivalent to null-controllability.
Similar arguments as for the wave equation reduce these controllability questions to unique continua-
tion/observability issues for the free heat equation

dw—Agqw=0, on (0,T) x Int(M),
w=0, on(0,T)x oM, (1.6)
Wli—p = wp, on M,

observed from (0,7) X w.



More precisely, the observation map is given by

F*: L2 (M) — L*((0,T) x w)
wo w‘(O,T)Xwa

where w is the solution to (1.4). As for the wave equation, a duality argument (functional anaysis) proves
that

e approximate controllability from (w,T") is equivalent to F'* being injective, i.e. to the unique contin-
uation property
(w solution to (1.6), w|or)xw =0) = wo =0;

e null-controllability from (w,T) is equivalent to the observability estimate: there is C' > 0 such that
T
Hw(T)HQLz(M) < C/O l|lw(t, ‘)H2L2(w) dt, for all wy € L?*(M) and associated w solution to (1.6).

Note that this last inequality observes the norm at time 7', which is much weaker than observing the
solution at time 0 (which, in turn, would be equivalent to exact controllability, and thus never holds if
@ # M). This is in strong contrast with the wave equation, for which energy is conserved. These two
properties again take the form of (global) qualitative/quantitative unique continuation properties for the
heat operator.

As for the wave equation, the above two properties will reflect the way of propagation of the energy
for solutions to the heat equation, namely instantaneously (with infinite propagation speed), and in all
directions.

1.2 Generalities about unique continuation

1.2.1 The unique continuation problem

All above described problems amount to a unique continuation property (or a quantitative unique contin-
uation property) for a differential operator P = —A, — X (eigenfunctions), P = 8; — A, (heat), P = 07 — A
(waves).

The general problem of unique continuation can be set into the following form: given a differential
operator P =3, ., aa(x)0g on an open set 2 C R", and given a small subset U of €2, do we have (for

Pu
u

In cases where (1.7) is known to hold, it is often interesting to prove a quantitative version of

u regular enough):

0 in Q,
0inU

= u=0on . (1.7)

— u small in €.

Pu smallin £,
v smallin U

A more tractable problem than (1.7) is the so called local unique continuation across an hypersurface
problem: given an oriented local hypersurface S = {¥ = 0} at a point o (that is ¥(z) = 0 and d¥(zg) #
0), do we have the following implication:

There is a neighborhood 2 of x( so that

{Pu = 0in Q,

v Oinongt —u=0ina neighborhood of . (1.8)

where ST = {¥ > 0} is one side of S.
It turns out that proving (1.8) for a suitable class of hypersurfaces S (with regards to the operator P)
is in general a key step in the proof of properties of the type (1.7).



Note that under a certain geometric condition on the surface (namely, assuming S is non-characteristic
for P at zg, see & below), the local unique continuation question (1.8) is equivalent to the so called
uniqueness in the Cauchy problem, namely the question whether there is a neighborhood €2 of zy such that

{ Pu=0in &, = u = 0 in a neighborhood of z, (1.9)

u|3:8Vu|sz-~-:8],”_1u|s:00r15

where 0, denotes a normal vector field to S, and m is the order of the differential operator P.

Here, we collect some simple and very informative situations in which the local unique continuation
property (1.8) is well-understoood: & draw pictures for vector-fields

1.

(dimension one) If n = 1, a differential operator writes P = )" ay (x);% where we assume ay
are defined in a neighborhood 2 of 0 and are smooth enough. The problem Pu = 0 in 2 is only an
ordinary differential equation. Here the surface S = {0} is a point. If u is a regular enough solution
to the equation Pu = 0 in Q such that v = 0 in ST = {z > 0}, then we have %U(O) = 0 for all
k € N and, assuming P is non-degenerate at zero (a,,(0) # 0) the Cauchy-Lipschitz theorem gives
directly the (local) uniqueness since v = 0 in a neighborhood of 0.

(0 operator) If n =2, P = 9 = 1 (9, +i0,,) is the so-called Cauchy-Riemann operator. That Pu = 0
in an open set 2 C R? ~ C implies that u is an analytic function in . In particular, if w = 0 on any
nonempty open subset of {2 (or more generally on any set containing an accumulation point) then
u = 0 identically on €.

(Linear vector fields and flat hypersurface) Consider the operator P = % in R™ in a neighborhood

of 0 and a hyperplane S = {z € R", (b, z) = 0}, where b = (b1, ,b,) e R" \ {0}. Then Pu = 0 if
and only if u does not depend on z1, i.e. u(xy,wa, - ,1,) = u’(wa, - ,1,) for all z; € R. Assume
further by # 0 and that « = 0 in ST = {z € R™, (b, z) > 0} in a neighborhood of zero. Then, taking
(w2, -+ , o) in a neighborhood of 0, and x; with byz; large enough, we have (z1,z2, -+ ,z,) € ST
so that u(xy,- -+ ,2,) =0 =u%xa, -+ ,2,) = 0. Hence u® = 0 and u = 0. Local unique continuation
across S thus holds if b; # 0. The converse is also true. Indeed, if b; = 0, choose u(z) = x({b, z))
where s — x(s) is any function # 0 on s > 0 and = 0 on s < 0. Then, u is ;-invariant hence Pu = 0,
and satisfies supp(u) = ST. In conclusion, in this simple setting, a necessary and sufficient condition

for local unique continuation across S is that the vectorfield 621 is not tangent to the hyperplane S.

(Real non-degenerate vector-fields) We give here (without proof) a more general context for this last
result. We assume that P is a general vectorfield (or, equivalently, first order (m = 1) homogeneous
differential operator) near 0, that is P = >~} _ ay(2)9;,. Assume further that it is nondegenerate at
0, that is a(0) = (a1(0),- -+ ,a,(0)) # 0. Take S = {¥ = 0} where ¥(0) = 0 and d¥(0) # 0. Then, a
sufficient condition for having local unique continuation (1.8) is that (d¥(0),a(0)) # 0, that is that
the vector-field P is transversal to S at 0. This condition is a “non-characteristicity assumption”,
see Definition 1.2.3 below. The local straightened model in this case is that of the former example.
Note that the condition (d¥(0),a(0)) # 0 is not necessary for unique continuation to hold, see the
discussion in Example 5 below.

(Linear vector fields and curved hypersurface) Here (as opposed to previous examples), we shall see
that the orientation of the surface may play a role. Consider the operator P = 8%1 (as in Item 3) in
R? in a neighborhood of 0, but the curved hypersurface S = {x = (z1,22) € R?, ¥(z) = 0}, where
U (z1,22) = x9 — 2%, Notice first that S is tangent to P at 0 since (d¥(0), P) = 0. We shall see that
unique continuation holds from ST = {¥ > 0} (outside the parabola) to S~ = {¥ > 0} (inside the

parabola), but not from S~ to ST.

Indeed solutions u to Pu = 0 write u(x1,x2) = u®(z3) for all z; € R. The first statement then follows
from the fact that any line x5 = cst > 0 intersects S in a neighborhood of zero, thus showing that
if u%(z2) = 0 for all 1 in a neighborhood of zero, then u® = 0. Choosing u® € C2°(R) such that
UO(.’EQ) #0on 0>z >—1and UO(.’L'Q) = 0 on x9 > 0 yields the second statement.



6. (One dimensional wave operator) Consider the wave operator P = 92 — 3% on R; x R,. Then P
factorizes as P = (0; + 0,)(0: — 0,) and all solutions to Pu = 0 write u(t,z) = f(x +1t) + g(x —
t) + Cot + Cix + Ca, where f,g are functions and C; constants. Take for instance g = 0, C; = 0
and f € C*°(R) with supp(f) = [0,1]. Then u(t,z) = f(z + ) and the surface S = {x + ¢ =0}
thus does not satisfy the unique continuation property (at any point). More precisely, up to linear
changes of variables, this problem reduces to that of linear vectorfields discussed above, and one
sees that the only hyperplanes S not satisfying the unique continuation property (at any point) are
S¢ ={xLtt=a}, foraeR.

The above examples 3-4-5-6 concerning first order partial differential operators (namely, vector fields)
and the wave operator show that geometrical conditions linking the operator P and the surface S are
often needed for unique continuation to hold. Note that the example 2 also “suggests” that no geometric
condition is needed for elliptic operators.

As stressed in Section 1.1, many important differential operators arising from physics are linked to the
Laplace operator. In R™, it is simply defined by

A= —.
Z o2
j=1 "3

One of the main focuses of these notes is the wave operator, which has a strong geometric and physical
content. Let us now discuss some features of this operator in more detail.

1.2.2 Remarks on the wave operator

In this section, we collect known facts for the wave equation in the flat space R™, that are related to unique
continuation questions. We start with local energy estimates and a proof of finite speed of propagation in
this context.

Theorem 1.2.1 (Finite speed of propagation for the wave equation). Let u be a C?(R'™) (real-valued)
solution of

(0} —A)u=0 onRxR", (1.10)
and define the local energy in the ball of radius v at time t by:
1
E,(t) = 5/ (Buu(t,))? + [Vu(t, 2)]?) de.
|| <r

Then, for any ro > 0 and any t € [0,79], we have
E.,—+(t) < E.(0). (1.11)
In particular, if uli=o(x) = Opuli=o(z) = 0 for |z| < rg, then u =0 in the cone
Cry = {(t,z) eR"" s.t. t € [0,70] and |z| <o —t}.

Denoting by
et z) = % (Grult, ))* + [V ou(t, 2)[?) (1.12)

the density of energy, the proof also yields the estimate

/ e(t,z)dtdr < ro/ e(0, z)dz.
Crq |z|<ro
Proof. Multiply the equation by d;u to obtain 9?udyu—Audsu = 0. First, we notice O2udyu = %&(&u(t, r))%.
Moreover, by the Leibnitz formula div,(fX) = fdiv(X) + Vf - X valid for f a C! function and X a C!
vector field, we have

|V$u|2

—Audu = — div, (Vu)dwu = — div, (Veudiu) + Veu - V0w = — div, (Vudsu) + 0 5




Therefore, recalling the definition of e in (1.12), we have obtained the local energy balance:
Oe — div(Vudu) =0  on R x R™ (1.13)
The main tool will be the Stokes theorem & reference 7.

Lemma 1.2.2 (Stokes formula). Let d € N* and X = ZZ:O ak ()0, be a C vector field on a bounded
domain Q C R? with boundary OS2 being piecewise C* and graph-Lipschitz. Denote by N(x) the outward
pointing normal vector on 9Q (being piecewise C' as well). Then, we have the formula

/ div(X)(x)dx = X(z) - N(z)do(x),
Q [219)

where do is the surface measure on 9Q and div(X)(z) = 22:0 Oy, ar ().
We now integrate the energy balance (1.13) in time-space on the truncated cone, defined for tg < ro,
by
Croto = {(t,2) € R™™ st. t € [0,t0] and |z| < 1o —t}.
& picture

Note that it is piecewise C' and graph-Lipschitz, and that its boundary dC,, ¢, is the union of three
pieces with the following normal vector field:

e in the bottom part Sy = {(0,2) € R s.t. |z| < rg} = {0} x B,,, the outward normal is N(z) =
(_1t3032)7

e in the top part Sy, = {(to,z) € R s.t. |z| <rg—to} = {to} X Bry—t,, the outward normal is
N(z) = (11, 02);

e in the lateral boundary M = {(t,z) € R1*" s.t. t € [0, o] and |z| = rg — ¢}, the outward normal
is N(t,z) = (1,2/z))/|(1,2/|z)| = (1, 2/|2])/ V2.

We now apply the integration by part of Lemma 1.2.2 to the set Q = C, +, and the vector field X = X;+ X,
where:

o X,

e(t,x)(1s,04) = e(t, )0, so that div, , X1 = Oye;
o Xy = (04, —0uVzu) so that div, , Xo = — div,(OuVu).
Equation (1.13) expresses div , X = 0 and hence

0

/ dinw X1 + din@ X2
C

r0,to

1
X - (=14,00) + X-(lt,Ox)—k—/ X - (1,/|z]) do
So Sto V2 Jasto

1 T
- 60a$d$+/ etamdfc—k—/ (et,x —8uV1u-) do.
[, cto.ma [ etto.n 7 L (00~ 0%

Now, we remark that the integral on the lateral boundary is nonnegative since

to

T

OruV u -
||

1
‘ < |Owu||Vyu| < 3 (|0wul® + |Voul?) =e. (1.14)

We have thus obtained

—/ e(0, z)dx +/ e(to, z)dx <0,
So Stq
which is precisely the inequality (1.11) at time ¢.

Finally, let us prove the unique continuation property. The assumption implies that E,,(0) = 0. So,
the inequality implies E,,_¢(¢) = 0 for t € [0,79] and in particular d,u = 0 and V,u = 0 in the cone
C},- By connexity, this implies that u = este in C,,,. This constant needs to be zero since u(0,z) = 0 for
|z| < rg, which concludes the proof of the theorem. O
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Note that in the proof, the angle of the cone is the limiting one so that the Cauchy Schwarz in (1.14)
holds.
Theorem 1.2.1 leads to the following definitions:

e The cone of dependence of a point (tg,zg) € RT x R™ is the cone
Dito,00) = {(t,2) € R™™ s.t. t € [0,t0] and |z — zq| < to —t}.

The value u(to, o) of the solution u to the wave equation (1.10) at the point (o, o) only depends
on the values of u in Dy, )

e The cone of influence of a point (ty, o) € RT x R™ is the cone
Titom) = {(t,2) ER™™ st t > tg and |z —zo| <t — 1o} .

The value u(t, z) of the solution u to the wave equation (1.10) at a point (¢, ) depends on the value
of u at the point (to, zo) if and only if (¢,2) € Iz, 4)-

We can infer an interesting consequence of Theorem 1.2.1 concerning the unique continuation property
for the wave operator: unique continuation holds across the hypersurface {¢ = 0} and actually, we have
some nice local linear quantification of the unique continuation. This situation is actually a particular case
of a more general situation in which the differential operator P (here 7 — A) is said to be hyperbolic with
respect to the surface S (here e.g. {t = 0}). We refer to & for more precisions.

As we have seen in above Example 6, the one dimensional wave equation is considerably simpler to
analyse, since the d’Alembert operator factorizes as :

02— 02 = (0, — 0,)(0 +0y), (t,z) ERxR. (1.15)

Hence, solutions to the wave equation reduce to solutions to two transport equations. The situation is
radically different in higher dimensions. This is linked with the fact that the polynomial 72 — Z?:l 532‘ does
not factorize in a product of polynomials of degree 1. This translates the fact that the values of solutions
to (1.10) are not “transported”. To see this, we can actually solve the wave equation (1.10). For instance,
in R3, the Kirchhoff formula

1
T Ant

u(t, x)

/ u1(y)dSe(y) = i/ ul(x — to)dSi (o), u(—t)=—u(t), t>0 (1.16)
ly—a|=¢ A Jse
gives the unique solution to (1.10) with (u,d:u)|t=0 = (0,u1), u1 € C°(R?). In the first formula, the
integration set is the (2 dimensional) sphere centered at z and of radius ¢; in the second it is the unit
sphere. The integration measure dS is the surface measure on the sphere of radius ¢ (induced by the
Euclidean measure dx on R3). & See Exercice... for a proof of this formula, together with
a similar formula in dimension 2.

As a consequence of this explicit solution, we see that if we choose u1(z) = x(z) with y € C>*(R?),
X > 0and x > 0 on B(0,r), r > 0 the associated solution u is smooth and satisfies u > 0 on R!*3.
Moreover, notice that ui(z —to) = 0 iff x — to ¢ B(0,r), we have u(t,z) = 0 as soon as tS* N B(z,r) = 0.
As a consequence, we have

supp(u) N {t >0} = {(t,r) € RT x R3,t—r< |x| <t+r}. (1.17)

Several remarks are in order. The fact that the solution w at time ¢ vanishes in the ball |z| < ¢t —r
corresponds to the strong Huygens principle; this is strongly related to the fact that the dimension 3 of
R3 is odd, the metric is flat, and the wave operator has no lower order term. A contrario, the fact that
the support of the solution at time ¢ is contained in the ball |z| < ¢ + r translates the finite speed of
propagation. This piece of information is already contained in Theorem 1.2.1. Finally, (1.17) also tells us
that any point in the annulus ¢t — r < |z| < ¢ + r is actually in the support of u(t,-). This new piece of
information is very important for what follows. It implies that unique continuation cannot hold across an
hypersurface tangent to the cone |x| =t + 7.
& Discuss finite propagation speed in a general riemannian setting, with lower order terms
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1.2.3 A general local unique continuation result in the analytic Category

The first general unique continuation result of the form (1.8) is the Holmgren Theorem, stating that, for
operators with analytic coefficients, unique continuation holds across any noncharacteristic hypersurface
S. Proper definitions of a differential operator of order m and its principal symbol p,,(z, ) are given in
Definition 1.2.6 below.

Definition 1.2.3. Let P be a differential operator of order m on Q, zg € 2 and S a local hypersurface
passing through x¢, that is S = {¥ = 0}, ¥(x) = 0 and d¥(zg) # 0 with ¥ € C1(2). We say that S is
characteristic (resp. non-characteristic) for P at xg if pn, (20, d¥(z9)) = 0 (resp. pm(zo,d¥(zg)) # 0).

Also, given a local hypersurface S = {¥ = 0}, it has locally two sides which we write
S* = {2 € Q% +VU(x) > 0}.

Theorem 1.2.4 (Holmgren Theorem). Let P be a differential operator of order m on Q, having all
coefficients real analytic in a neighborhood of xg € Q and S > xg being a local hypersurface. Assume that
S is non characteristic for P at xo. Then, there exists a neighborhood V of x¢ so that every u € D'(Q)
satisfying Pu =0 on Q and v = 0 in the set ST vanishes identically in V.

Another way of writing the conclusion is to say that zy ¢ supp(u). We refer e.g. to | , Theo-
rem 5.3.1] for a proof of Theorem 1.2.4. Note that this unique continuation property does not take into
account the orientation of the surface S, i.e. it holds from ST to S~ as well as from S~ to S+.

The non-characteristicity condition is very weak, and in some sense optimal. Indeed, we saw in Exam-
ples 3 and 4 in Section 1.2.1 for linear vector-fields that unique continuation holds for non-characteristic
surfaces, and does not hold for some characteristic surfaces. We also saw in Section 1.2.2 for the wave
operator that local uniqueness does not hold across hypersurfaces that are tangent to the cone || =t 4.
These are precisely characteristic surfaces: the principal symbol of the wave operator 97 — A is given by
pa(t, 2, &, &) = —€2 + |€.]%, and a surface {¥(t,z) = 0} tangent to {|z| = t + r} at the point (to,z¢)
has [0, ¥ (to, x0)| = |dz ¥ (to, z0)|. Remark however that the non-characteristicity condition is a “first order
condition”™ it only cares about the tangent space of the surface. We saw in Example 5 in Section 1.2.1 in
the case of first order differential operators a more subtle “second order condition” (curvature condition)
on the surface may yield unique continuation across a characteristic surface. This is linked to the so-called
pseudoconvexity condition (see e.g. Definition 2.3.1 below).

We recall that a function f : Q C R™ — C is real analytic if for every y € €, there is a convergence
radius R > 0 and coefficients a, € C", @ € N such that

f@)=Y alz—y*= > aalwzr—y)* - (zn—ya)*, forallze By, R)CQ,

aeNn ar, - ,a, €N

where the series is convergent. For every compact set K C 2 C R"”, such a function f can be extended
to a complex neighborhood of K in C" as a complex analytic function. Analyticity is a very demanding
regularity assumption. In Theorem 1.2.4, we stress that all the coefficients of P should have this regularity.
In most situations, however, this requirement is much too strong. As an example, even for the wave
equation on a flat (and hence analytic) metric, this theorem does not allow for the addition of a C'*° time
independent potential V(x). This is a very strong drawback to the result. Therefore, we would like to
avoid the analyticity assumption on the coefficients. This will require sometimes some stronger assumption
say of pseudoconvexity condition (see e.g. Definition 2.3.1 below) and will be the object of Chapter 2. The
following chapter 3 will deal with some intermediate case where the analyticity is with respect to only one
variable (we will actually treat the simpler case where it is independent on one variable).

1.2.4 Notation

We consider complex valued functions defined on R™.
We will denote the duality in L?(R"), denoted L? when there is not ambiguity, by

(f9) 10 = /R @)

12



For any multiindex o = (a1, -+ , @) € N, we define its length |a| = x4+ 4y, = (¢, ,G) €
C™, ¢* is defined by ¢ - - - (.

For 1 <j <n, write 0; = 0., = % and we denote D; = 87’
For a = (a1, ,a,) € N, we denote
o = oo
60(
@ = _— ar . Qn
DY = =D Din.

With this multiindex notation, the Leibnitz formula (derivatives of a product) writes

o(f) = 3 (5)@ 0@

B+y=a

where (5) = (51) - (57) with (}) = O3 = -

We recall The Schwartz space S(R™) is defined as the vector space of C*°(R"™; C) functions u such that

Pa,s(u) :== sup |x”‘86u(m)| < 400, for all multiindices o, 8 € N".
IER”I

The quantity (pa,s)a,sen» define a countable family of seminorms, which equip S(R™) with a Fréchet space
structure. We shall also sometimes use the dual space S'(R™) of temperate distributions, that is, linear
functionals T : S(R™) — C with the continuity property

for all o, B € N", there is Cy g > 0 such that

(T, ¢)s/mn),sm)| < Ca.ppa,s(0), for all p € S(R).

This defines a proper subset of the set of distributions D’(R™). For T' € S’(R"), the Fourier transform is
well-defined by the formula

<T, (p>8/(Rn)’S(Rn) = <T, @)S/(Rn)’s(]}gn), for all p e S(Rn)

The interest of using D instead of 9 comes from the Fourier transform. Namely, taking the following
normalization for the Fourier transform

u§) = /n e” Sy (z)de, ue S(R™),

we have

Dou(€) = €a(e). (1.18)
With this convention, the Fourier inversion formula is

—1~ 1 ix-E

uwlx)=F ‘u= e s u(€)de,
(27()” n
while Plancherel formula reads
1
(U, 0);2 = W (U, 0) 2, (1.19)

1

lull > = ERE @l 2 - (1.20)

Another interest of using D instead of 0 is that the former is (formally) selfadjoint whereas the latter is
skewadjoint: on the Fourier side, using the Plancherel formula (1.19), we have

1 = 1 — N
(D%u,v) s = D%w = 7/ v = 7/ ugov = / uD* = (u, D), . (1.21)
L2 Rn (271')” Rn (277)” R™ n L2
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We also have for f,g € S(R"),

Txg = I3, (1.22)
— 1 o~
where
frg(z)= . [z —y)g(y)dy.

When applied to a = fand b =g and taking the inverse Fourier transform F !, this also yields:
FHab) = F Ha)x F L), (1.24)
F Haxd) = (2n)"F Ya)F(b). (1.25)
Definition 1.2.5. For s € R and u € S(R™), we set
el gy = ([P + D Ful| o gy = @) 72| (E + D F| o gy -
We define the space H*(R™) as the completion of S(R™) for this norm.

Note that for s1 > so, we have [[ul| 7. (gny < l|tll o1 (gny and thus H* (R") < H*(R"). In particular,
for s > 0, we have H*(R") < L?(R") — H%(R").
For s =k € N, the H*(R™) norm is equivalent to the norm

2 o (12
||U||Hk-(Rn) = E [0 U||L2(1Rn)-
loe|<k

and we do not introduce another notation (the constants involved in the equivalence only depend on k and
the dimension n).
Given an open set 2 C R", we will sometimes use the notation [|-|| ;1 g, for

IW§@=AWWWW+AWM%nfﬂ?®W

The completion of C'°(R™) for this norm leads to a Hilbert space H(2) C L?(Q) (which we shall not use
in the following).

We finally define properly differential operators. Recall first that a function f on R" is said homogeneous
of degree m > 0 if
FOE =X"f(€), forall A>0and ¢ eR".

Definition 1.2.6 (Classical differential operators). Let @ C R™ be an open set and m € N.

e We say that P is a (linear) differential operator of order m on 2 if there are coefficients a, €
C°°(2) having all derivatives bounded uniformly on €, such that P =}, <., @a(z)D* with m =

max{|al, aq # 0}.
e We denote Diff™ () the set of differential operators of order m on Q

e We say that the function p(zx,&) = Z\a|<m ao ()€, (x,8) € T*Q = Q x R™ is the full symbol of P.
It is a polynomial of degree m in the variable &.

e We say that the function p,, (z,&) = Z‘M:m aq ()€ is the principal symbol of P. It is a homogeneous
polynomial of degree m in the variable &.

e We denote by X™ (2 x R™) the set of functions p(x, &) on  x R™ that are polynomials of degree m
in the variable ¢ with coefficients being smooth functions of x € ().
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e If P € Diff™ (), then p and p,, belong to L™ (2 x R™).

Its full symbol will be denoted p(z,§) = ngmpa(x)fa. It belongs to the set of polynomials of
degree m of the variable £. Respectively, if p € ¥™, we will denote by p(x, D) the operator with
symbol p.

We denote p,,(z,€) = Z‘M:m Do ()€Y its principal symbol. It is homogeneous of degree m in &.

Example 1.2.7. We have a(z)D; € Diff' (R") with (full) symbol a(z);, and —A € Diff*(R") with (full)
symbol |¢|%.

Note that from (1.18), we have that
(a0 (2)D*)u(@) = aa(2)(Du)(2) = aa(2)Fe 5, (2 F(u)(8) = Fii, (aa(@)§* F(u)(©)),

so that by linearity

e D)ule) = P2, (e OF@(O) = o [ e pla (6 (1.26)

1
(2m)™
The augmented set 2 x R™, in which the symbols p, p,, live, may be seen as a “phase space” containing
both the position variable z and the Fourier/frequency /momentum variable £ € R™. The latter is to be
understood as a cotangent variable £ € T}, as we shall see below.

Finally, another class of interesting operators is the class of Fourier multiplier.

1.2.5 The general strategy of Carleman

We consider here €2 a bounded open subset of R, P a differential operator on 2, ¢ € Q a point, and a
surface S = {¥ = 0} containing xy. We aim at proving local unique continuation for an operator P across
the surface S = {¥ =0} (say, a statement like (1.8)). In particular, we want to prevent the situation
in which a smooth function w both solves Pw = 0 and vanishes (possibly “flately”, in the sense that all
its derivatives vanish) on S. We thus need to “emphasize” the local behavior of functions close to the

hypersurface S.
The general idea of Carleman to do so, and thus prove unique continuation, is to consider weighted

estimates of the form

H6T¢w|‘L2(Q) <C ||eT‘I’Pw||L2(Q) ) (1.27)

which hold:
e for some well-chosen weight function ® : @ — R (related to ¥ as discussed below);
o for all w € C°(Q) (related to u as discussed below);
e and uniformly for T sufficiently large, i.e. 7> 7.
To prove the relevance/efficiency of this approach, two different things need to be explained:
1. what is the link between Carleman estimates like (1.27) and unique continuation properties like (1.7)?

2. how to prove such Carleman estimates?

Let us first discuss point 1. Note first that (1.27) says directly that if w € C$°(€2) is solution of Pw =0
on {® > 0}, then the right hand side will tend to zero as 7 tends to infinity. Therefore, the left hand side
will converge to zero, which implies that w is supported in {® < 0}.

However, statements like (1.8) that are useful in applications are not concerned with functions w
having compact support. Moreover, in general, as we shall see, usual differential operators P do not admit
solutions w to Pw = 0 having compact support!

The heart of the Carleman method to pass from the estimate (1.27) to the unique continuation state-
ment (1.8) resides in applying (1.27) to w = yu, where u is the function for which unique continuation has
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to be proved (hence solving Pu=01in Q and u =0on ¥ > 0), and x € C&(Q) is a cut-off function (to
be chosen) allowing to apply (1.27).

Using that Pyu = xPu + [P, x]u = [P, x]u (where [P, x] denotes the commutator of P and the multi-
plication operator by x), this then yields

HG@X“HH(Q) <C Heﬂp[P, X]“HLZ(Q) :

We then notice that supp[P,x] C suppVx. If we now assume (this can be achieved if ® is a slight
convexification of ¥, see Figure & ) that the functions ¥, @, y are chosen such that supp(Vx)N{¥ <0} C
{® < —n}, for some n > 0 (small!), then the support property of u (namely v =0 on ¥ > 0) implies that
supp([P, x]u) C {® < —n}, and we thus obtain

||67—¢’XUHL2(Q) é CueinT, for all T 2 70

The following lemma then implies that yu vanishes identically in {® > —n} which contains a neighborhood
of the point xg.

Lemma 1.2.8. Assume w € L*(Q) satisfies HeTq)wHLz(Q) < Ce ™ for all T > 19. Then we have w =0
on {® > —n}.

The proof of the lemma reduces first to the case n = 0 by changing ® in ® + 5. Then, it suffices to
notice that if w does not vanish a.e. on {® > 0}, there are ¢ > 0 and a compact set E C {® > 0} of
positive measure such that |w| > e > 0 a.e. on E. This yields

CQ 2 Her‘waiZ(Q) Z/ 627'<I>|w‘2 2 52/ eQTminE<I> — E2|E‘62TminE¢) _>‘r~>+oo +OO,
E E

and hence a contradiction.

To conclude, this brief discussion of point 1 suggests that unique continuation (1.8) will hold (across
{¥ = 0}) provided the Carleman estimate (1.27) is true for some weight function ® satisfying an appro-
priate geometric convezity condition as in Figure & .

As stated in point 2, the other issue is how to prove Carleman estimates, and, in particular, understand
the conditions on ® for which 2 can hold. As far as this analysis is concerned, the exponential weight is
not convenient to work with. One might thus want to eliminate it by setting v = ¢"®w. Then (1.27) is
equivalent to [|v]| 2y < C'||Pavl| 2y, With Ps = e™®Pe™"® is the so-called conjugated operator. Note
that again here, we slightly abuse notation and make the confusion between the function e™® and the
operator of multiplication by e™®. We are thus left to prove a lower bound for the operator Pg.

Writing 9;(e™"%u) = e 7*(0;u — Tud;®) implies that

™ Dje ™ = D; +i70;®. (1.28)

The first effect of conjugation is that there is no exponential factor in the right-handside, which is much
more convenient. Second, the conjugation changes D; into an operator having one derivative and one
exponent of 7. We thus expect (and we will check) that for general differential operators P = )"  an(x)D?,
the associated conjugated operator Py will have as many derivatives as exponents of 7. Since we want
to obtain estimates that are uniform for large 7, we have to think of 7 as having the same weight as a
derivative. We describe this calculus in the next section.

1.3 Operators depending on a large parameter 7

In this section, we describe the setting in which Carleman estimates like (1.27) shall be proved (see
Chapters 2 and 3 below). The main new feature is the presence of a large parameter 7 > 0, and the
calculus makes things uniform for 7 large. One may think to 7 as having the same weight as a derivative,
i.e. as the Fourier variable £. Since 7 is aimed at being large, we will always assume 7 > 1 when dealing
with estimates uniform in 7.
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1.3.1 Sobolev spaces
Definition 1.3.1. We define the H? norm of a function u € S(R™) as

ullgry = [(DP +72) 5] gy = 272 |(IE12 + 73] o g -

Note that for fixed 7, this norm is equivalent to the usual H® norm (Definition 1.2.5), since, for 7 > 1,
we have
7 + 1< [€* + 7 < r2(JE° + 1)

That is to say that [|ul| . gn) < |lullze < 77Ul e gn) for all 7 > 1.
Note also that, as for usual Sobolev spaces, the definition of the H? norm has a uniformly equivalent
definition in case s = k € N.

Lemma 1.3.2. Let k € N. Then, there is C > 1 such that for all 7 > 1 and all u € H*(R™), we have
_ 2 o, 12 2
c! Hu”ij(]R") < Z 7 |0 UHLZ(R") <C Hu”H’;(R")'
|a|+B8<k
In particular, we often use the case k =1,
lull = Wl s+ 7 Nl
uniformly for 7 > 1.

Proof of Lemma 1.3.2. The Plancherel formula yields

Il = g [ (P + 7P a(e) Pt

together with
1 1
28 2 _ 28 112 _ 28|25 () (2
Z T HaauHLz(R”) ~ (2n)n Z T ||§au||L2(Rn) ~ (2n)n /Rn Z TPIE Pl al) [ de.

la|+B8<k la|+B<k la|+B<k

Now, for |a| + < k, each term in the sum is bounded as
TIE P = 720 < 2Pl < (72 4 )T < (72 4 ),

implying the second inequailty of the lemma.
Concerning the first inequality, notice that the sum contains in particular the instance a« = 0,5 = k,
the instance oy = k,o; =0 for j =2,--- ,n and 8 = 0, etc..., yielding

S P = €2 = (€] + )
|a|+B8<k

for some ¢ > 0 uniformly for (,£) € R™ x RT (these are two homogeneous functions of degree k which do
not vanish on the sphere). This proves the first inequality, and concludes the proof of the lemma. O

We finally give a duality statement between the spaces/norms H? and H_°.

Lemma 1.3.3. For all s € R and all u,v € S(R™), 7 > 0, we have

[(u, 0) 2@y | < ] s 0] 72

Moreover, for all w € S(R™) and 7 > 0, we have

[ull - = sup |(u, v) L2 ) |-
vES(R™), [lv]lms <1
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Proof. The first statement comes from the Plancherel theorem and the Cauchy Schwarz inequality as
follows:

s 0) e | = ﬁ / Wf)ﬁ@dé\ = (gi)n / (glP + )" Ra@) (€ + ) Fa()de
< (271r)” (€1 + 7372 a2 (1€ + 72) 20 ()l 22 = llull -« 0]l -

The second statement comes from the first one together with the fact that for

vi= ||u||’1,3(|D|2 +72)7*u € S(R™),

we have ) s
1D + 72)~>ul| .
lvlles = - =1,
[ull -
and
1 2 2\—s 1 2 2\—% 2
(u,v) L2 (mny = W(u,(lm +77) 7 U) p2rny = W”OD' + 7)) gy = llull s

O

In the next section, we describe some important properties of operators depending on a large parame-
ter 7.

1.3.2 Differential operators

Definition 1.3.4 (Differential operators depending on 7). Let m € N and 2 C R™ an open set. We denote
Diff"(2) the set of differential operators of the form P = 37, . 5, Pa,p(x)TP D with p, 5 € C®(Q)
such that all derivatives of p, g are bounded uniformly on (2.

For P € Diff7*(2), we define its full symbol by p(z,&,7) = 32,1 s<m Pa.p()TPE2. Tt belongs to the
set of polynomials of degree m of the variable (£, 7), with coefficients smooth functions of = € ), that we
denote (2 x R™ x R*).

Respectively, if p € ¥™(2 x R™ x RT), we will denote p(z, D, ) the operator with symbol p.

We finally define p,, (z,£,7) = ZlaHB:m Pa.p(z)7TPEX its principal symbol. It is homogeneous of degree
m in (£, 7), in the sense that

P (X, AGAT) = N (2,6, 7),  forallz € ,£ € R", 7 >0 and A > 0.

Recall that, the order m being fixed, the set of smooth homogeneous functions of degree m in this sense
identify (through the restriction map) to smooth functions on the half-sphere bundle over €2, namely

{(2.6,7) € QxR x RY ¢ + 72 = 1}.

Remark that this Definition 1.3.4 is almost the same definition as Definition 1.2.6, except for the depen-
dance on 7 which changes the definition of the principal symbol. Note also that if p € ¥ (R" x R" x RT),
the inversion Fourier formula gives, as in (1.26), for u € S(R™)

1
(2r)"

pla D, rJue) = P, (&) F@(O) = o [ e pla & M€ (129

Let us finally remark that for P = p(z, D, 7) € Diff *(2), with principal symbol p,,, we have
P — py(z,D, ) € Diff?" (),
that is to say that these two differential operators of order m only differ by a differential operator of order

m— 1.
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Now, we want to describe the calculus of differential operators with a large parameter. This consists in
explaining the properties of such operators with respect to usual operations (composition, commutators,
taking the adjoint), their mapping properties (in 7 dependent Sobolev spaces) and positivity properties.
Moreover, we want to link such properties with those of the symbol of the operators. The philosophy is
that we want to recover properties of the operators only from their principal symbols (which are simpler
objects to manipulate, namely functions on the augmented space 2, x Rg x R1). The general Heuristic
is that a these differential operators act as if they were multiplication by p,,(x, &, 7), modulo lower order
terms.

If P, A, B of respective order m, my and msy, with respective principal symbol p, a, b, a rough summary
of the calculus properties proved below is the following:

1. (action on Sobolev spaces) P maps continuously H? into H2™™;
2. (composition) AB = Ao B is of order m; + mgy with principal symbol ab;
3. (commutators) [A, B] = AB — BA is of order m; + my — 1 with principal symbol 1 {a,b}, where

{a,b} = dea - 9,b — Dpa - Db = Z (0¢,a0,b — 9,00, b)

j=1
is the Poisson bracket.
4. (adjoint) P*, the formal adjoint in L? is of order m with principal symbol p;

5. (Garding estimate) p > C(£2 + 72)™/2 implies Re(Pu,u)r> > C" ||u||§{m/2 for large T (we consider

only the case m = 2 here but need a slightly more general class of operators than Diffi).

1.3.3 The calculus of differential operators with a large parameter

Proposition 1.3.5 (Action on Sobolev spaces). Let P € Diff”*(R™) and fir s € R. Then, there exists a
constant C' > 0 (depending on s and the coefficients of P) such that

[ Pull gps—m < Cllullgs,  for allu € S(R™) and all T > 1.

In particular, P extends uniquely as a bounded operator from H? to H:™™, uniformly for T > 1.

Although the result is stated for all s € R, we prove it only for s = k € Z, which simplifies considerably
the proof. The general case can be deduced by interpolation & ref. A direct proof is also possible (but
requires more work).

Proof. By the triangle inequality, it is enough to prove that any term p, s(x)7°D* with |a| + 8 < m is
bounded from HY to H¥~™. Then, we want to decompose

P @)D | g, ri=m < WPasllis=—r s o 177D g, i (1.30)

and it suffices to prove that each term on the right handside is finite. Firstly we have,

72Dl = g [ (77 €I (e
= (Qi)n /n<|£|2 + 7R (J6? + 72) T Jage) P
1 A~
= @nn /n(|§|2+7'2)k|u(f)|2df = [Jul7s (1.31)

where we used |a| + 8 < m in the last inequality. This proves that D*7# applies H¥ into H*=™. It only
remains to prove that the multiplication by a smooth function f bounded as well as its derivatives (here
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Do) is bounded from HF to HF for any k € Z. For k € N, we use the characterization of |- ||Hk given by
Lemma 1.3.2 together with the Leibnitz formula. This yields

Ifulfe <C Y0 PPN (Flze@n <C Do 70 D [(0°)(@) Hm(Rn)

la|+5<k la|+8<k  dt+y=a

<C Y N O e o 1070l

la|+B<k dt+y=a

SCIflkoe@ny D T2 107ullZz@ny < COH? lulle - (1.32)
|vI+B<k

Now, still for k¥ € N, we prove that the multiplication by f is bounded on H-*. We proceed by duality
and use the characterization of H; ¥ in Lemma 1.3.3. Indeed, first remark that

< ull e ([Foll o < Nl gmr CO N0l

‘(fua U)LQ(]R")‘ = ‘(UJU)H(R”)

where we used Lemma, 1.3.3 together with (1.32). The characterization of || ful| -+ = SUP|y||, =1 (fu,v)2(mn)
in Lemma 1.3.3 yields ’

|l e < CO) el

This, together with (1.32) proves that multiplication by f is bounded on HY for all k € Z. Finally
recalling (1.30) and (1.31) concludes the proof of the proposition. O

Proposition 1.3.6 (Composition). Let A € Diff7"* (Q) and B € Diff 72 (Q) with principal symbols ., (x, &, T)
and by, (z,€,7). Then, the operator AB = Ao B is in Diff " T™2(Q) Moreover, it can be written as
Ao B = (am,bm,)(x,D,7) +r(x,D,T)
with r(z, D, 7) € Diff ™ ™™~Y(Q). In particular, the principal symbol of Ao B is Gy, by,
A direct proof with the Leibnitz formula is given in Appendix B.1.1.
Proof. We prove it by induction on m = my + ms.
e Case m =0: A= f(z) and B = g(x) and the result is clear.

e Induction m — 1 — m: By linearity with respect to A and B, it is enough to prove the result for
A = f(z)7 D% and B = g(x)7% D . Since m; + mg = m + 1, at least one of the 3, |a|, B, |a/| is
bigger than 1. If it is either 5 > 1, 8/ > 1 or |&/| > 1, the result is a consequence of the induction

assumption at rank m — 1. If |a| > 1, take k such that ay > 1. Then A = AD; with A € Diff:“*1
and we have

ABu = ADj, [g(m)rﬁ/Do‘l]u = A(Dyg(z))7? D + Zg(m)TB/DO‘/Dku.

The induction assumption at rank m — 1 implies that the first term is in Diff”"~! and /Tg(x)TBlDO‘, €
Diff” ! with principal symbol 6g(x)7ﬁ'§a'. We deduce that Ag(x)TB/DO"Dk € Diff”" with principal
symbol ag(x)7? £2¢;, = ab.

O

Notice then that both AB and BA belong to Diff”"* "2 (Q) and have the same principal symbol @, by, -
This in particular implies
[A, B] = AB — BA € Diff ™21 (Q)

)

for the commutator. It is natural when comparing these two operators to study the principal symbol of
[A, B]. Notice that basic algebra shows

[A,B] = —[B, A (1.33)
[A,BC] = [A,B|C+ BJA,C]. (1.34)

We need the following notation and definition.
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Definition 1.3.7 (Poisson bracket). Given a,b € C*°(Q x R"™; C), we define the Poisson bracket of a and
b by

{a,b} := 0ca- Opb — Opa - Ocb =Y  (J¢,ads,b — Oy, a0e,b) .

j=1
Notice that we have the properties:

{a7b} = 7{670’}7 (135)
{a,bc} = {a,b}c+b{a,c}. (1.36)

The second formula is a Leibnitz formula, yielding that the map b — {a, b} is a derivation on C*°(Q2xR"; C).
When comparing these to (1.33)-(1.34), it seems natural to obtain the following result.

Proposition 1.3.8 (Commutation). Let A € Diff7""(Q2) and B € Diff7"?(Q) with principal symbols
Ay (2,6, 7) and by, (2,€, 7). Then, the operator [A, B] is in Difleerrl(Q). Moreover, it can be written
as

1
[A, B] = = {am,y,bm, } (x, D, 7) + r(x, D, T),
i

with r(x, D, 7) € Diff "1 +m2=2(Q),

Note that since a,,, is homogeneous of degree my in (£, 7), then 0,a,,, has the same homogeneity
whereas Oza,,, is homogeneous of degree m; — 1 in (¢, 7) (and similarly for b,,,,). Therefore {am,,bm,} is
homogeneous of degree m; + mo — 1, which is consistent with the formula.

We could give a direct proof with the Leibnitz formula (given in Appendix B.1.1). The latter would
however be technical and not very informative, so we prefer to give a simple inductive proof based on (1.33)-
(1.34)-(1.35)-(1.36).

Proof. We first treat the case where one of the operators is of order 1. This amounts to prove, by induction
on m, the following property: for any A = f(z)Dy and B € Diff", [A, B] € Diff!"* with principal symbol
+ {f&k bm}
7 svYmJ -

o Case m =0: B = g(x) and we have
[A, Blu = [f(2) D, g(x)lu = f(x)Dr(g(x)u) — g(x) f () Dyu = f(2)Dy(g(x))u = %f(w)ak(g(x))u-
This operator is in Diff? with principal (and full) symbol 1 f(2)0s, (g(x)). And for the principal
symbols a1 = f(x)&; and by = g(z), we have {a1,bo} = {a1,b} = fO., 9.

e Case m = 1 (this is only needed as a partial result): By linearity (and the case m = 0), it is enough
to have the result for B = 7¢(x) or B = g(x)D;. The first case reduces to the case m = 0 (since 7
commutes), so we only need to treat the second. We have

[A, Blu = [f(2)Dx, g(x)DiJu = f(x) Dy, [g(x) Dyu] — g(x) Dy [f (x) Dyl
f(@)Dy(g(x)) Diu — g(2) Di(f (x)) Dy

This operator belongs to Diff. and has principal (and full) symbol % (f(2)0y, (9(x))&—g(2) 0y, (f(2))é)
which turns out to be equal to + {f ()&, g(x)& 1}

e Induction m — m+1: the main idea is to use (1.33)-(1.34). More precisely, by linearity (B € Diff™**
writes B = Bot + >7L) B;Dj + B where B;, B € Diff’"), it is enough to consider B = 7B or
B = BD, with B € Diff”*, with principal symbol b In the first case, we have [A, B] = 7[A, E], and
the induction assumption at step m gives the result. In the second case, we have

[A, B] = [A, BD)] = A, B|D, + B[A, D/].
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The case m = 1 and the induction assumption then yield (after using Proposition 1.3.6) that [A, B] €
Diff”" with principal symbol

! ({oio)erintoes) = Hudut) = o

?

where we have used (1.36).

The result is now proved for any A = f(z)Dy and B € Diff" (or A € Diff”" and B = g(z)D; by
antisymmetry). The final result can then be proved similarly by induction on m = my + mgy using the
same strategy.

e Case m = 0: the result is clear since then A = f(x) and B = g(z).

e Induction m — m + 1 By linearity with respect to both variable, it is enough to get the result for
A = f(z)r’D* and B = g(z)r? D*. Since m; + my = m + 1, at least one of the 8, |af, 5/, ||
is bigger than 1. By symmetry, we can assume that either 5 > 1 or |a] > 1. In the first case, we
apply directly the induction assumption at rank m. In the second case, |a| > 1, we take k such that
ap > 1. Then A = ng where A is of order my1 — 1. We have again

[A, B] = [ADy,, B] = A[Dy,, B] + [A, B| Dy,

and we conclude similarly by the induction assumption at rank m for the second term and for the
first term by the previous result proved in the specific case A = Dy.

O

Given an operator P, we now would like to discuss its formal adjoint P* (if it exists) in the sense that
(Pu,v) 2 = (u, P*v) ., forall u,v € C(Q). (1.37)

We only talk about “formal adjoint” because the test functions in (1.37) are in CZ°(€2). This is linked
with the fact that we did not define differential operators as closed operators on the Hilbert space L%()

(such a definition would require to define their domains, which we do not do/need), but rather as acting
on C(Q) — C(Q).

Proposition 1.3.9 (Formal adjoint). Let P € Diff”"(Q) with principal symbol p,,. There exists a unique
operator P* € Diff7(Q) satisfying (1.37). Moreover, the principal symbol of P* is P, that is P* —
Pz, D, 7) € Diff"~1(Q).

Note in particular that an operator P € Diff”*(Q) with real-valued principal symbol is formally selfad-
joint modulo Diff”~!(£2), in the sense that P — P* € Diff” (). This fact will be used several times in
the proof of Carleman estimates.

Proof. By linarity, it is enough to prove the result for P = a(z)7?D®. We recall from (1.21) that D is
formally selfadjoint, so that

(a(fr)TﬁDo‘u,v)L2 = (T’B)D"‘u,mv)L2 = (u,TBDO‘mv) Lo

As a consequence, P* = 77 D%a(z) and we know from Proposition 1.3.6 that P* € Diff™ with principal

symbol a(x)77¢* = Py, O

1.3.4 The conjugated operator

As described in Section 1.2.5, the introduction of the calculus with the large parameter 7 is motivated by
the conjugated operator Pgp := e”® Pe~7®. We here prove that it belongs to the class Diff?", and compute
its principal symbol.
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Lemma 1.3.10 (The conjugated operator). Let P =3, ,, Pa(z)D* € Diff™ () be a (classical) differ-
ential operator with principal symbol p,, and let & € C*(Q) be real-valued and bounded as well as all its
derivatives.

Then, the operator Py defined by Pev = e"®P(e~"%v) satisfies Py € Diff”*(Q), and its principal
symbol, denoted by pe = paom (with a slight abuse of notation), is given by

pao (2,8, 7) = pm(z,§ + iT7d®(x)) = Z Do (2)(§ +iTd®P(x))".

|a]=m

Roughly speaking, the previous Lemma says that ps is obtained by replacing & by £ + itd®(z) in
Pm- Note that it implies in particular that pe has a complex-valued symbol if p,, is real-valued: The
conjugation turns selfadjoint operators into non-selfadjoint ones.

Proof. As already checked in (1.28), we have e™®D;(e""®u) = D;u + i7(9;®)u. In particular, the conju-
gated operator e”®D;e~"® lies in the class Diff! with principal symbol &; 4 i79;®. We now write
eT@D?je_Tq) =e™®Dje ™™ D; ™ Dje (a; times)
_ ertI’Dje—be)(eﬂbDje—T@) . (eTqDDje—T‘b).

Therefore, using Proposition 1.3.6 o; — 1 times, we obtain that this is a differential operator depending
on 7 of order a; with principal symbol (§; + i70;®)% (note that the full symbol is more complicated).

So, since D* = D" ~-~D§” ... D% we obtain similarly that e”®D%~7® ¢ Diff*!

o 1, with principal
symbol

T1(& +ir0,0)% = (¢ + irdd),
j=1

using the notation of Section 1.2.4. Since p, commutes with e™® and P = 3" _ po(2)D?, this provides the
result by summing up. O

Example 1.3.11 (the Laplace operator). Here, we take P = —A € Diff? (R™), having (full and principal)
symbol [£]?, and make a direct computation of the full and the principal symbol of Py. We have
e (—A)e T Pu=—"* [A(eTM)u+e TP Au+2Vu - V(e )]
=" [-7(A®)e ™ + T2|VOPe TPu+ e TP Au — 27Vu - VOe TP
= 7(A®)u — 7?|VO|*u — Au+27Vu - VO,
where we have used
V(eT™) = —rVde7?
Ale™™®) =div(V(e™™®)) = —7div(VPe ™) = —7(Ad®)e™™® —7VD - V(e 7F)
= —7(AD)e ™ 4 72|V Y.
72|V®|2u, Au and 7Vu-V® are of order 2 with respective symbol 72|V®|?, —|¢|? and iT¢ - V® (remember
that Vu = (O1u, -+ ,0pu) = i(Dyu, - -, Dyu) has complex symbol denoted for short iD).
So, denoting ps, i the full symbol of P and pe its principal symbol, we have
po.fun(,€,7) = [€]* = 72|V (2)* + 2i7€ - VO(x) + TAD()
pa(,8,7) = [§]* = 7*|VO(2)|* + 2i7¢ - VO(x)
Note that we have pg 2(x,&,7) = (£ +iTVR(x)) - (€ +i7V (1)) = p2(z,{ +iTVP(x)), (beware that here,

- denotes the real inner product in R™) in accordance with Lemma 1.3.10.
& Fix: d® or VO
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Example 1.3.12 (second order operators with real-valued principal symbol). Below, we will be particu-
larly interested in second order differential operators with real-valued principal symbol, namely P € Diff? ()
with py real-valued. The principal symbol of such operators write pa(x,§) = szzl a(z)&;&; with real
coefficients a*. This encompasses of course the case of the Laplace operator discussed in Example 1.3.11.

Notice first that & — pa(x,&) = szzl a(z)&;€; is a real quadratic form for all z € Q. In particular,
we have the canonical polar form:

L L g
pa(w,) = Y aV (@) = Y 5 (a¥(2) + (@) &5
ij=1 ij=1
and we can thus assume that
the matrix (a"(z)); ; is symmetric, i.e. a”(z) = a’*(z) for all 1 < i,j < n. (1.38)

Concerning the operator P, we then have
n

P —py(x,D) € Diff'(Q), pa(a,D) = > a”(x)D;D; = Y D;a"(x)D; + Ry,

i,j=1 i,7=1

where Ry = — )7, Di(a")D; € Diff'(2). The operator 7', D;a’ (z)D; is formally selfadjoint
(equivalently, one can say that it is of divergence form with respect to the measure dz). This last form
thus states in a clearer way that the operator is formally self-adjoint modulo Diff*(Q). Also, & — py(z, &) =

Z?jzl a'(z)&;€; is a real quadratic form with (1.38), and thus Lemma 1.3.10 states that the principal
symbol of the associated conjugated operator Pg is given by

p@(x7§77—) = p2($7£+ ZTd(I)(ZE)) ZPQ(JZ,E) - T2p2(l’7dq>(l')) + 217}35(1’,5,(1@(%))7

where pa(x,&,n) = Z?,j:l a*(z)&m; is the polar bilinear form of the quadratic form po(z, ).

1.3.5 A Garding inequality for a class of operators with a large parameter

In this section, we prove that operators having a real positive principal symbol are positive (referred to as
a Garding inequality).

However, for the need of Carleman estimates, the class of differential operators is not quite sufficient.
We need to consider a slightly larger class, that also includes the operator

A+ =(DP+)7 =1,
defined as a Fourier multiplier:
F((=A+7) 7 u)(€) = ([ + 1) (), ue SRM).

Note that, as opposed to differential operators, the operator (—A + 72)~! is non-local (in the sense that
it does not satisfy supp(Pu) C supp(u) for all u € C°(R™)).

We write in this section a weak form of Garding estimates for (almost-)differential operators of order
2, which is at the core of the Carleman method. A general Garding inequality (that we shall not need
for Carleman estimates) will be stated in the next section (about pseudodifferential operators with large
parameters).

Let us first state an elementary Garding-type lemma for Fourier multipliers.

Lemma 1.3.13. Let ¢ = q(£,7) € C®(R™ x RT) NS’ (R™ x R") real-valued and satisfying
q(&,7) > Co(|€* +72%),  for all (€,7) € R" x RT,
Then we have

Re (¢(D,T)u,u);> = (¢(D, T)u,u);2 > Cy Hu||§{1 ,  forallueSR"), 7 >0.
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Proof of Lemma 1.53.15. We have F (¢(D, m)u) (§) = q(&, 7)u(§), so that using the Plancherel formula, we
obtain

1 TN 1 2 PAY P 2 _
(@D ) = s [ ol PUETEE > Cogr [ (16 + PIa(E) e = ol

which proves the lemma (in particular the first identity implies that (¢(D,7)u,u) . is real). O

We now state a local Garding inequality for a family of operators including Diffi. The main additional
difficulty when compared to Lemma 1.3.13 is the dependence of these operators on the z-variable.

Proposition 1.3.14 (A local Garding inequality for particular operators). Assume 2 is an open set with
0 € Q and let P be an operator of the form

k
P=A+) Bio(-A+7)'oB; (1.39)

=1

with A, B; € Diff2(Q) with real principal symbols ay(z,&,7) and ba,i(z,&,7). Define

pa(x,&,7) = as(x,€,7) Z |§|2+72 : (1.40)

and assume that there is Cy > 0 such that
p2(0,6,7) > Co(|€)> +7%),  for all ¢ €R™, 7 > 0. (1.41)
Then, there exist r > 0 and Cy, Cy > 0, so that we have
Re (Pu, )2 > Cy [ulfs = Co lul72,  for all u € C*(B(0,r)),7 > 0. (1.42)
In particular, there exist C, 79 > 0 such that
Re (Pu,u) . > C HUH?{; ,  forallue CX(B(0,r)),r > 1.

Note that formally, such operators P are “of order 2”. The “principal symbol”, defined in (1.40) is
indeed a homogeneous function of degree 2. Inequality (1.41) is thus a homogeneous inequality, and it is
sufficient to assume it on the half-sphere S7 := {(£,7) € R x R, €2 + 72 = 1}.

The idea of the proof is to “freeze” the coefﬁ01ents at 0 in order to reduce to the case of a Fourier
multiplier, and then use Lemma 1.3.13. For this, we need to estimate the error made by “freezing” the
coefficients. This is the aim of Lemma 1.3.15 and Corollary 1.3.16 below. Proposition 1.3.14 is then a
consequence of Corollary 1.3.16 together with Lemma 1.3.13.

Lemma 1.3.15. If A € Diffi(Q) with principal symbol as(x,&,7), then, there exits C > 0 such that for
all ¥ > 0 such that B(0,r) C Q, we have

(A, 0) 2 = (0200, D, 7, v) ] < C (1 [l gy + el ) ol

for any v € C*(B(0,r)),v € S(R™), 7 > 1.

Corollary 1.3.16. Let P and py be as in (1.39)-(1.40). Then, for any € > 0, there exits C > 0 and r > 0
so that

|(Pu,u) e = (p2(0, D, 7)u,u) 2| < € ullF + C llul72

for any v € C*(B(0,r)), 7 > 1.

Let us now give the proof of the Garding inequality of Proposition 1.3.14.
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Proof of Proposition 1.3.14. First, assumption (1.41) together with Lemma 1.3.13 implies that
Re (p2(0, D, T)u,u) ;2 = (p2(0, D, T)u,u) ;. > Co ||u\|iu , forallueSR"),7>0.
Now, Corollary 1.3.16 yields for any € > 0, the existence of C' > 0 and r > 0 so that
[Re (Pu,u) 2 = (p2(0, D, 7wy u) pa| < € JlullFa + C Jlul72

for any u € C°(B(0,r)), 7 > 1. Taking e = <2 implies the existence of C' > 0 and r > 0 so that
R Co 2 2 o
e(Pu,u);2 > 5 llull7 — C|lul|72, forall ue C*(B(0,r)), 7 > 1.

which is the first statement. The second statement comes from the fact that |jul|,. < L l[ul[ g2 and taking
7 large enough in this inequality. O

Before proving the lemma and its corollary, we state (see Exercise 1 in Section 1.4 for a proof) a converse
of Proposition 1.3.14, showing that the positivity of the principal symbol is also a necessary condition for
the positivity of the operator.

Proposition 1.3.17 (Converse of the Garding inequality). Let P and py be as in (1.39)-(1.40). Assume
that there exist r, 79, C1,Cy > 0, so that we have

Re (Pu,u) . > Cy ||lul3s — Collullz2,  for allu € C(B(0,7)),7 > 0.
Then we have
p2(0,€,7) > C1(|€]* +77),  for all§ € R™, 7 > 0.

Proof of Lemma 1.5.15. We first write A € Difff under the form

A= Z z)D;D; +Za1 )7D; +ap(2)7*> + R, R € Diff}
4,j=1
=A+ R, (1.43)
where
A'= " Djal ()D; +Za1 )T D; 4 ag(x)7? € Diff?, =R-— Z (D;a¥)D; € Diff!
i,j=1 i,j=1

We estimate the lower order term involving R’ using Propositions 1.3.9 and 1.3.5 as
(R, ) gl =[G, (B)0) 2] < C [l g ol - (1.44)

Thus, it only remains to estimate the quantity |[((A" — a2(0, D, 7))u,v),.|. By linearity, it is enough to
do it term-by-term. Let us consider the most difficult terms, namely D;a3 (z)D; (terms under the form
ai(x)TD; and ag(x)7? are simpler to treat). Using ag (0)D;D; = D;ag (0)D; and an integration by parts,
we obtain

((Diaf @)D; = a¥ (O)D.D)u,v) | = ((a¥ (2) - af (0)) Dyu, Div) |
For u € C°(B(0,7)) this can thus be estimated as

Dya? ()D; — 4 (0)D;D; ) ijoH ,
|((Diaf (@)D, — a ()D:Dy)u,v) | < O] Iy
where, using the mean value theorem, we have

a? () —a¥ (0 H <r Hdaij <Cr.

‘ 20 = @O 0y 2 Mlee=B0r)
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We have thus obtained

((Diaf @)D, = af O)D:Dyu,v) | < Crlfull gy [0l s for all w e C2(BO,1),v € SR™).

A similar computation holds for all terms under the form ai(z)7D; and ag(x)72, which eventually yields
to

(A", 0) 2 = (a2(0, D, 7)u, v) 2] < Cr flufl gy [0l gy

for all 7,7 > 0 and all u € C°(B(0,7)),v € S(R™). Combined with (1.43)-(1.44), this concludes the proof
of the lemma. O

Proof of Corollary 1.5.16. We have

k
(Pu,u)po = (Au,u) . + Z (Bjo(—A+7%)"" 0 Bju, u)L2 . (1.45)

i=1

According to Lemma 1.3.15, applied to v = u € C°(B(0,7)), and using |[ul| ;1 [[ull ;> < & [|Jull3: + = lul| 72
for all € > 0, we obtain the sought result for the difference

| (A= a2(0, D, m))uyu) o | < € ullzpy + Cellullza, u € CZ(B(O,72)).

It thus only remains to prove a similar statement for each of the terms in the sum of (1.45), which we
shall for simplicity denote (Bo (—=A +72)7! o Bu,u) ;2 here (removing the subscript 7). We shall denote
by (instead of bs ;) for the symbol of B (instead of B;) accordingly. We write

(Bo(=A+7*)"! o Bu,u) ((—A+72)_1oBu,B*u)L2

((—A +7%)7 0 Bu, by(0, D, T)U)L2 + Ry,

L2

where
By = (=8 +7%)7 0 Bu, (B' = bo(0,D.7)u)

We first estimate R, and come back to the main term afterwards. We have

|Ri| < ||(—A + 727t OB“HH; [(B* = b2(0, D, 7))ul -

and, using that B sends H! into H- 1, we get
[(=A+7%)7" o Bul| y, < [|Bully-1 < Cllul g, -

We are thus left to estimate ||(B* — b2(0, D, 7))ul|;-1. For this, we use Lemma 1.3.15 for the differential
operator B*, with principal symbol b3(0, &, 7) since by is assumed real-valued. This yields

((B* =520, D, 7))u,v) ] < C (1 ull gy + lull 2 ) ol

for any u € C°(B(0,7)),v € S(R™), 7 > 1. According to the characterization of the H-! norm by duality
(see Lemma 1.3.3 above), this implies

I(B" = ba(0, D, )ull g+ < C (v llull gy + )
Combining the above estimates, we have now proved that
(Bl < C (rllull o+ ) gy for all w € C2(B(0,1),

which is an admissible remainder term (by taking r small enough and using again ab < ea® + b?/4¢).
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To conclude the proof, it only remains to replace ((—A +7%)~! OBu,b2(07D7T)’U,)L2 by the same
expression with B replaced by b2(0, D, 7). That means to estimate

|((=A+7%)7" 0 (B = b2(0, D, 7)u, b2(0, D, 7)u) ., |
< [[(=A+7%)7HB = b2(0, D, 7))l [162(0, D, 7)ul| s
<I(B = b2(0, D, 7))ull g luall s -
This last term has already been estimated with B* instead of B, but this works the same (since po is

real-valued). O

We also have a semiglobal Garding inequality when replacing the local assumption (1.41) of Proposi-
tion 1.3.14 by a semiglobal one.

Proposition 1.3.18 (Semiglobal Gérding inequality). Let  C R™ be a bounded open set, and P be as
in (1.39), with A, B; € Difff(Q) with real principal symbol ag(z,&,7) and be;(x,§,7), and pa(z,€,7T) as
in (1.40). Assume there is C' > 0 such that

po(z,&,7) > C(|€* +72)  for all (z,€,7) € A x R" x RY (1.46)
Then, there exist and Cy, Cy > 0, so that we have
Re (Pu,u) 2 > Ct [l = Ca luljz,  for allu € C(Q),7 > 1.
In particular, there exist C, 1y > 0,such that
Re (Pu,u); . > C ||u\|§11 ,  forallueCX(Q), 7> 1.

Note that Assumption (1.46) indeed makes sense up to the boundary of €2: since all coefficients of the
operator have all derivatives uniformly continuous, they can be extended uniquely to 2.

Proof. We may apply Proposition 1.3.14 at any zo € Q) & beware: In the statement of this Proposition,
o € Q (not in the boundary of the open set). This yields for any x € ) the existence of 7% > 0

and C¥, C% > 0, so that the inequality (1.42) holds for all functions u € C°(B(z,r%)). Since €2 is compact,

we can extract from the cover Q C (J, .o B(z, ") a finite cover denoted by Q C |J,;.; B(x;,7;). Define a
subordinated smooth partition of unity x; € C*°(B(x;,1;)) so that

Z x> =1on Q.
i
See e.g. | , & | for the construction of such functions. We thus have u = Y, x?u and decompose

(Pua U)L2 = Z (XzQPu7 U) L2 — Z (szua Xiu)L2

7 [

Z (PXiu7 Xiu)L2 + Z ([Xi7 P]u7 Xiu)Lz .

A A

Now, the bound furnished by Proposition 1.3.14 yields

. ; 2 s 2
5 (P e = (min € ) S el — (s ) ¥l

g i€l i€l

We notice that, for 7 > 1,

2

<Y [ully <€ Y Il
H! % i

2
luli%y = |

> xiu
7
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where we used Proposition 1.3.5 and the fact that the sum is finite. Hence, the above three lines imply
the existence of C7, Cy > 0 such that we have for all u € C°(Q),

(Pu,w) 2+ 3 W(Das Plu, xu) | = Ca s = Co 2 (1.47)

It only remains to estimate |([x;, PJu, x;u);=|. Recalling the form of the operator P = A + Z?:l Bj o
(A +72)"1 o Bj in (1.39), we have [x;, A] € Diff}, and hence

|(Dxis Al xiw) 2| < Cllull g [lull 2

which is an admissible remainder. We thus only need to examinate each [x;, Bj o (—A 4+ 7%)71 o B;j]. We
remove the indices and write S = (—A + 72) for readability. We have

[x, BS™'B] = BS™'[x, B] + B[x,S™'1B + [x, B]S™'B.
We remark that [x, B] € Diff! and obtain
|[(BS™[x Blu, xu) 1| = [ (%, Blu, ST B*xu) 1| < I, Blull g |7 B x|
< Cllull gz 1B*xull g < Cllull g2 Jull g1,

|([XaB]SilBU7XU)L2| S C ”,U’“L2 ||UHH$ )

where the second estimate is obtained as the first one. We now rewrite B[y, S™!|B using the general fact
[T,571 =TS8 - ST = S71[S,T|S~!, and obtain

|(B[X, Sil}Bu,Xu) | = |(BS [S, X]SilBu,X’u,) | < ||BS [S, X}SleuHLQ llul]l 2
< C|S7HS. XIS Bul| s Null g2 < C |18 X)S™ Bul 1 ull g2 < C'llull gy ull 2 -
This together with (1.47) concludes the proof of the proposition. O

Remark that the proof shows and uses that [P, x] is “of order 1”. However, as P, this operator is not
a differential operator. We briefly discuss a more general class of operators containing P, and associated
calculus in the next section.

1.3.6 Pseudodifferential operators

& not taught in class

This section is provided here as a remark: the class of differential operators Diff!" described above
can be embedded in the more general class of so-called pseudodifferential operators (depending on a large
parameter 7). The latter class has the advantages of being an algebra, and containing both differential
operators, nice Fourier multipliers, together with operators of the form (1.39) having symbols like (1.40).

The calculus for differential operators described in the previous section generalizes nicely to this class,
with some technicalities. The reader is referred to | , | for a description of this theory. We
only state here counterparts of the results described in the previous section for such operators. We do not
provide proofs of these results, which are beyond the scope of the present introductory book.

Note that introducing these classes of symbols and operators is not needed for the purposes of this book,
namely for proving usual Carleman estimates for operators of order 2 with real principal symbols. This
section can thus be skipped at first reading. In the proofs in the next chapters, we shall mostly consider
differential operators. Yet, we believe that it is good to know that the above operators and results can be
embedded in a nice class of operators enjoying nice calculus properties.

A starting point is the remark that Formula (1.29), which to a symbol associates an operator, does
not require the symbol p(z, £, 7) to be polynomial. For instance, the operator (—A + 72)7! is well defined
for 7 > 0 and equal to Formula (1.29) with p(z,£,7) = p(§,7) = \E\Z’ﬁ We would like to use a class

of operators containing also (—A + 72)71, as an operator of “order —2” with symbol Iélzﬁ (which is

homogeneous of degree —2 in (£, 7)). Before introducing the class of pseudodifferential operators which
achieve these properties, we need to introduce the class of symbols for which Formula (1.29) will provide
with a nice operator, called here the S class.
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Definition 1.3.19. Given an open set 8 C R™ and m € R, we say that p(x,&,7) belongs to S (2 x R™),
if it is smooth in (x,&) and, for any «, § € N*, there exists C,, g so that

m—|B|
a;;afp(x,g,f)‘ < Cug (\/|g|2 n 72) for all (z,£) € Q x R",7 > 1. (1.48)

m

Note that if m € Nand p € ¥™, then p € S™*(R™ x R™). Note also that (\/ 1€]% + 7'2> € S™(R™ x R™)
for any m € R. Note finally that the symbols useful for later applications to Carleman estimates, given
by (1.40), belong to S2(R™ x R™).

Note that in these two examples, the symbol p is either homogeneous of degree m, or a sum of terms
which are homogeneous of degree < m (more precisely, of the form p = p,, + ppm—1 + -+ -, where py,—; is
homogeneous of degree m — j). This is no longer the case for general symbols in S (R™ x R™).

For this reason, it is less obvious to define the principal symbol or the principal part of the symbol.

Definition 1.3.20. For m € R and a € S7(©2 x R™), we define the principal symbol a,, of a (or the
principal part a,, of the symbol a) to be the equivalence class of a in S™(Q x R")/S™~1(Q x R").
We identify a,, with any of its representatives. In case there is a homogeneous representative of a in
S x R™)/S™m=1(Q x R™) (of degree m), then we choose this representative for the principal symbol.

Now, from p(z, &, 7) € ST*(R™ xR™), we may define the associated pseudodifferential operator p(z, D, 7)
by mimicking Formula (1.29).
Definition 1.3.21. Given p € ST(R™ x R™), we set
1 .
e [ @ 6 A, for u e S(EY),

We denote by ¥7*(R"™) the set of all such operators for p € S7*(R™ x R™).

(p(x, D, T)u) (z) :=

In quantum mechanics, the formula of this definition is called a quantization formula, for it associates
to a “classical observable” (i.e. a function on the classical phase space R" x R", i.e. a symbol) a “quantum
observable” (i.e. an operator on the quantum Hilbert space L?(R™)). Conversely, we say that p(z,&,7) is
the (full) symbol of the operator p(z, D, 7).

Note that we have Diff”*(R") C W7 (R") for m € N and (—A + 72)™/2 € U™(R") for all m € R. Note
also that p(z, D, 7)u is well defined and belongs to S(R™) if u € S(R™). But such an operator has actually
better mapping properties, similar to those enjoyed by differential operators.

Theorem 1.3.22 (Action on Sobolev spaces). Let P € U™ (R™). Then, for any s € R, there exits C > 0
such that
| Pull s-m < Cllullgys s for allu € S(R™) and 7> 1.

As a consequence, an operator P € WT(R™) can be uniquely extended as a bounded operator from HE to
H:™™ wuniformly in 7.

Note that the latter part of the proposition follows from the density of S(R™) into H? for all s € R.
This is the analogue in the more general class U7 (R™) of Proposition 1.3.5 in Diff " (R™).

Theorem 1.3.23 (Composition). Let mi,mz € R and A € U (R"), B € U2 (R™) having (full) symbols
a(z,&,7) and b(x,&, 7). Then, the composition AB € W™+ m2(R™) and we have AB = c(x, D, T) where,
for all N € N,

oz, &, 1) = Z #8?(1(1‘,5,7’)82‘6(3:,5,7’) +ry(z,&,7), withry € Smitme=N=1 (1.49)

ilela!
a<N

In particular, the principal symbol of AB is the product a(z,&,7)b(x,&,7) (modulo ST 1+m2=1)

Equivalently, if a,,, and b,,, denote the principal symbols of A and B respectively, the principal symbol
of AB is the product a,, (x,&, )by, (z,&,7) (modulo Smi+m2=1),

Note that this theorem implies that operators under the form (1.39) (useful for Carleman estimates)
belong actually to ¥2(R") and have principal symbol given by (1.40).

As for differential operators, the defect of commutation between A and B is not seen at principal order
(both have ab as principal symbol). However, looking carefully at the subprincipal term in the asymptotic
expansion (1.50) (i.e. that with |a| = 1), one obtains the symbol of the commutator.

30



Corollary 1.3.24 (Commutator). Let mi,mg € R and A € U7 (R"), B € U"2(R™) having (full) symbols
a(z,&,7) and b(z,&,7). Then, the commutator [A, B] € W™ +m2=1 has principal symbol % {a,b} (x,&,7) €
Smutma=1 (modulo ST1+m2=2) where the Poisson bracket is defined in Definition 1.5.7.

The last calculus rule concerns the adjoint operator with respect to the usual L?(R™, dx) inner product,
and we have the following generalization of Proposition 1.3.9.

Theorem 1.3.25 (Adjoint). Let m € R and P € U'(R™) having (full) symbol p(x,&, 7). Then, there is
a unique operator P* satisfying (1.37). Moreover, we have P* € WT(R™) and P* = q(x, D, T) where, for
all N € N,

1 . m—N—
q(l‘,f,T) = Z magagﬁ(%fﬂ') + ’I"N(J?,g,T), with TN € S-r N 1' (150)
a<N

In particular, the principal symbol of P* is equal to the complex conjugate p(x,&,7) (modulo ST~1).

One may also say that P* —p(x, D,7) € W1 (R"), if p is the (full) symbol of P, or equivalently that
P* —p,,(x,D,7) € ¥ "Y(R") if p,, denotes the principal symbol of P.

We finally give a Géarding inequality which generalizes that of Proposition (1.3.14), i.e. for operators
of the form (1.39), with principal symbol (1.40).

Theorem 1.3.26 (Local Garding inequality). Let zg € R", m € R and P € U™(R™) has real principal
symbol py,(x, &, 7) (that is, there is a real-valued representative in the class ST'(R™ x R™)/Sm~1(R"™ x R™) ).
Assume that there exist Cy, R > 0 such that

Rep(xo,&,7) > Co(&* + 7)™, for all (§,7) € R" x RY,[(¢,7)] > R.
Then, there are C,r,79 > 0 such that

Re (Pu,u);. > C Hu||ilm/2 ,  forallu e C(B(xo,r)), ™ > 0.
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1.4 Exercises on Chapter 1

Exercise 1 (Converse of the Garding inequality, part of the Exam of May, 2018). The goal of this exercise
is to prove the converse of Proposition 1.3.14, namely the statement of Proposition 1.3.17.

We prove in the first place a converse of the Garding inequality for differential operators. We let £ € R™
be fixed, and x € C°(R™; R) be such that x(0) = 1, and consider the functions

ur(x) = N(1)x(V7)el™¢, 7> 0.
1. Determine N(7) so that [lur||;2(gn) =1 for all 7 > 0.

2. Give an asymptotic expansion as 7 — +o0o under the form a(7)4+O(8(7)) (with a, 8 to be determined,
B = o(a)) of both quantities: 1(Djur,u:)r2rn) and (aur,ur)p2gn), where a € C*°(R™).

3. We take P € Diff!"(R™), with principal symbol p,,. Give an asymptotic expansion as 7 — 400 of
the quantity

1
?(Pu-,—, ’u.,-)Lz(Rn).

p
Hint: one can consider at first the case P = a(x)r’ D>.
4. Compute 4, (n) in terms of x.

5. Given s € R, compute an asymptotic equivalent as 7 — 400 of the quantity % ||uTHiI

6. Assume there exists a neighborhood U of 0 in R™ and Cy, 9 > 0, such that

Re (Pu,u);s > Co |[u)|?msz, forallu e C2(U), 7 > 7. (1.51)

Prove that Re(pm(0,&,1)) > Co(|€]2 4+ 1)™/2 for all £ € R™.
7. Deduce that Re(p,,,(0,&,7)) > Co(|€]2 + 72)™/2 for all (¢,7) € R” x R}. Conclude.

We now wish to prove a converse of the Garding inequality for operators of the form (1.39).

8. Give an equivalent as 7 — +o00 of the quantity ((—A + 7)), UT>L2-

9. Let a,b € C*°(R"). Give an equivalent as 7 — 400 of the quantity
(-A+7%)"ta(z) D, b(x)DﬂuT)L2 .

Hint: one may consider at first the case a = b = 1, then the case a« = B = 0, before turning to the
general case.

10. Prove Proposition 1.3.17, that is, the converse of the Garding inequality for operators of the form:

k
P=A+) Bio(-A+7%)"'oB;, A, B;cDiff2(R").

i=1

Correction 1. 1. We have ||uT||2Lg(Rn) = N(7)? [ IX(v/T2)[?dz = N(1)?7~"/? x|z, =1 for N(1) =

-1
% Il -

2. We have Dju,; = N(7)1 (v/70;x(v/Tz) + it&;x(v/Tx)) €%, As a consequence, we have

(Dytr. )iy = VNP [ (VTR + 16N [ ()P,
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and hence, recalling the choice of N(7),

1 1
— D 2(Rn) — ; —— .
7 Dyt 2y 5”0(%)

Next, we have

(atty, ) oy = N()? / a(@) (V7o) P = N(r)2rn/? / a(y/v/7)\x(w) 2dy.

n n

Moreover, we have a(y//7) = a(0) + O(1/+/7) uniformly for y € supp(x), so that

(@t )2y = NP [ al(vroPde = NP2 [ (a0 +0 () ) WPy

a
R’Vl

=a(0)+ 0O (\;) .

. We first remark that the Leibnitz formula yields
D* (x(V72)e' ™) = x(vT2) D™ (e77%) 4 1o (2) = x(VT2) 7! e 4 o (2),

where all terms in the sum r,(z) contain at least one derivative on x(y/7z) and at most |a| — 1
derivative on e’7*¢. Hence this term can be written r,(z) = f,(v/72)e’™¢ and estimated roughly
as |f-(y)| < r1/2Flel=1 = 7lel=1/2 yniformly on R” since we have supp(f;) C supp(x). As a
consequence, we have

(@)D"t gy = N0 [ ) (6T E0eimE 1o 0)) ()7
= TlalfaN(T)Q/

Rn

a(@)|x(v/7a)[2dz + N(7)? / a(a) [, (Vro)x (V)

n

= rlelge <a(0) +0 (\%)) +lIxllzs /R a(y/V7) f-(y)x(y)dy

Using that |f,(y)| < 71/=1/2 uniformly on R™, this implies
= TB+|a\§aa(0) + O(Tﬂ+\a|—1/2)_

(a(x)TBDa“Tv “T)L2(Rﬂ)

Note then that if P = a(x)7?D®, then m = B + |a|, pm(z,£,7) = a(z)7¢* and this formula reads
(Pur, ur)p2wny = 7"pm(0,€,1)+O(r™1/2). By linearity, we thus obtain that for all P € Diff”*(R")
with principal symbol p,, = pp(z, &, 7),

1
Tfm(PuT,uT)an) = pm(0,€,1) + O(7/2).

. We have

icln) = [ arlw)e e = N(r) [ x(yro)e =0 0d
=23 [t 0y = S (o))

. As a consequence, we have

n 2 2 2\s| 5 2 N(r)? 2 2vs o [ 1 ?
@m)" furllgs = [ (nl” +77)°|a-(n)["dn = —; (" +72)°|x | —=(n—7&) )| dn.
T Rn T n \/’F
2 S
We now set ¢ = %(n — 7€) and remark that (|n|? 4+ 72)% = 728 (‘f + %‘ + 1) to obtain

N(1)? 2 ’
(o) urlfy, = T [ (\u} +1> R(OPC
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Recalling the value of N(7) = 7"/4 ||)<||Zz1 and using the dominated convergence theorem (note that
X € S(R™)), we finally deduce

1 2 1 1 ¢
— urllys = —5 77— §+7
T28 H3 ||X||i2 (27r)" R VT

2 S
+ 1) R(Q)1d¢

—rotoo —([€[7 +1)°

Ix ll ()" / R(OPdC = (I¢f? + 1),

after having used the Plancherel theorem. That is to say, [|u, || ;. ~ 75(|€|* +1)%/2.

. We now assume (1.51), and apply this inequality to v = wu, (which also depends on ), which
satisfies supp(u,) C U for 7 sufficiently large (we can alternatively assume that supp(x) C U).

Question 2 with s = 2 implies -7 Re(Pur,u:)r2rn) — Re(pn(0,&,1)) and Question 5 implies

— HuT||2H;n/2 — (J€]2 + 1)™/2. As a consequence, dividing (1.51) by 7 and letting 7 go to infinity

implies Re(p, (0,€,1)) > Co(|€]? 4+ 1)™/2. Since we can choose any ¢ € R™ in the definition of .,
this yields the sought result.

. We have Re(p,,(0,£,1)) > Co(|€]> + 1)™/2 for all £ € R™. Applying this inequality to &/7 for 7 > 0
instead of £, we obtain Re(p,,(0,£/7,1)) > Co(|¢/7|> +1)™/2. Multiplying this inequality by 7 and
using homogeneity of degree m of both sides, we finally obtain

Re(pm(0,€,7)) = 7" Re(pm (0,&/7, 1)) = 7" Co(I¢/7]* + 1)™/* = Co(I&]* + 7)™/,

for all (¢,7) € R" x R},

We have proved a converse of the Garding inequality for differential operators: if the operator is
positive, then its principal symbol has to be positive (in the proper sense). Note that the constant
C) is the same in the operator inequality and in the symbolic estimate.

. We have already computed in Question 5 (the computation was valid for all m € R)
(A +7%) urur) po = sl oo 7 2(E° +1) 7
. We first consider the case « = 8 = 0. Notice that we have
lau — a(0)ur |22 gy = N()? / Ja(z) — alO)P (7o) Pde
= NP [ Jalu/v) - al0) (o) Py,

Next recalling that |a(y/+/T) — a(0)] < C/+/T uniformly for y € supp(x), we obtain

2 2
ot = a(O)url ey < NP7 [ )Py = (1.52)
]Rn
As a consequence, we have
|((—A+T2)_ uT)L2 0) (( A+ 72 )~ uT,uT)L2|
<|(-a+ > e (0 - Due) ]+ 1((= 4 7) 7 a(e) — a(0))ur, BO)ur) ]

< lla(@)url| = (| (b(x) — b(O))uer +16(0) ((a(z) — a(0))ur, (A +7%) " ur) |
< Clur|l g2 [|(b(2) = b(0))ur | 2 + [6(0)] [|((alx) — ( Durll gz lurll g2 -

Using (1.52) together with Question 5 (yielding [[ur || ;2> ~ C772), we obtain that this quantity is
O(77271/2). Together with the previous question, we have obtained

(A +7) a(@)ur, b(@)ur) » ~ a(0)b(0)T2(Jg]* + 1)~
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To turn to the general case, we recall that we proved in Question 2 that D¢ (X(ﬁm)eim'f) =
x(VTz)rlelgdermE Lo (2) with 7 (z) = fr(/T2)ei™ ¢ with |f,(y)| < 7/*1=%/2 uniformly on R”.
Proceeding as in the case @« = = 0 to estimate all error terms, we deduce

(=2 +7) " a(@)Dur @) Duy) 1 ~ (a(0)7'le™ ) (B(0)71¢7) 7 2(Jg[2 4+ 1)
10. In particular, if |o| = |8| = 2, this reads

L (A + ) Ya(@) Dy b() DPuy ), — (a(0)E®) (BO)EP) (€ + 1)

T

If we take B, C' € Diff?, with principal symbols by(z, &, 7) and ¢y (, 7, ), this formula (together with
similar formulae for mononomials of the type ra(z)D;, 72a(x) and lower order terms) implies

% (=A+72) 7" Bus, Cuy) , = b2(0,€,1)c2(0,€,1)(J€]* + 1)~

We may now deduce from this asymptotic formula that if B € Difff with principal symbol by(z, &, 7),
we have

1 _ 1 "
—Z(Bo(—A+7'2) 1oBuT,uT)L :7_—2(( A+ 737 'Bu,, B Ur) ;s

= (b20,6,1)) (&> + 1)

As a consequence, for operators of the form 1.39 with principal symbol of the form (1.40):

p2(w7§7 )_ a2 T gu Z T§Z|2x+§;2 )

we have as for differential operators

1
ﬁ (Puau)LZ — p2(07£7 1)

To prove a converse of the Garding inequality for such operators, we may now proceed exactly as in
Question 7. Assume there exists a neighborhood U of 0 in R™ and Cy, 79 > 0, such that

Re (Pu,u) . > Col|ull3:, forallu e CX(U), T > 7.

Applying it to u = u, and letting 7 — +oo implies Re(p2(0,&,1)) > Co(|€]? + 1). This holds for all
¢ € R™. Homogeneity of both sides of degree two in (£, 7) implies Re(p2(0,&,7)) > Co(|€]? + ) for
all £ € R"™ and 7 > 0. This concludes the proof of the converse of the for operators of the form 1.39,
that is, of Proposition 1.3.17.

Note: One proves similarly a converse of the local Garding inequality of Theorem 1.3.26. The only
point to check is that for all p € ST(R™ x R™), we have T%,L (p(z, D, T)u,u) > = p(0,€,1), which follows
from the stationary phase lemma. & ref ?

Exercise 2 (Garding inequality with limited regularity coefficients). Let Q C R™ be an open set containing
0. We consider in this exercise operators of the form

n

Z z)D;D; +Za1 )yTD; + ag(x T+Zb’ )D; + bo(x)T + ¢(x),

with agj,‘qﬁ, ag € WH(Q) and bi, by, c € L>°(£2). We shall say that A E‘Diﬁ%‘,l,m, and write as(z, D, 7) =
doije1a5 (2)DiDyj+37 at(z)7D;+ap(z)7? and as(x,€,7) = doi o1 ag ()€€ +2 0 af(2)Téi+ag (x)7?
(note however that A ¢ Diff?, which would require C™ regularity of the coefficients).

35



1. Prove that for A € Difffy1 «, there exits C' > 0 such that for all 7 > 0 such that B(0,7) C Q, we
have

(Au,0) 2 = (@200, D, 7Y 0) gl < C (v ull s + 7 el ) Boll s

for any u € C°(B(0,r)),v € S(R™), 7 > 1.

2. Prove that if f € W'>°(Q), there is Cy > 0 such that for all u € C°(Q), || full 7 < Cy ||lull 52 and

[ full =1 < Cf ||lul[ ;z=1. Deduce that for A € Diff?1.. having all coefficients in W°(Q) (including
lower order terms), there is C'4 > 0 such that [|Aul| ;-1 < Cq [|lul| g, for all u € C2°(9).

3. We now consider an operator P of the form

k
P=A+Y Bio(-A+7%)7"oB; (1.53)
=1

(note the slight difference with (1.39) in which there is no B}), with A, B; € Diff3y1,, with real “prin-
cipal symbols” as(z, &, 7) and by ;(x, &, 7). Assume further that B; have all coefficients in W1 ().
Define py(xz,&,7) as in (1.40) and and assume that there is Cyp > 0 such that (1.41) holds (positive
symbol). Prove that there exist » > 0 and C, 7y > 0 so that we have

Re (Pu,u),» > C|lull3:, for allu € C2(B(0,r)), > 7.

Correction 2. & To be written (one day...)

Exercise 3 (warm up, part of the Exam of May, 2019). Let 2 C R™ be a bounded open set. Given
P € Diff"(Q), we write Pg = Z£P- and Py = Pgip . We denote by pg, resp. py, the principal symbol of
Pg, resp. Pr.

1. Prove that
2 2 2 00
[Pullz2(q) = IPrullL2 (o) + 1 Prullp2(q) + (Mu, u)r2q),  for all u € C(S),

where M is to be expressed in terms of Pr and P;. Give the order of M, and its principal symbol
in terms of pg,p;.

2. Prove that
||’PuHiZ(Q) = (Lu,u)r2(q), forall u € C(),

where L is to be expressed in terms of Pr and P;. Give the order of L, and its principal symbol in
terms of pr,pr.

Correction 3 (Correction of Exercise 3). 1. We have P = Pg + 1Py, where both Pr and Pr are for-
mally selfadjoint. As a consequence, for u € C°(§2) we have

|Pull72() = ((Pr+ iPr)u, (Pr + iPr)u) s
= HPRU”imz) + ||PIU||2L2(Q) + (iPru, Pru) 2 + (Pru, iPru) 12 g
= |Prulj2(0) + | Prulljz gy + (iPrPru,u) 2 + (=iPr Pru, u) 2
= [|Prull72 () + | Prull7zg0) + (i[Pr, Prlu,u) 2 gy

which is the sought formula with M = i[Pg, P;] € Diff™*"~1(Q) = Diff?™ (), with principal
symbol {pR,pI}.
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2. Using again selfadjointness of Pr and P;, we obtain

||Pu||2L?(Q) - ((Plz% + PI2 + i[PRa P]])U,U)LQ(Q) )

that is to say, L = P3 + P? + i[Pg, P;]. We have Pr € Diff"(Q2), P; € Diff*(Q2), hence P% €
Diff>™(Q2), P? € Diff>™(Q2). From preceding question, we know [Pg, P;] € Diff>”~!(£2) so this term
is lower order. The principal symbol of L in Diff>™ () is thus ph+ 3.

Exercise 4 (Elliptic and subelliptic estimates, part of the Exam of May, 2019). This exercice is not
independent from Exercise 3. In this exercise, we consider on (—1,1) C R the operator

P =D, +itV(z)+W(z), VeC>®(-1,1]), real-valued, W € C*([-1,1]),
with V, W bounded as well as all of their derivatives.

1. To which class does P belong? Compute the principal symbol p of P. Compute Re(p), Im(p), {p, p},
and {Re(p), Im(p)}.

2. Assume V(0) # 0. Prove that there are C,7,79 > 0 such that ||”Pu||iz(71,1) > C||uH§I1 for all
u € C®(—r,r) and 7 > 9.

3. Assume now that V(0) = 0 but V’(0) > 0. Prove that there are C,r, 79 > 0 such that HPuHiQ(_M) >
Cr ||uH2Lg for all u € C°(—r,r) and 7 > 79.
4. Assume again that V(0) = 0. Let x € C2°(—1,1) such that x = 1 in a neighborhood of zero. With

vr(z) = x(v/7x), give an equivalent of ||’UT||§/2(71,1) and H’PvTHiz(le) as 7 — +oo. Compare with
Question 3.

5. We consider the case W =0, V(0) =0 and V'(0) < 0.

(a) We set F(z) = [; V(s)ds and w,(z) = x(z)e™@) for x € C(~1,1). Compute Pw,, and
prove that one can choose x not identically vanishing so that ||Pw. || 2(-1,1) = Ce~7? for some
C,0>0andall 7> 1.

(b) Prove a polynomial (in terms of ) lower bound for [[w-||;2(_; 1)-
(c) Discuss the possibility of having subelliptic estimates in this case, that is to say, for a,s € R,

r, 79, C > 0, having ||Pu||ig(71_’1) > Cr“ ||“||2H$ for all u € C°(—r,r) and 7 > 79.

6. We now consider the case W =0, V(0) = 0 and V'(0) = 0. What is the best subelliptic estimate to
expect in this situation? One may consider the functions v, () = x(77z), for v to be determined.

7. Explain/discuss, in the case of the operator P, the link between subelliptic estimates and the prop-
erties of Re(p), Im(p), and {Re(p), Im(p)}.

Correction 4 (Correction of Exercise 4). 1. We have P € Diff} ((—1,1)) with principal symbol p(z, €)
&+ itV (x). As a consequence, we have Re(p)(z, &) = &, Im(p)(z, &) = 7V (z) and

{Re(p), Im(p) }(2, &) = 9 Re(p)d Im(p)(z, §) — I Re(p)d, Im(p)(x, &) = 7V (),
{p,p} = {Re(p) — iIm(p), Re(p) +iIm(p)} = i{Re(p),Im(p)} — i{Im(p), Re(p)}
= 2i{Re(p),Im(p)} = 2irV".

Note that this symbol is homogeneous of degree 1 with respect to (£, 7), which is consistent with the
result of Exercice 3.
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2.

5.

According to Exercice 3, we have ||Pu||iz(7171) = (Lu,u) 21,1y with L having for principal symbol

U(x,€) = Re(p)*(x,€) + Im(p)*(z,€) = € + 7V?(a).

The assumption V(0) # 0 implies that £(0,¢) = &2 + 72V2(0) > min{1, V2(0)}(¢2 + 72). The
Garding inequality (for differential operators) implies the existence of r € (0,1), C, 79 > 0 such that
H”PuHQLQ(_M) > C||ul|3: for all u € C°(—r,7) and T > 7.

According to Exercice 3, we have, for all v € C(-1,1),
2 2 2
||,Pu||L2(7171) = ||PRUHL2(71,1) + ”PIUHL2(7171) + (Mu,u)rz2(-1,1) = (Mu,u)r2(-1,1),

where M has principal symbol {Re(p),Im(p)}(x,&) = 7V’ (z). Since we assume here V'(0) > 0, there
are r € (—1,1) and C > 0 such that ||73u\|22(71)1) > C’THuHQLg for all w € C°(—r,r) and 7 > 1
(which is stronger than the sought statement).

Note first that the function v, “concentrates towards the frequency £ = 0 and the point z = 0” in
the limit 7 — +oo (when considering operators in Diff”"). That is, precisely at the point (z,&) =
(0,0) where we assume p(z,£) = 0. On the one hand, a change of variables yields H’U-,—Hiz(71 =

% ||X||2Lz(_1 1) On the other hand, we have

(Pur)(x) = (Dy i1V (2) + W (2))x(V72) = —iv/TX (V72) + itV (2)x (V1) + W (2)x (V7).
This implies
[Pvellfe(rg) = /R |—iv/TY (VTa) +irV (2)x (VTz) + W (2)x (VTa)|* do
= \%/R —ivTX' (y) +iTV(%)x(y) +W(2)x(y)

dy.
Recalling the assumption V(0) = 0, we write V(s) = sV'(0) + O(s?) uniformly on supp(x). This
yields

1PorlZac 1) = %/}R |~ivTX () + ivTyV (0)x(y) + O(Wx(w)|” dy

= \%/RT X' () — gV (O)x(w)* dy + O (\%) :

Hence, assuming y is such that co := [ [X'(y) — yV"(0)x(y)|* dy > 0 we have ||PUT||2LQ(_171) ~ %Co’r.

In any case, there are constants C, 7y > 0 such that we have ||PUT||2LQ(71’1) < C\%T for 7 > 79.

Recalling the norm of v;, we have obtained that ||771)T||2L2(_1 n ™~ clT||vT||2L2(_1 1) with ¢ =

o ||X||Z22(71,1) in the first case and H,PUTHQLZ(—l,l) <Crt ||U7—H2Lz(71’1) in any case. This proves that as
soon as V(0) = 0, one cannot hope to obtain a greater power of 7 than that obtained in Question 3.

(a) Since W =0, we have
Py (z) = (=ix/ (&) — itF'(@)x(2) + iV (2)x(2)) ") = —ix/ (@)™,

where we have used F/ = V. Writing again the Taylor expansion of V at zero and using
V(0) = 0, we obtain F(z) = [ V(s)ds = [ sV'(0) + O(s?)ds = V’(O)%2 + O(2?), uniformly
on [—1,1]. We now set dy := —V’(0) > 0 by assumption. There exists r € (0,1) such that
F(z) < —% for all x € (—r,r). We write

1
2 TF|2 TF(z
HP'LUTHL?(—M) = HX/G FHLQ(_LU = /1 ‘X/($)|2€2 F@) gy,
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Assuming that supp(x) C (—r,7), we thus deduce

dga?

1
2 —r
||7)wr||L2(71,1) < /1 X ()P

dr.

Now, if we choose further that x = 1 on (—r/2,7/2), we have supp(x’) C (=r,7) \ (—7/2,7/2)
dgr

77—4

and hence ﬁ% > d°4—rz on supp(x’). This finally implies HPwTHiz 1) S IX 221y €
with dg = —V’(O) > 0, which is the sought result.

(b) Since F(z) = [, V(s)ds = [; sV'(0) + O(s*)ds = —d0§ + O(23), we can also assume (up to
reducing r) that F( ) > —dp 42 on (—r,r). We then have
z2
/ e T d.
je|>r/2

1 2 r/2 2 2
HwTHiQ(flAl) 2/ |X(l‘) e d02“9 _/ e_TdOQ’” _/6_7—402
’ -1 —r/2 R

dga?
. —r2r _ 27
Now, recalling that [pe™ 7 2 do = /= and
r/2 2 o'} 2 e} 2 2
__dgz _ . doz _pdo(r/2)" _ _dgz?
/ e T2 _/eT2dx§2/eT4eT4dx
—r/2 /2 r/2

_ dgr? _ dga? 2 _ dgr?
<e 7T [ e der=4/——e T 15 .
R doT

Combining the above three identities, we have obtained ||w, ||i2(71)1) >1. dzo—”T for 7 sufficiently
large.

(¢) In the present setting, we have constructed for all » > 0 a 7—depending family of functions
wy € C°(—r,r) with the following properties: there are C,§, 79 > 0 (depending on r) such that

for all 7 > 7
C

2
T HwTHL2(—1,1) = W

In particular, this prevents the possibility of any subelliptic estimate to be true: applied to w.,

it would yield \%7”‘ < Ce~°7 for all 7 sufficiently large.

||Pw7||?:2(—1,1) < Ce?

6. We proceed as in Question 4, except that the approprlate scale of concentration is to be determined.
On the one hand, we have ||vT||iz(71’1) L Hx||L2 _1,1)- On the other hand, we have

(Pv.)(z) = (Dy + itV (2))x(T72) = =it (772) + itV (2)x (7).
This implies

[Pvr2a 1) = / P (1) = 7V (@)x () de = = / X ) = TV (L)) d.

Recalling the assumption V(0) = V/(0) = 0, we write V(s) = O(s?) uniformly on supp(x). This

implies the rough estimate
1 y |2 2
*,Y/]RQT%IX’(y)I2 +2 <TC ‘;‘ X(y)) dy

C _ _
< : (P74 7270) < 0 (727 4 120) HUTHQLQ(_LD.

IN

2
||PUT||L2(—1,1)

The growth of 727 4+ 72747 is minimal when 2y = 2 — 4, that is v = 1/3.

Hence, in this case, one cannot hope to have a better estimate than ||Pu||2LQ(_1 12 Cr?/3 ||u||2L2(_1 1

if V(0) = V'(0) =0
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7. Here, we interpret the results of the above questions in a more intrinsic way. The operator P is in
Diffi(—l, 1), with nontrivial real and imaginary parts (in particular, its principal symbol p(z,§) =
& + 47V (x) has nontrivial real and imaginary parts). We have proved:

e If Im(p)(0,0) # 0 (but Re(p)(0,0) = 0), then [[Pull>_; 1y = Cllullg: = 7[lul/;2. This is an
elliptic estimate: an operator of order one dominates an H! norm.

e If Re(p)(0,0) = Im(p)(0,0) = 0 but {Re(p),Im(p)}(0,0) > 0, then [Pufl 2y 1) = CVT[lull -
(this is Question 3). This is a subelliptic estimate with loss of half a derivative: an operator of
order one dominates essentially the Hi/ % porm. Moreover, this estimate is optimal, as shown
by Question 4.

e If Re(p)(0,0) = Im(p)(0,0) = 0 and {Re(p), Im(p)}(0,0) < 0, then there is no hope of obtaining
any subelliptic estimate (this is Question 5).

e In the (very degenerate) case: Re(p)(0,0) = Im(p)(0,0) = 0 and {Re(p),Im(p)}(0,0) = 0, the
best subelliptic estimate one can expect is [[Pufl2(_y ) = C7Y/3|ul ;2 (this is Question 6).
Such an estimate would be called a subelliptic estimate with loss of 2/3 derivatives: an operator
of order one dominates essentially the Hi/ ® norm.
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Chapter 2

Classical estimates and applications

This chapter is devoted to classical unique continuation results under a pseudoconvexity condition. These
results are stated here in the particular situation of second order operators with real principal symbol (in
which case the statement has a simpler geometric interpretation).

Quantitative estimates are derived in the case of elliptic operators, and applications are given to
eigenfunctions of Laplace-Beltrami operators, and observability properties for the heat equation.

As already mentioned, these results rely on a Carleman estimate, which we now state.

2.1 The Carleman estimate

Here, we recall that, P € Diff>(Q) (with principal symbol pa(z,€)) and ® € C=(%;R) being given, the
conjugated operator is Py = e”®Pe~"® € Diff?(Q) and its principal symbol is pg (2, €, 7) = pa(z, E4+id®(z))
(computed in Lemma 1.3.10 and Example 1.3.12). We write ps = Re(ps) + i Im(pa).

2.1.1 Carleman estimate under subellipticity condition

As we have seen in the Introduction in Section 1.2.5, our goal is to obtain estimates of the type of (1.27).
In this section, we prove a Carleman estimate (Theorem 2.1.1) under a symbolic condition usually called
“Hormander subellipticity condition” (namely (2.3)). Yet, this assumptions might seem not so natural at
first sight. The next sections link this condition to the geometry of the operator.

Theorem 2.1.1 (Local Carleman estimate). Let ) be an open subset of R™ and xq € 2. Let P € Diff?(Q)
be a (classical) differential operator with real-valued principal symbol ps and ® € C*°(Q; R).
Then, the following statements are equivalent:

1. There exist C,r,79 > 0 so that we have the following estimate
3 HeT(I)uHi2 +7 |‘eT<I>VuH2L2 <C ‘|6T¢Pu‘|iz , forallu e C(B(xg,7)), T > To; (2.1)

2. There exist C,r, 19 > 0 so that we have the following estimate

T[]} < C || Psv|32, for allv e CX(B(zo,r)), T > 70; (2.2)

3. There exist Cy,Cy > 0 such that for all ({,7) € R™ x R,

Gy

€+ 2 [(Repq>)2 + (Impq>)2] + % {Repe, Impg} > Cy <\§|2 + 72) ) (2.3)

where the symbols are taken at the point (xo,&,7).

Notice that M2 — 95 (2, &, d®(z)) (see Example 1.3.12) is smooth, so this is not a problem to divide

by 7 in (2.3), even when 7 — 0.
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Before proceeding to the proof of this result, several comments are in order. First, the statement (2.1)
is that useful for applications (to unique continuation in particular). The statement (2.2) is only a re-
formulation in terms of the conjugated operator, which belongs to Diffz, and is thus analyzable with the
tools developed in Section 1.3. The statement (2.3), as opposed to the previous ones, is concerned with a
“symbolic estimate”, concerning only the principal symbol of the conjugated operator. The interest of this
result is that it reduces the problem of proving a Carleman estimate to a checkable property on the princi-
pal symbol of the conjugated operator. The question of rephrasing the condition (2.3) in geometric terms
is addressed in Sections 2.1.2 and 2.2 below. The useful information in this theorem is (2.3) = (2.1).
However, that the converse is true indicates the limit of this classical Carleman approach. This point is
slightly more technical and we omit the proof and refer the reader to | , Section 28.2].

Exercise 3 in Section 1.4 presents the key computation in the proof of Carleman estimates.

Proof. The equivalence between (2.1) and (2.2) comes from the change of unknown v = e”®u. This yields
Pyv = ™ Pe~ "%y = ¢"® Pu. Moreover, we have Vu = V(e "%v) = ¢ 7% (Vv — 7oV ®) so that

7l + (|l Val[5, < 7 lol2e + 2(1VolZe + 270V @|2. < C lloll%
and thus (2.2) implies (2.1). Conversely, we have Vv = V(e"%u) = ¢™®(Vu + 7uV®) so that
Ioll7 = IV0ll3a + 72 Joll7e < 2[|e7®Vul[;, + 2|72 ruve|;, + 72 e u|,,
<C (7 e *ullze + e Vula)
and (2.1) implies (2.2).

We now want to prove that (2.3) implies (2.2). Before going further, let us notice that Lemma 1.3.10
only depends on the leading order of the operator P. More precisely, if P € Difo(Q) has the same principal
symbol as P, then P — P € Diff'(Q) and Py — Pp € Diff1(Q), i.e.

Py = Py + R, with R ¢ Diff!.

Henceforth, assuming the Carleman inequality (2.2) for Py,

- 2
7loll%; < C HP@UHL2 (2.4)
yields

2 2 2 2 2 2
ol < Cll(Pe = Rz < CllPevl + C|[Rol[L < C[Pavlz + D [[ol g

with Proposition 1.3.5. Then, for 7 large enough, we have 7 — D > 7/2, and the last term can then
be absorbed in the left hand-side, yielding the sought Carleman inequality (2.2) for Py, with different
constants C' and 9.

Since the operator P has real principal symbol py, we shall choose P = , which is selfadjoint
and has the same principal symbol ps. Note that if P = Z:l =1 a¥ (x)D;D; with a" = @’ real-valued

P+ pP*

(which is, modulo Diff*(Q), the general expression for P € Diff?(Q) with real-valued principal symbol, see
Example 1.38), then we have P = ZZ]‘=1 D;a% (z)D; modulo a (selfadjoint) first order operator. ~
We may thus focus on Py = ¢”®Pe™"® and prove (2.4). To this aim, we decompose the operator Pg

as
PCD = QR + iQIa (25>
with
Py + P Py — P
QR:7¢2 2 Q1:7¢2. 2
i

Note that both Qg and Q; are formally selfadjoint (Q% = Qr and QF = Qr), and, according to Proposi-
tion 1.3.9, we have Qr,Q € Diffz with principal symbols (see Example 1.3.12)
Po + Pa
QR<x7 5, T) = %(xv g? T) = Repq>(x, 5) T) = p?(xag) - 72p2($7 d@(I)%
_ DPs —Da

QI(xaguT) - T(xvfaT) = Impq>(x,£77') = QT@("E,f?d@(ZE))
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Moreover (this is a key point), the operator jjq>~ is a second order polynomial in (D, 7), such that Py=P
when 7 =0. If P = szzl D;a%(z)D;, then Pp = szzl(Di +i70;®)a™ (z)(D; + i70;®). This implies
that Py = P + 7M for some M € Diffi (Q), and, since P is chosen to be selfadjoint, this implies that

Py — P M — 7 M* ~ - M- M*
===t =1 2; =7Qr, with Q== € Diff}(®), (2.6)

Qr

i.e. 7 may be factorized in the skewadjoint part of the operator.
Using (2.5), the central computation is now as follows, for v € C°(Q),

|||, = (Pov, o), = (@n + Q0. (@n + Qo)
= (Qrv, Qrv) + (iQv,iQv) + (Qrv,iQv) + (iQrv, Qrv)
= |Qrvl7> + 1Qrvll72 — i (Qro Qrv,v) +i(Qr ° Qrv,0v)
= |Qrvl7> + 1Qroll72 + (iQr, Qilv,v) . (2.7)

Now, we have 2 kinds of terms

o the one with [|Qgvl|7. (and resp. [|Qrvl|7.) that corresponds to (Q%v,v) where Q% is of order 4
with principal symbol (Repg)? (resp. (Impg)?);

e the one with i[Qgr, Q] which is of order 2+ 2 — 1 = 3 and principal symbol {Repg,Impe} by
Proposition 1.3.8.

The first two operators have stronger order (4) but they can cancel and are therefore not sufficient to
obtain the “coercivity” estimate. The idea is thus to use the commutator where both qr and ¢; cancel.
However, to compare these terms, we need to bring them to the same order and “sacrifice” this main order
4. More precisely, let C; > 0 be as in Assumption (2.3) (that this is the right constant will appear in (2.9)
below). For 7 > C}, we have

1 _c? cl/?

> for all R"™.
ST SRy €

This implies (using again the Plancherel Theorem)

2

Qrv > Hcll/Z(—A-l-TQ)_l/QQRU‘
12

1 2
Qml: - |22

2
L2

>0 ((—A +72)7V2Q o, (A + T2)_1/2QR’U)
> C1 (Qr(—A +72)"'Qpru,v). (2.8)

The same estimate applies to Q7. Combining (2.7) with (2.8), we have now proved

11~ 112

. HquHL2 > (Lv,v);2, (2.9)
with

L=0C (QR(—A +7)7'Qr+ Qr(-A + 72)71621) + i [QR, %] :

But we have proved in (2.6) that Q; = 7Q; with Q; € Diffi(Q). This implies that [QR, %} € Diffi as
well. The operator L is thus precisely of the form of that in Proposition 1.3.14, is moreover selfadjoint,
and has principal symbol (in the sense of Proposition 1.3.14)

Gy

Impcb
2 2
W ((Rep@) + (Impg) ) + {Rep@, - } ,

43



which satisfies (2.3). Hence, the Garding inequality of Proposition 1.3.14 applies and yields the existence
of C, 9,7 > 0 such that

(Lv,v)e > Cllof|fy,  forall v € C*(B(xo,7)), 7> 70,

which, in view of (2.9), yields (2.4) and concludes the proof of the Carleman estimate (2.2).
O

Note that in (2.8), since Qg is only defined on €2, and since (—A +72)"tQgrv ¢ C°(£), the expression
Qr(—A + 72)71QRv is not well-defined. However, its pairing with the function v € C°(B(zo, 7)) is well
defined (e.g. as (XQRX(—A—ﬁ—Tz)’lQRv,v) with x € C*°(£2) such that x = 1 on a neighborhood of
B(zg,r), and x € C*(Q) with ¥ = 1 on a neighborhood of supp(x)).

Remark 2.1.2 (Lower order terms). As seen in the proof, an important feature of the Carleman esti-
mates (2.1) is its insensitivity with respect to lower order terms. More precisely, if (2.1) is satisfied for
an operator P, then it also holds for P’ := P+ Y"_, by(z)Dy, + c(z) as soon as by, c € L°°(Q). Indeed,
applying (2.1) for P yields

e ul} + 7 [l vul}, < ¢ i

e™® (P' - i bi(z) Dy, + c(x))u‘ L
k=1

<Ol Pl + Cllem* Vullp, + € fleul s

and the last two terms can be absorbed in the left handside for 7 large enough. Note in particular that
no regularity is required on the lower order terms when proceeding that way.

Remark 2.1.3. The quantitative subelliptic condition (2.3) can actually be replaced by the qualitative
assumption (writing K = {(£,7) € R* x RT|¢|2 + 72 = 1})

Im pg

p@(IO’Ea’r) = 07 - {R6P<1>7 } (.’Eo,f,’r) >0 for all (577—) € K.

This is proved using Lemma 2.1.8 below, as in the proof of Proposition 2.1.7. This will however not be
used here.

Remark 2.1.4 (Estimate with loss of half a derivative). Estimates like the Carleman estimate (2.2) are
often called subelliptic estimates. Indeed, if the operator Pg were elliptic in the (£, 7) variables, we would
have an estimate from below with the norm H? instead of H!. But here the principal symbol of P,
namely po(x,& + i7d®) may vanish (with (£, 7) # 0), even if ps is elliptic.

Take for instance the Laplace operator described in Example 1.3.11. The principal symbol of pg is
|€]2 — 72|V ®|? + 2i7¢ - V. Tt cancels if we take ¢ | V® and 72 = [£]2/|V®|?, which is always possible if
n > 2. This actually happens on a conic set.

Note that it can seem surprising since for fixed 7, the operator Ps is elliptic in the £ variable. We
could expect an inequality of the form

[ull gz < Cr || Pou]| 2 -

It is indeed possible if P is elliptic, but the constant C; will then blow-up as 7'/2. This expresses a loss of

“half a derivative” w.r.t. elliptic estimates. It has the same homogeneity as the H! estimate in the general
case.

2.1.2 Carleman estimate for pseudoconvex functions

We now reduce the quantitative symbolic Assumption (2.3) of the Carleman estimate to a qualitative
convexity condition on the weight function ® (with respect to the symbol ps).

Definition 2.1.5 (Pseudoconvexity for functions). Let Q 3 ¢ be an open set, P € Diff*(Q) be a (classical)
differential operator with real-valued principal symbol py and & € C*°(Q) real-valued.
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We say that the function ® is pseudoconvex with respect to P at x if it satisfies

{an {p27 (I)}} (ang) > 07 if PQ(anf) =0 and f 7& Oa (210)
%{%717@}(‘%07577-) > 07 ifp@(x()?fvT) =0and 7 > 07 (211)

where pq>($, 57 T) = pQ(Iv § + ZTd(I)(I))

Note that in some sense, we could say that for real operators, the first line is the limit of the second
line as 7 tends to 0, as shows Lemma 2.1.6:

Lemma 2.1.6. Let p be a real-valued smooth function on Q@ x R™. Then, we have lir%%{p@,p@}(x, &T) =
T
2{p{p, 2}} (z,€) for all (x,§) € 2 x R™.

We now state the equivalence between Definition 2.1.5 and the Hérmander subellipticity condition (2.3)
(itself equivalent to the Carleman estimate (2.1)).

Proposition 2.1.7. Let Q 3> xg be an open set, P € DiﬂQ(Q) with real-valued principal symbol py and
O € C™ real-valued. If ® is pseudoconvex with respect to P at xg, then the subellipticity condition (2.3)
1s satisfied at .

And hence, if @ is a pseudoconvex function in the sense of Definition 2.1.5, the Carleman estimate of
Theorem 2.1.1 holds with weight ®.

The proof uses the following (elementary but very useful) lemma (in the simpler case h = 0; the general
case will be used later on).

Lemma 2.1.8. Let K be a compact topological space and f, g, h three continuous real-valued functions on
K. Assume that f > 0 on K, and g > 0 on {f = 0}. Then, there exists Ag,C > 0 such that for all
A > Ay, we hcweg—i—Af—%hZC on K.

We prove the proposition from the two lemmata and then prove the lemmata.

Proof of Proposition 2.1.7. Note first that since {f, f} =0 and {f,g} = —{g, f} for any f and g, we have

1 1 . .
;{%,pé} = ;{Rep¢—21mpq>,Repq>+ZImpq>}
1 1
= ;{Repqv,lmp@} - ;{Impé,Repé}
2
= ;{Repq),hnp@}.

Moreover, we recall that % = 2pa(z0,&,dD(x)) is smooth (note that this could also be seen as a
consequence of the fact that p is real and pg = p on the set {T = 0}, so we can factorize Im pg by Taylor
expansion).

We notice that all terms in (2.3) are homogeneous in (£,7) of order 2 and continuous thanks to the
previous remark. Therefore, it is enough to prove (2.3) on the set K = {(¢,7),[¢*+ 72 =1;7 > 0}.
On this compact set, the result is a consequence of Lemma 2.1.8 with f = (Reps)? + (Impg)?, g =
2{Reps, Imf 21 and h = 0 (the function h will be useful for another application in the next chapter).

Lemma 2.1.6 then proves that the first assumption in Definition 2.1.5 is the limit of the second one on
the set {7 = 0}. Hence, we have g > 0 on {f = 0} on the whole K, up to the set {7 =0}N{|¢{|*+72 = 1}.

Lemma 2.1.8 then concludes the proof of the subellipticity condition (2.3). O

Proof of Lemma 2.1.6. We first notice that for 7 = 0, {ps, ps} = {P, p} so since p is real, {Ps,ps} = 0 for
7 = 0. The definition of the derivative in 7 = 0 then yields

1 9
m—{Ps,pe} = 5-{Pz.pe}| . (2.12)

li
T—0 =0

Also, we have 0-({Ps, po}) = {0-DPs,pa} + {Ps, 0rpa}.
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But since p is real, pg = p(x, & — itd®(z)), so that

87-])»:1)(33,5, T) =1id® - a’;:p(xaf + Zqu)) = i{p{)a (I)}(ac,f,T)
8Tp7<1> = —id® - aﬁp(xa§ - ”—dq)) = _i{ﬁv (I)}(I,f,T).

So, we get 0 ({P3,pa}) = —i{{Pa, @}, pa} + i{Ds, {pe, P}}. When specified for 7 = 0, we obtain

SeTE el = illp. @)} + il . 91 = 2ifp, (. B}

Together with (2.12), this concludes the proof of the lemma. O

Proof of Lemma 2.1.8. The set N = {f = 0} N K is compact. Since g is continuous, its minimum on the
set N is reached. So, we have g > miny g = C7 > 0 on N. Since g is continuous and N compact, there
exists an open neighborhood V of N so that g > C1/2 on V. Now, K \ V is closed in K and therefore
compact. So, f reaches its minimum on K \ V. But since (K \ V)N N =0, we have f # 0 on K \ V and
hence f > 0 on that set, that is Co = ming\y f > 0. Define now C3 = ming\y g and Cy = maxg |h|.

We are in the following situation, for some A still to be chosen:

e onV, we have g+ Af — Lh > & — 10y,
e on K\ V, we have g+ Af — Lh > Cs + ACy — 5 C4.

So, we need to choose A so that it leads to positive lower bound. If we want the final estimate with
C = (4 /4, for instance, we need

4C C
A> =2 and ACo+A(C3— =) —Cy>0.
Ch 4
Since Cy > 0, the last case is fulfilled if A is large enough since the polynomial of order 2 converges to +oo
as A goes to co. O

A very important drawback to Definition 2.1.5 is that, it is not only dependent on the level set of the
functions, but also on the “convexity with respect to the level sets”. This is not a geometric assumption (in
general, g”(x¢) is a geometric quantity only if ¢’(xg) = 0). We now need to link this definition to geometric
quantities, so that to be able to formulate a result with, at least, a geometric assumption (that is invariant
by diffeomorphisms). Before that, let us stress an important stability feature of the pseudoconvexity
assumption of Definition 2.1.5.

2.1.3 Stability of the pseudoconvexity assumption

We prove that the pseudoconvexity condition of Definition 2.1.5 is stable by small C? perturbations of
the weight function ®. This will be very useful for perturbing the surface across which to prove unique
continuation.

Proposition 2.1.9 (Stability and Geometric convexification). Let Q > g such that Q is compact. Assume
P € Diff? (Q) has real-valued principal symbol, and ® € C™ is pseudoconver with respect to P at xq¢ (in
the sense of Definition 2.1.5). Then there exists g > 0 so that any ®. € C?(Q) with |® — Pellc2@) < €o
s pseudoconvex with respect to P at xg.

Note that modifying ® allows to slightly change its level sets. For instance, taking ®.(x) = ®(x) —
glx — z0|? (which shall be very useful for applications to unique continuation), the level set {®. = 0} is
slightly bended (except at xg) into the set {® > 0} (where u will be assumed to be zero). This slight
change will be crucial for the proof of the unique continuation theorem. & faire un dessin
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Proof. First, we notice that we can prove as in the proof of Proposition 2.1.7 (still using Lemma 2.1.8
combined with Lemma 2.1.6 for the limit when 7 = 0) that Definition 2.1.5 implies (and is actually
equivalent to) the existence of an inequality of the form

e (z0, &, 7)|°

co(§, 1)+ C1 P+ 2

> Ca(J€* +7°),
uniformly for (¢, 7) with |¢|> + 72 =1, 7 > 0 (see Lemma 2.1.6), where

C<I>(£a7_) = %{%7])@}(‘%075’7—)7 for 7 >0 and C@(f,O) = 2{]72, {p27¢}}(‘r07§)

We then remark that all quantities in the above estimate only involve derivatives of ® of order at most
2 (as a consequence of Lemma 2.1.6) at the point xzg. It is therefore stable by the addition of a function
small for the C? norm around xo. O

2.2 Strongly pseudoconvex surfaces

Until this point, we have proved a Carleman estimate with weight ® provided ® satisfies a (weird?)
pseudoconvexity condition (see Definition 2.1.5). The main purpose of this section is to provide a geometric
characterization of surfaces S for which we can find a function ® having S as a level set and being
appropriate for the Carleman estimate (that is, satisfies Definition 2.1.5).

Definition 2.2.1 (Usual pseudoconvexity for surfaces). Let Q 3 z be an open set, P € Diff>(Q2) with
real-valued principal symbol py and ¥ € C°°() real-valued. We say that the oriented hypersurface
S ={¥ =V(xg)} > zo is strongly pseudoconvex with respect to P at zg if

{p2, {p2, ¥} } (z0,) >0, if pa(x0,&) = {p2, ¥}(20,&) = 0 and § # 0; (2.13)
%{WJ?\I/}@O»&T) > 07 ifp‘I/(x07§7T) = {p‘II7 \Ij}(x07€77—) =0and 7> 07 (214)

where py (2,£,7) = pa(x, & + itd¥(z)).

Note that the definition seems to depend on the defining function ¥ for the surface S, and not only
on the oriented hypersurface S itself. Lemma 2.2.2 shows this is not the case, and hence justifies the
definition.

Lemma 2.2.2. Assume S = {¥; = ¥1(xg)} = {Vs = Us(xg)} with d¥;(zo) #0, j =1,2 and d¥s(zo) =
AdVq(zg) for some XA > 0 (same orientation). Then ¥y satisfies (2.13) if and only if Vs satisfies (2.13),
and ¥y satisfies (2.14) if and only if Uy satisfies (2.14).

Before proving Lemma 2.2.2, we need the following two lemmata.
Lemma 2.2.3. Let Q@ C R”, p € C°(2 x R") real-valued, and ¥ € C*°(R). For all (x,£) € Q@ x R”
and T > 0, we have
1. 2 . ;
— (P pu} (0, 6,7) = = T Oep(a, € — i7dW () - Dup(a, € + iV (1))
+ 2Hess(¥)(x) [Oep(z, € — itd¥(x)); Oep(x, & + iTd¥(x))],
Lemma 2.2.4. Condition (2.14) (for all 7 > 0) is equivalent to Condition (2.14) for T = 1, that is, for
all £ e R,
1 . .
;{p2(x7£ - quj)apZ(xv 5 + Zd\I/)}(.’E = 2o, f) > 07
if p2(w0, & +1d¥(x0)) = {p2, ¥} (20, & + id¥(z0)) = 0. (2.15)

This is more intrinsic reformulation of the condition which removes the unnecessary dependence with
respect to the parameter 7. Note however that the 7 depending version of the assumption is useful in
applications to Carleman estimates.
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Proof of Lemma 2.2.4. We write p instead of ps for simplicity. We get rid of the parameter 7 > 0 by
homogeneity. Namely, we have, for 7 > 0,
pu(w0,&,7) = p(wo, § + iTd¥(z0)) = T2p(w0, /7 + id¥(x0))
= 72py(w0,€/7,1),
{pw, W}(z0,&,7) = Ocp(o, £ + iTd¥(z0)) - 0 W(w0) = TOep(20, /T + id¥ (x0)) - 02 ¥ (x0)
= 7{pw, ¥}(z0,¢/7, 1),

(77 o (0, €7) = 2 m [Oep, /7 — ¥ () - Dupl, €7+ id ()]
+ 272 Hess(W) () [0ep(x, &/T — id ¥ (x)); Oep(z, /T + id ¥ ()]

7_2
= — {pw. put(z0,&/7, 1),

after having used Lemma 2.2.3. As a consequence, Condition (2.14) for all £ € R™ and all 7 > 0 is
equivalent to Condition (2.15) for all £ € R™. O

Proof of Lemma 2.2.5. This is the following computation

P pu} (0,6, 7) = <= 0ep(0,€ — irdW(w0) - Duplo, € + imdW (o))
+ Hess() () [06p(0, € — ird¥(x0)); Oep(, € + ird¥(zy))]
- % D(T0, & — iTd¥ (20)) - Ocp(xo, § + iT7d¥ (z0))
+ Hess() (20) [06p(0, € — ¥ (x0)); Depl0, € + ira¥(zo))]
_2 Im [Oep(xo, & — iT7d¥(x0)) - Oup(0, & + iTd U (z0))]

T

+ 2 Hess(¥)(z0) [O¢p(@o, § — iTd¥(20)); Ogp(wo, € + 17d ¥ (20))] ,
where both equalities use the fact that p is a real-valued symbol (and ¥ a real-valued function). O

Proof of Lemma 2.2.2. Let us first proof that under these assumptions, we may write Uy(z) = p(z)¥q(x)
for x in a neighborhood of xg, with u(xg) > 0. The statement of the lemma will be proved in a second
place.

First assume to simplify notations that zo = 0. Since d¥;(0) # 0, there is k € {1,--- ,n} such that
02, ¥1(0) # 0. Assume e.g. k = n. The implicit function theorem implies that we may write locally
S = {(z',z,) € R x Rz, = f1(a')}, with f1(0) = 0 (since 0 € S). We perform the following
local change of variables: x(2/,2,) = (', 2, — fi(2’)), which is a local diffeomorphism near 0, such that
x(S) = {(2/,0),2" € R""'} locally. Denoting ¥; = ¥, o x~', j = 1,2, and remarking that ¥;(y) = 0 iff
X" (y) € S, we have locally

{z, =0} = x(5) = {¥ = 0} = {¥, = 0}.

This, together with the assumption of the lemma, implies in particular that d\i/j(()) = \jdx, with \; #

0,A2/A\1 = A > 0. The Taylor formula together with the fact that W;(z’,0) = 0 writes ¥;(2/,z,) =

zn G (2, xy), with G;(2, zp,) = fol Ox, V(2 tx,)dt. In particular, we have G;(0,0) = d,, ¥;(0,0) = \; #

0. By continuity, we have G;(2’,z,) # 0 in a whole neighborhood of zero, and, in this neighborhood,
A2

we have Wy = g—fﬁll, with g—?(()) = 52 = A > 0. Coming back to the original variables yields Vs (z) =

w(z)¥q(z), p(z) = g—f o X, for z in a neighborhood of 0, with (0) > 0.

We are now in position to prove the main statement of the lemma. We write p instead of py for short.
With Ws(x) = pu(z)Py(z), we have

{p’ \112}(330757 T) = M(-’ﬂo){p, \1/1}(.’130,§,T) + \Ifl(l‘o){p, M}(.’Eo,f,T) = /J(l‘o){p, \Ill}(x07§7 T)7

since ¥y (o) = 0. Also, using again ¥;(xo) = 0, we have

{p: {p, Wa}} (20, 7) = p(zo){p, {p, W1} } (w0, &, 7) + 2{p, W1} (20, &, T){p, 1} (w0, &, 7).
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From these two lines and the fact that u(xg) > 0, we deduce that ¥y satisfies (2.13) if and only if Ws
satisfies (2.13).

We now check for Condition (2.14) for 7 = 1, that is Condition (2.15) (which is sufficient by Lemma 2.2.4).
With o(x) = pu(z)Py(z) and ¥y (zg) = 0, we have d¥q(xo) = p(xo)d¥1 (o) together with

(0, & + 1dUs(zg)) = p(xo, & + ip(zo)d¥q(x0)),
{p, Va} (w0, € + idVa(x0)) = pu(wo){p, Y1 }H(zo, & + ip(z0)dV¥1(z0)).

Finally using Lemma 2.2.3, we have

P, o Y0, €.1) = 2T [0ep(o, € — W (w0)) - Daplo, € + i (w0))]
+ 2 HeSS(\IIQ)(LU()) [agp(wo, f - id\Ifg(x())); 85]?(%0,5 + Zd\:[lg(l'()))] .

We compute
Hess(V2) = ¥y Hess(u) + 20p ® 0¥y + pHess(¥q),

and hence
Hess(Us) (o) = 20u(xo) ® 0V (xg) + p(zo) Hess(¥1)(x0),

& & O

Remark that Definition 2.2.1 looks very similar to Definition 2.1.5. It is just slightly weaker because
the positivity condition is assumed only under the additional conditions {ps, ®} = 0 and {pe, P} = 0. In
particular, the level sets of a pseudoconvex functions are pseudoconvex oriented surfaces. This is however
not useful since Definition 2.1.5 is not geometric (but rather linked to Carleman estimates).

The importance of Definition 2.2.1 is twofold:

e It is a purely geometric definition: this comes from Lemma 2.2.2 and the fact that Conditions (2.13)-
(2.14) are invariant by diffeomorphisms & prove that the Poisson bracket is invariant by
diffeomorphism: discuss action of a diffeomorphism on symbols/differential operators

e Once V¥ satisfies this geometric condition, one can produce a function ® having the same levelsets
(hence keeping the geometry unchanged), and that satisfies the stronger pseudoconvexity condition
of Definition 2.1.5. This is the goal of the next section.

Note that, once again, Condition (2.13) (on the real domain) is the limit as 7 — 0% of Condition 2.14
(on the complex domain). This follows both from Lemma 2.1.6 and the fact that

{pw, U} (z,&,7) = O¢ (p(x, € + imd ¥ (x)) - 8,V (2) = (0ep) (2, € + iTd ¥ (x)) - 0,V ()
= {p2, U}(x, & +iTd¥(x)) — {p2, ¥}(x,&), asT—0F. (2.16)

2.2.1 (Analytic) convexification

Proposition 2.2.5 (Analytic convexification). Let Q > xq be an open set, P € Diff*(Q) with real-valued
principal symbol pa and U € C*°(Q) real-valued. Assume the oriented hypersurface S = {¥ = W(xy)} is
strongly pseudoconvex with respect to P at xo (Definition 2.2.1). Then there exists Ao > 0 such that for
all X > \g, the function ® = e ¥ is pseudoconvexr with respect to P at xo (Definition 2.1.5).

Hence, the Carleman estimate of Theorem 2.1.1 holds with weight ®.

Note that the geometry of the level-sets of ® and ¥ are actually the same: only the values of the
level sets of ® are stretched. Here, for any strongly pseudoconvex oriented surface S = {¢p = ¥(zo)}
(which will be the relevant geometric condition for the unique continuation result under consideration),
this proposition produces an admissible Carleman weight (that is, a pseudoconvex function) ® having
exactly the same geometric properties.

In order to simplify the notation for the proof, we recall that x( is fixed and remark that changing the
function ¥ by a constant does not change the assumption. We may thus assume that

U(xg) =0, and hence ®(xg)=1 and dP(xg)= Ad¥(xg). (2.17)
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We also denote

C‘P(§1 T) = %{W?p‘y}(x07§7 T)7 for7 >0 and C‘I/(§>O) = 2{p2a {p27 ‘1/}}(1'075),

with a similar definition for ¢¢ (&, 7). According to Lemma 2.1.6, cg (&, 7) and cg (€, 7) are continuous on
the whole R™ x R*. The proof of Proposition 2.2.5 is then based on the following computation.

Lemma 2.2.6. Assume ® = e*Y. For all (¢,7) € R x RT and all A > 0, we have

ca(€,7) = Aew (&A1) + 202 [{pw, W} (zo, &, AT)]°.

That is this additional term that comes from the convexification that will allow to get extra positivity
when {pg, ¥} # 0. The positivity when {pg, U} # 0 being ensured by the assumptions on V.
We first prove the proposition from the lemma and then prove the lemma.

Proof of Proposition 2.2.5 from Lemma 2.2.6. Using Lemma 2.1.8 (combined with Lemma 2.1.6 and (2.16)
in the limit 7 — 0%), Properties (2.13)-(2.14) imply the existence of C1,Cy > 0 so that

Ipw (20, &, 7)[?

= > Co(|€)? + 72).

C‘I‘(&T) +Ch |{p\117 \Ij}(x07£’7)|2 +Ch

for any 7 > 0, [£|? + 72 = 1 (note that this takes into account the limit 7 — 0F). Replacing 7 by At for
A > 1 and using homogeneity, this can be reformulated as

(20, &, M)

cw(€A7) + O [{pw, U} (x0, €, A7)|” + C) HEESNE

> Co(|€)* 4+ N2712). (2.18)

for any (¢,7) # (0,0) with 7 > 0.
Moreover, using Lemma 2.2.6 and noticing (see (2.17)) that

pw(w0,&,AT) = pa(0,& + iATd¥(20)) = p2(x0,§ + i7dP(20)) = pa (w0, &, 7),

we obtain
|p¢($07£77)|2 2 |p<1>(x07£77-)|2
co(§,7) + Cl)\w = Aew (& A7) + 2)° Hpw, V}(zo,&, AT)|" + C1A €2+ 2
& A7)
- <Cw(£,/\7) + 20 {pe. W an, € A" + € LU D) ) .

Now taking A > max{C}/2,1} and using (2.18) yields

2
cale,7) + PRSI (mg,m + Oy [, W (0, €, A7) 2 4+ €

‘p\I/ (1'0, fa )\T)|2
G

€12 + A272
> CoM([€17 + A272) = CoA(€)? + 72).

When recalling the definition of cg, this readily implies (2.11), and also (2.10) in the limit 7 — 0% (with
Lemma 2.1.6). This concludes the proof that ® is pseudoconvex for P at x in the sense of Definition 2.1.5.
O

It only remains to prove Lemma 2.2.6.

Proof of Lemma 2.2.6. We compute
9;® = X0, e, 9, ® = N0, 1 Pt + N2 (9, 1) (0, )Y,
which we write in a shorter way as

d® = A\e*Vd¥, Hess(®)(£, &) = AHess(0) (& )erY + N2 (€ - 0, W) (€ - 0, W)e Y.

50



Taken at the point zg, and recalling (2.17), this implies
d‘I’(l‘o) = )\d\I/(JL‘Q),
Hess(®) (20) (€, €) = AHess(¥) (20) (6 ) + N (€ - 0, (w0)) (€ - 9, ¥ (0)).

Using Lemma 2.2.3, we now obtain (we drop the fact that ¥ and the different derivatives of ¥ are taken
at )

ca6r) = {PEpa}no € 7)

= % Im [Oep(wo, & — iTAAY) - (Oup(20, & + iTAID))]
+2AHess(0) [0gp(z0, & — iTAAY); Oep(xo, & + iTAIY)]
+2X2 (Oep(z0, & — iTAAY) - 0, V) (Oep(z0, € + iTAAY) - 0, P)

= Aew(E A7) 4 202 [{p, U} (mo, & + iTAdW)|?

= Ay (& A7) + 28 {pw, U} (w0, &, A7),

proving the lemma. O

2.2.2 Reducing the strong pseudoconvexity assumption to the condition on
the real space
In the particular case of differential operators of order two, with real principal symbol, an additional

simplification occurs. More precisely, Condition (2.13) on the real space implies Condition (2.14) in the
complex space. This is a very particular situation.

Proposition 2.2.7. Let Q) 5 xg be an open set, P € Diff2(Q) with real-valued principal symbol ps and
U e C*(Q) real-valued. Assume that the oriented surface S = {V = U (xq)} satisfies Condition (2.13) at
xg. Then S = {U = W(xo)} is strongly pseudoconvexr with respect to P at xg (i.e. both conditions (2.13)
and (2.14) are satisfied).

This proposition states that in the case of real symbols of order two, we can get rid of Condition (2.14)
on the complex domain (this is no longer the case if P is not of order two, or if its principal symbol is
not real). Therefore the only remaining geometric assumption for the unique continuation theorem (to be
stated in the next section) is (2.13). Its geometric content is commented in Section 2.3.2 below.

We split the proof of Proposition 2.2.7 into two lemmata, concerned with the non-characteristic case
(p2(zg,d¥(x0)) # 0) and the characteristic case (pa(zg,d¥(zg)) = 0), respectively.

Lemma 2.2.8. Assume py is a real symbol of order two near xqg, and V is such that ps(xg, d¥(xo)) # 0.
Then, for any £ € R™ we have

p\I/(:CO7£77) = {p\lfa \II}(‘TOag) =0 = 7=0. (219)
In this case, Assumption (2.14) is thus empty.

Lemma 2.2.9. Assume py is a real symbol of order two near xqg, and U is such that ps(xg, d¥(xg)) = 0.
Assume also (2.13) for all £ € R™\ {0}. Then we also have (2.14).

Both proofs of Lemmata 2.2.8 and 2.2.9 rely on the fact that for fixed £ € R™,
f(2) = pa(w0, § + 2dW(z0)) = pa(0, &) + 2°pa(wo, d¥(20)) + 22P2 (20, &, d¥(z0)),

is a second order polynomial in the variable z, with real coefficients. Moreover, the assumption of (2.19)
(resp. of (2.14)) implies that

fr) = pa(xo, &+ i7d¥(x0)) = pw(x0,£,7) =0 and
J'(i1) = Oepa(wo, € +iTd¥(x0)) - 0,V (20) = {p2, ¥} (20, & + i7d¥(20)) = {pw, ¥}(z0,&) =0,

that is to say, z = it (7 € RT) is a double root of the polynomial f.
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Proof of Lemma 2.2.8. Since the coefficient in front of 2%, namely pa (o, d¥(z0)) is non-zero, the polyno-
mial f has two complex roots which are either both in R, or complex conjugate. That z =it (7 € R") is
a double root of the polynomial f implies 7 = 0. O

The proof of Lemma 2.2.9 relies on tedious computations, that are collected in Section 2.2.3 below.

Proof of Lemma 2.2.9. Using that pa(xg,d¥(zg)) = 0 together with Lemma 2.2.11, we obtain that

f(2) = pa(o, &) + 2{p2, ¥} (0, ).

The fact that f has a double root (at i7) implies that actually, f is the zero polynomial, that is pa(zg,§) =
{p2, ¥}(xo,&) = 0. Hence, Assumption (2.13) taken at the point £ implies that either {ps, {p2, ¥}} (x0,&) >
0 or £ = 0. Moreover, the assumption ps(xg, d¥(zg)) = 0 also yields that

{pg, \IJ}(.I(), d\l’(xo)) = 2]32(3;0, d\If(xo), d\I/(xo)) = 2p2(a:0, d\IJ(l‘o)) =0.
Hence, Assumption (2.13) taken at the point & = d¥(x) implies {p2, {p2, ¥}} (zo, d¥(z0)) > 0. Finally,

according to Lemma 2.2.12 we have

(P pu} (20,67 = 2 {2, {02 W (20, €) + 272 {2, {2, U} (00,40 (0)),

and we have just proved that the first term in the right hand-side is nonnegative (even positive if £ # 0)
and the second term is positive, implying

1
P {pw,pv} (z9,&,7) >0 for 7 > 0.

O

Remark 2.2.10. A simpler proof, could be made if we assume that we are in some coordinates so that
U = 1. Actually, this is not a loss of generality since we could prove (but we did not do it yet) that the
assumptions and conclusions of Proposition 2.2.7 are invariant by change of coordinates and of defining
function for the surface. In that case, we can check that actually f can never be identically zero. Indeed,
if it happens, we have 0 = f(s) = py = p2(x0, & + se1) and Jg,p = 0. It gives

This is impossible for £ # 0 since we have p(z,£) = {p, U} = 0 in the considered points. It contradict the
first assumption.
Note that the cancellation of {p, {p, ¥}} under these assumptions is specific to the chosen coordinates.

2.2.3 Computations for real symbols of order 2

This section contains many tedious computations that are used only in the previous section, where we
remove the condition on the complex domain. These computations may/should be skipped at first (and
second) reading. They all heavily rely on the assumption that the symbol p(z, £) be real and homogeneous
of degree 2, using the language of quadratic forms. We start with the following properties.

Lemma 2.2.11. Let p(z,&) = Zlgk,lgn ak'(z)&x&r be a homogeneous symbol of order 2, with real-valued

coefficients. Denote by p(x,&,n) its polar form, namely p(z,&,n) =3, wﬁkm. Then, we have
{p, ¥}(z,&) = 2p(x, £, d¥(2)) (2.20)

pu(z,&,7) = p(,€) — 7°p(x, d¥(2)) + it{p, ¥}(z, ) (2.21)

{pw, U}(z,& 7) = 2p(2, &, d¥(2)) + 2iTp(w, d¥(2)). (2.22)

Moreover, assume f only depends on x, then

which, in particular, does not depend on &.
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Recall that p(z,§) = p(z, &, §) and p(z,§ +n) = p(=,§) + 2p(, &, 1) + p(x,n) for §;n € C™.

Proof. First, by linearity, it is enough to prove (2.20) for p(z, §) = a(x)&k& and p(x, &, n) = a(;) (& + &)
This implies

{p, V}(z,§) = 0c(a(2)6r&r) - 0¥ (z) = a(x) [ (OY) + &(Ok V)] = 2p(x, £, d¥(x)), (2.24)

which proves (2.20). Second, expanding the bilinear form, we have

pu(@,€,7) = p(z, & +i7d¥(x)) = p(x, §) — 77p(x, d¥ (2)) + 2iTp(z, £, ¥ ().
Recalling (2.20), this proves (2.21). Third, we have

{pw, U} (z,&,7) = O (p(, & + i7d D)) - 9, ¥ = (Oep)(z, & +iTdV) - 0,V = {p, V}(z,{ + ird¥)
Using (2.20), we obtain
{pw, ¥}(x,&,7) = 2p(x, & +iTd¥,d¥) = 2p(x, £, dV) + 2itp(x, dV, dV) = 2p(x, &, d¥) 4 2iTp(z, d¥),

which yields (2.22). Finally, writing again p(x, &) = a(x)&x& and recalling (2.24), we obtain

{£{p. 3} = {f,a() [&:(01¥) + GO V)]} = —a(x) [(B))(OY) + (8f) (V)]
= —2p(z, df,dV) = —{p, f}(z,dP),

which proves (2.23). O

Lemma 2.2.12. Let p be a real-valued symbol being homogeneous of degree 2. Then

T} (5,6) = 2 {5, {0 )} (5,) + 272 1, {5, 1) (0, A0 ().

Proof. Using the expression of py in (2.21) together with {a, a} = 2i{Re(a),Im(a)} (using that {a — b,a + b} =
2{a,b}), we have
1
—{pw.pe} =2{p—7°p(z,d¥),{p, V}}
=2 {pa {pa \II}} - 27-2 {p(ﬂ?, d\I/)v {pa \I/}} .

Finally, using Lemma 2.2.13 below, we obtain

1
E {p\lhpq’} =2 {p7 {p7 \IJ}} + 2T2 {pa {p7 ‘lj}} (l‘, d\IJ)7
which proves the lemma. O

For the above proof to be complete, it only remains to prove the following lemma.

Lemma 2.2.13. Let p: Q x R"™ — R be a homogeneous symbol of degree 2, with real-valued coefficients
and U € C>*(Q). Then, we have

{p(-,d®), {p, ¥}} (z) = —{p, {p, V}} (2, d¥ (),

which, in particular, does not depend on &.

Proof. We start from the following general formula (for any symbols p, q), proved in Lemma 2.2.14 below,

{p( - d¥), ¢} (z,d¥(x)) + {p, q(-, d¥)}(z, d¥(z)) = {p, ¢} (z, d¥(x)).

We write this identity with ¢(z,£) = {p, U}(z,§) (which is a homogeneous polynomial of degree one, so
that its Poisson bracket with a function of x only is a function of z only), yielding

{p(d®), {p, U1} (x) +{p, {p, Y} (-, dV)} (z,d¥(z)) = {p, {p, V}} (z, d¥(z)). (2.25)
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But for real-valued homogeneous symbols of degree 2, Identity (2.20) gives {p, U}(x, d¥(x)) = 2p(z, d¥(z),d¥(z)) =
2p(z,d¥(zx)). Using this, together with (2.23), we have

{p7 {pv \II}(a d\Ij)} (xa d\I/((E)) = 2{p7p('v d\II)}(x, d\Il(x)) = _2{27('7 d\Il), {pv \I/}}(LU)
Inserting this into (2.25), we obtain
{p('7 d\IJ)7 {p7 \IJ}} (.%‘) - 2{]9(', d‘ll)7 {pa \I’}}(x) = {p’ {p7 \IJ}} (mv d\l’(x))7
which is the sought result. O
Lemma 2.2.14. For all symbols p,q € C*°(2 x R™) and all function ¥ € C*(Q)), we have

{p(, d¥), ¢}(z,d¥(z)) +{p, q(-,d¥)}(z,d¥(z)) = {p, ¢}(z, d¥(z)). (2.26)
Proof. On the one hand, the right hand-side of (2.26) writes
{p.a}(@,d¥(2)) = (9¢p)(x, d¥(2)) - (029) (2, d¥(2)) — (O2p)(x,d¥(x)) - (Ocq)(x, d¥(z)). (2.27)

On the other hand, we have

{p(-d¥),q}(z,§) = =(0ap)(x,d¥(x)) - (I¢q)(x,§) — Hess W [(Iep) (x, 0¥ (x)); (9¢q) (z,€)] -
Applied to £ = dU, this gives an expression of the first term in the left hand-side of (2.26), namely
{p(-,d¥), q}(z,d¥(z)) = —(0op)(x, d¥(z)) - (Oeq)(x,d¥(z))
~ Hess U [(9cp)(z, AW (2)); (9eq) (@, AW ()]

By symmetry, we also have

(P, (-, A0}, AV (2)) = (9ep) (v, V() - (D.q) (, dV(2))
+ Hess U [(9ep) (., U ()); (9eq) (x, A ()]

The sum of the last two identities gives the right hand-side (2.27), which proves (2.26). O

2.3 The unique continuation theorem

In this chapter, collecting all results we proved so far, we are prepared to state and prove a very general
result of unique continuation for operators of order 2, with real principal symbol.

2.3.1 Statement and examples

The geometric definition we need is the following.

Definition 2.3.1 (Strongly pseudoconvexity surface for operators of order two with real principal sym-
bols). Let Q 3 z¢ be an open set, P € Diff?(Q) with real-valued principal symbol py and ¥ € C*(Q)
real-valued. We say that the oriented hypersurface S = {¥ = U(zg)} is strongly pseudoconvex with
respect to P at xg if it satisfies

p2(z0,8) = {p2, Y}(20,€) = 0 = {p2, {p2, Y} }(20,§) >0 for all { € R™\ {0}. (2.28)

Note that {p, ¥}(xo,&) = Oep(x0,§) - 0¥ (20).

We can check that Definition 2.3.1 is invariant if we change the defining function ¥ (see Lemma 2.2.2).
That is why this is a geometric property of the oriented surface solely. See Section 2.3.2 for an interpretation
as convexity with respect to the bicharacteristic curves.

The geometric condition (2.28) has to be compared with that discussed for vector fields in Examples 3-
4-5 in Section 1.2.1.
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Theorem 2.3.2 (Real operators of order 2). Let Q 3 xq be an open set of R, and let P € Diff*(Q) with
real principal symbol pa. Assume that the oriented hypersurface S = {U = U(x)} is strongly pseudoconvez
with respect to P at xo. Then, there exists a neighborhood V' of ¢ so that for all u € H*(Q), we have

{Pu:OinQ,

u—OinQﬁ{\I’>\I/(x0)}}:>u:OinV' (2:29)

Another (slightly weaker) way to formulate the conclusion of the theorem is to say that z¢ ¢ supp(u).
Here, we have assumed that all coefficients of P are smooth for simplicity. Finer regularity assumptions
are discussed in Section 2.3.4 below.

Remark 2.3.3 (Elliptic case). Note now that in the particular case where the operator P is elliptic at
T, i.e. pa(wg,&) > c|€]?, then the condition py(z, &) = 0 is never fulfilled when & # 0 and (2.28) is empty.
This is the following corollary.

Corollary 2.3.4 (Real elliptic operators of order 2). Let Q0 an open set of R™, xg € Q and S 3 z¢ be a
local hypersurface at xg. Let P € Difo(Q) with real principal symbol py. Assume also that P is elliptic at
T, that is, there exists ¢ > 0 so that pa(x0,&) > c|&|? for all € € R™. Then, there exists V' a neighborhood
of ko so that for any u € C=(£),

. = u=0onW (2.30)

Pu = 0inQ,
u = 0inQNS

Here, ST denotes one (any) side of S.

This means that for elliptic operators of order 2, there is no geometric condition for unique continuation
across a hypersurface. Again, regularity issues are discussed in Section 2.3.4 below.

Remark 2.3.5 (Operators with constant coefficients). Consider here the simple case where P = AD - D
where A is a constant real symmetric matrix. This is pa(x,&) = A€ We have {ps, U}(z,§) = 24 -d¥(z)
and {pa, {p2, ¥}}(z,§) = {AL - £,2A¢ - d¥(z)} = 4Hess U(x)(AE, AE). Condition (2.28) rewrites

AE-€=0 and AE-d¥(zg) =0 = Hess ¥(xg)(AE, A) >0 for all £ € R™\ {0}.

Remark 2.3.6 (The wave operator). We discuss here the case of the wave operator with constant coef-
ficients, which is a particular case of the above examples with A = diag(—1,1,---,1). In the case of the
wave equation, P = 02 — A, p = —£2 + |£,]?, we compute (using that ¥ does not depend on &)

P, ¥} = Vep ViV =260,V + 26, -V, ¥
AP, Y}} = Vep Vo p, ¥} = Vanp- Velp, ¥}
= Vep Vi {p, ¥}
= =260, 260,V + 26, - VU] + 28, - V. [—26:0,V + 2¢, - V. V]
= 4[GRV - 268, - V.0, + Hess, (V) (Ex, & )]

We now write the strong pseudoconvexity condition (2.28) specialized in the point (¢,2) = (0,0) (the
operator is translation invariant in (¢, z)), in different situations.

o If |8, ¥(0)| > |V,¥(0)|: the surface {T = T(0)} is called spacelike (its normal vector V¥ is
timelike). The first two conditions imply [£:0; P (0)] = |&; - 0:V(0)| < |€.]|10.T(0)] = [&]|0.P(0)] <
|€¢]|0: ¥ (0)|. This is a contradiction, and hence Condition (2.28) is empty.

Any spacelike surface satisfies the unique continuation. This is very natural. Actually, the Cauchy
problem is hyperbolic and indeed locally wellposed for any spacelike hypersurface (like for instance
the wave equation posed with initial data at ¢ = 0, see Theorem 1.2.1).

e In several applications, the typical unique continuation result we need is across hypersurfaces of the
form (¢, ) = ¢(x). The strong pseudoconvexity condition then writes

§t2 = |€x|2 and & - V;t@(o) =0= Hessx(@)(o)(ga:agx) >0 VEeR” \ {O}
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Typically, if ¥(¢,z) = |z|?> — 1, the condition holds when we want to prove the unique continuation
from the exterior of the ball to the interior and not in the other direction. There are actually
counterexamples if we allow a potential smooth in ¢ and = (see Alinhac-Baouendi | D-

Note also that for the 1D wave equation, the constraint &, - V,»(0) = 0 is much more demanding
and implies ¢, = 0 and £ = 0 if ¢ = |£,]?. This is natural since we can exchange the time and
space variable. So the finite speed of propagation (or a more refined version of it) implies the unique
continuation across any non characteristic hypersurface.
Theorem 2.3.2 will be proved in Section 2.3.3. Before this, let us describe the underlying geometry of
the condition (2.28).

2.3.2 Geometric interpretation of pseudoconvexity in the case of real symbol
of order 2

In this section, we explain the geometric content of the condition of Definition 2.3.1. For this we need to

introduce the Hamiltonian flow of the symbol ps. Recall that {ps,-} is a derivation on C*>°(Q2 x R™) (see
Definition 1.3.7 and the remarks thereafter) and can thus be identified with the vector field

sz (xag) = 8§p2($,f) <Oy — 39:1’2(55»5) : 65»
on ) x R™. We denote by x, the associated flow, defined by
{ %Xs(@“o?fo) = sz (Xs(xoyfo))a (2.31)
Xo(z0,&0) = (0, &0),

and called the Hamiltonian flow of po. Remark that Hy, (p2) = {p2,p2} = 0 so that ps is preserved along
the flow: ps o xs(xo,&0) = p2(x0,&o). Note also that the flow x, is (at least) locally defined in (s,z,€) a
neighborhood of (0, zg,&y) according to the Cauchy-Lipschitz theorem.

If we now denote by (z,,&s) = xs, that is xs(20, %) = (z5(z0, &), &s(20,&0)) and recall the definition
of the Poisson bracket {ps,-} = O¢pa - 0y — 02 - O¢, (2.31) now reads

d
d—:cs(xo, &0) = Oepa (Xs(l’o, fo))»

%53(960,60) = —0,p2(xs(z0,&0)), (2.32)
(zs(20,&0), &s (0, &0))s=0 = (w0, &o)-

With these definitions in hand, we can now reformulate the strong pseudoconvexity condition of Defi-
nition 2.3.1. Namely, note that we have

{pQ»\P}(l'O»g) = sz(\Il)(w(J?g) = %\P © ws(x07£)|s:07

2

{pQ» {pZa \II}}(x07 5) = HPQ (HPQ (\II))(‘rOv f) = %\II © xs(xm £)|S:0'

Now, if for £ € R™ we define c¢(s) = ¥ o z5(x0,&) (2.28) is equivalent to:
For all £ € R™\ {0}, we have:  pa(x0,£) =0 and ¢:(0) =0 = &(0) > 0.
This means that for all £ € R™ \ {0},
e if ¢ is noncharacteristic (pa(z0,&) # 0), we don’t care;

e if (¢ is characteristic and) the (projected) Hamiltonian curve zs(zg, &) is not tangent to S = {¥ =
U(zg)} at s =0, we don’t care;

e if ¢ is characteristic and the curve zs(zg,&) is tangent to S = {¥ = U(xg)}, then it should have
non-vanishing second derivative (tangency at order 2) and the curve (z4(o,&))se(—e,c) should stay
in {¥ > U(xg)}.

& picture!
This excludes the following situations

e tangent characteristic curves staying in {U < U(zg)};

e contacts of higher order with the tangent at xy.
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2.3.3 Unique continuation: Proof of Theorem 2.3.2

In this section, we give the final proof of Theorem 2.3.2. & explain geometric convexification
After the geometric preliminaries, it consists essentially in using Lemma 1.2.8 (which we reprove here
in a different way).

Proof of Theorem 2.5.2. & draw a picture We first remark that we may assume that ¥U(zg) =0 (up to
changing ¥ into ¥ — ¥(z(), which does not change the assumption), so that S = {¥ = 0}. Let u be a
C* solution of Pu = 0 in Q so that « = 0 on QN {¥ > 0}. The surface S = {¥ = 0} being strongly
pseudoconvex at xg, Proposition 2.2.5 allows to produce a new function ® pseudoconvex for functions so
that (after having changed ® into ®—1) {® =0} = {¥ =0}, {® > 0} = {¥ > 0} and {® < 0} = {¥ < 0}.

Proposition 2.1.9 yields the existence of € > 0, such that ®. = ®—¢c|z—x¢|? satisfies the pseudoconvexity
for functions. As a consequence of Proposition 2.1.7 and Theorem 2.1.1, it therefore satisfies the following
properties

1. there exist R > 0, C > 0 and 79 > 0 so that we have the following estimate
. 2 . 2 . 2
3 He <I)EwHLz +7 He (I)EVwHLz <C He (bEPwHL2 , (2.33)
for any w € C*°(B(xo, R)) and 7 > 7.
2. there exists n > 0 so that ®.(z) < —n for x € {® <0} N {|z — 20| > R/2},
3. there exists a neighborhood V' C B(xg, R/2) of x¢ so that ®.(x) > —n/2 for z € V.

Property 1 is a consequence of Theorem 2.1.1, and R is fixed by that theorem.

Property 2 is true thanks to the parameter € in the geometric convexification. Indeed, for [x—x¢| > R/2,
we have @ (z) < ®(z)—eR?/4. If ®(x) < 0, this implies ®.(z) < —eR?/4, so that we can take n = —eR?/4.

Property 3 is only a continuity argument since ®.(zg) = 0.

Pick x € C(B(xo, R)) so that x = 1 on B(zg, R/2). We want to apply the Carleman estimate to
w = xu solution of Pw = xPu + [P, x]Ju = [P, x]u. Notice that [P, x] is a classical differential operator
of order 1 with coefficients supported in the set {£ < |z — x| < R}. As a consequence, using that
supp(u) C {® < 0}, this implies

supp([P, xJu) C {® < 0} 1 {3 < |o— o] < B},

where we have ®.(x) < —n (according to Property 2). In particular, this implies HeT‘I’EPwHL2 <

Ce™™ ull i1 (500,10
Moreover, since ®.(x) > —1n/2 and x =1 on V, we have

3/2 _
= /2=l

w2 e ] o 2 7 (€7 x| gy, 2 7 T L2(v)

||U||L2(V) :
So the Carleman estimate (2.33) implies
e /2 ||UHL2(V) <C ”€T¢€Pw’|L2 <Ce ™" ||u||H1(B((Eo,R)) :

This gives [lul| 2y < Ce= /2 lull i1 (B(2o,r)) @nd w =0 on V by letting 7 tend to infinity.

Note finally that, in order for the result to hold for u € H'(Q), we need to remark that a density
argument shows that the Carleman estimate is still valid for all w € H'(Q) such that supp(w) C B(xg, R)
and Pw € L%(2). Here, in case u € H(), we have w = yu € H*(2) with supp(w) C supp(x) C B(xg, R)
and Pw = 0 + [P, xJu € L*(Q) since [P,x] € Diff'(Q) and u € H'(Q). Hence, the Carleman estimate
applies and the remainder of the proof remains unchanged. O

2.3.4 Lowering regularity requirements

In this section, we explain how the regularity of the coefficients of P or the solution u can be lowered in
different contexts.
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Lowering regularity of the coefficients of P

Theorem 2.3.7. The conclusions of Theorem 2.5.2 and Corollary 2.3./ hold as well if the Assumption
uw € HL . (Q) and Pu =0 in (2.29)-(2.30) is replaced by the following assumption: w € H{ () is such that

Pu e L% (Q) and there is Q' a neighborhood of zo and C > 0 such that

loc

|Pul(x) < CZ |Dru|(z) + Clu|(z),  for almost every x € ). (2.34)
k=1

In particular, the conclusions of Theorem 2.3.2 and Corollary 2.3./ hold if the operator P € DiﬁQ(Q) is
replaced by

n

Z a'(x)D;Dj + Z b (z) Dy, + c(z), (2.35)
ij=1 k=1

P

with a € C°°(Q) real-valued, by, c € LS (Q). In this case, py denotes pa(z,&) = sz:l a(z)&:;.

Note that we have to re-define py in the latter situation since P ¢ Diff*(Q). & write a proof if
a € C1(Q) 7 Note that (2.34) is no longer a PDE, but a slightly weaker “differential inequality”. In the
situation of Corollary 2.3.4, the ellipticity assumption at the point zy writes: there exists ¢ > 0 so that

n

> @l (@o)&; > clgf?, for all € € R,

ij=1

Proof of Theorem 2.5.7. The proof follows essentially the same as that of Theorem 2.3.2. The geometry
is the same and the only point is how to get rid of the terms in the right hand-side of (2.34). We start
from the same Carleman inequality (2.33), namely

P w4 7 e Tul2, < Ol Pull,. (2:6)

and apply it again to w = xu. On the right hand-side, writing Pw = Pyu = [P, xJu+xPu and using (2.34),
we obtain,

n
o7 Pul o < e 2 luls + €3 Jem 3D + € e vl
k=1

< [le™<[Poxull 2 + € (€7 Dixul] 1o + 7 <[Drs Xull ) + Clle™xcul
k=1

< [l [Podull o+ C 3 (|7 [Desxull o + C |7 V]| o + +C e <00
k=1

Now, the last two terms can be absorbed in the left hand-side of the Carleman estimate (2.36) for 7 large
enough, and we obtain

™ 7wy + 7 llem Ve[, < O Podul s +C Y [l [Drxull
k=1

The important point here is that on the right hand-side, only derivatives of x appear: the term [Dy, x]u
enjoys the same support properties as [P, x]Ju. Hence, from this point forward, we can follow the proof of
Theorem 2.3.2 line by line. O

Lowering regularity of the solution u

& to be written via propagation of singularities as a blackbox
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2.3.5 From local to global uniqueness (elliptic operators)

The unique continuation result that we obtain is only local. Yet, we could expect to iterate this result with
a well chosen sequence of hypersurfaces. It turns out that it is not easy to do in the general case. Take
for instance the wave equation. Suppose that you are given an open set w and 7" > 0 so that a solution «
satisfies

(02 —A)u = 0on[0,T]x
u = 0Oon[0,7T] xw

The question of defining what is the "domain of dependence" for the unique continuation that can be
obtained with our unique continuation using iterated pseudoconvex surfaces (as described in Remark 2.3.6)
is not clear.

An easier situation is the elliptic case where the strong pseudoconvexity condition for the surface S is
empty. This allows to obtain the following global result.

Theorem 2.3.8 (Global result in the elliptic case). Let  be a connected open set and P satisfying the
assumptions of Corollary 2.5./. Let u be a H*(Q) solution to Pu = 0 on ), that satisfies u = 0 on an
arbitrary nonempty open set w C 2. Then, u =0 on €.

The proof uses the local result together with a connectedness argument.

Proof. We define F' = supp(u), which is a closed subset of 2, and OF = F \ Int(F) C Q the boundary of
F'. The proof proceeds in two steps: first proving that F = () by contradiction, and then concluding with
a connectedness argument.

Let us first prove that 0F = (). Assuming OF # (), there exists z € OF C Q. Define R so that
B(z,R) C Q. Take x; € Q\ F with |z — 21| < R/2 (it exists since z € JF). So, we have u(y) = 0 in a
neighborhood of 1 by definition of the support. Next define 4 = sup {r € [0, R/2];u(x) =0 in B(xy,7)}.
We know that 1 > 0. So, we have obtained v = 0 in B(z1,71).

Assume 1 < R/2. Since | — 21| < R/2 and B(x, R) C Q, B(x1, R/2) C Q. So, we can apply Theorem
2.3.2 to any point xg € S(x1,71) the sphere of radius r1 and of center z; to get that for any z¢ € S(x1,71),
there exists 7, so that u(y) = 0 in B(xg,7s,). Covering S(z1,r1) by a finite number of such balls using
the compactness of S(z1,71) we get one € so that u(y) =0 on B(xy,r1 + €) contradicting the definition of
r1. So, we have 1y = R/2.

But since |x — 21| < R/2, there exists a neighborhood of z included in B(z1, R/2). In particular, u =0
in this neighborhood. This contradicts the assumption that € JF. As a consequence, we have obtained
OF = 0.

Now, since 9F = F'\ Int(F) = 0, we have F' = Int(F) and is thus closed and open. Moreover, we have
F # Q since wN F = (). The connectedness of Q then yields F =0, i.e. =0 on Q. O

& faire un dessin
A first useful application of this result is to eigenfunctions.

Corollary 2.3.9. Let Q C R™ be a connected open set. Denote by —A the Laplace operator. Assume
Y € HY(Q) satisfies —Ap = Mp on Q and 1 = 0 on a nonempty open set w C Q. Then we have ) =0 on
Q.

This means that eigenfunctions of the Laplace operator never vanish on a nonempty open set. The
same result also holds for the Laplace-Beltrami operator —A, on a Riemannian manifold (M, g).
2.4 Quantitative estimates and application to eigenfunctions

In this section, we want to give some estimates that quantify the unique continuation, that is some
inequality proving in some sense the implication

{ Pu - smallin £}, — yu small in U.

w smallin U
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described in the introduction. More precisely, we would like to have some estimates of the kind [|ul|z <
o(|Jully + |1Pullg s llullg), with ¢(a,b) — 0 as a — 0 when b is bounded. The ideal situation would be
some linear estimate in a, independent on b. This is the case when the Cauchy problem is wellposed.
For instance the wave operator across the surface {t = 0}. Yet, in those cases, Carleman estimates are
generally not the best way to get uniqueness and good estimates. We will be interested in some case where
the Cauchy problem is ill-posed and linear estimates are not expected to occur.

In our situation, the estimates that we can expect are more of Hélder type, that is p(a,b) = a®b*~7.
We could derive such local estimates in the general context of Theorem 2.3.2. We shall however restrict
our attention to elliptic operators, for which the geometric setting is simpler, the globalization is possible,
and which have several interesting applications.

2.4.1 Interlude: a semiglobal Carleman estimate
In Section 2.1 above, we proved:

e & is a pseudoconvex function for P at zy = the Carleman estimate holds for all u € C°(B(zo, r))
for some r > 0

e S ={U = W(xg)} is a strictly pseudoconvex surface for P at g = & := e*? is a pseudoconvex
function for P at xg for A large.

These are local result at/near the point xy. Here, we shall need similar results on a whole (relatively
compact) open set Q. We state the results without proofs.

We first state the analogue of the Carleman estimate of Theorem 2.1.1. Its proof is exactly the same
as that of Theorem 2.1.1, except that we use the “semiglobal” Gérding inequality of Proposition 1.3.18
instead of the local one (Proposition 1.3.14).

Theorem 2.4.1 (Semiglobal Carleman estimate). Let  be an open subset of R™ such that Q is compact.
Let P € Diff*(Q) be a (classical) differential operator with real-valued principal symbol py and & €
C>® (4, R).

Then, the following statements are equivalent:

1. There exist C, 179 > 0 so that we have the following estimate
T3 HeTCI’uHi2 +7 HeT‘I)VuHi2 <C HeT‘I)PuHi2 , forallue CX(Q), T > 10; (2.37)
2. There exist C,19 > 0 so that we have the following estimate

7 |v]3 < C||Pavl3s,  for allve CX(Q), 1> 70; (2.38)

3. There exist C1,Co > 0 such that for all (x,£,7) € Q x R™ x R%,

Gy

P+ [(Reps)® + (Impg)?] (2,€,7) + % {Reps,Impe} (z,&,7) > Cs (JE° +72) . (2.39)

4. The function ® is pseudoconves with respect to P on §, i.e. it satisfies
{p2,{p2, ®}} (x,&) > 0, if pa(x,€) = 0 and (x,€) € Q x R™\ 0; (2.40)
1 _
i—{%,pq,}(x,é,T) >0, ifpe(x,&,7)=0 and (z,&,7) € A x R" x R}, (2.41)
-

where po(x,€,7) = pa(w, € + ird®(x)).

Proposition 2.4.2 (Analytic convexification). Let Q be an open set such that Q is compact, P € Diff*(Q)
with real-valued principal symbol py and ¥ € C>(Q). Assume that for all x € 0, the oriented hypersurface
Sy = {¥ = U(x)} is strongly pseudoconvexr with respect to P at x (Definition 2.2.1). Then there exists
Mo > 0 such that for all X > Xo, the function ® = eY is pseudoconvex with respect to P on Q (in the sense
of (2.40)-(2.41)).

And thus, the Carleman estimate of Theorem 2.4.1 holds with weight ®. The proof of this proposition
is exactly the same as that of Proposition 2.2.5.

60



2.4.2 Local interpolation estimates for elliptic operators

In what follows, we will remain in the elliptic framework where any smooth surface is strongly pseudocon-
vex. It allows to simplify 2 important facts:

e we can choose compact surfaces, like spheres. One advantage is that we can skip the geometric
convexification;

e the globalization is much easier, as we saw in Theorem 2.3.8 for the (qualitative) unique continuation
result.

We first state the local result.

Theorem 2.4.3 (Local quantitative estimates for real elliptic operators of order 2). Let 2, P be as in
Corollary 2.3.4, xog € Q. Let r > 0 so that B(x,3r) C Q.
Then, there exists C >0, 0 < 6 < 1 so that
< J 1-6
Hu“Hl(B(zo,QT)) <C [||U\|H1(B(mo,r)) + HPu||L2(B(mU,3r)) ”uHHl(B(rO,i%r))

for any u € C=(9).

Note that in the context of complex analysis (for holomorphic functions on C), this inequality is usually
called the “Hadamard three spheres inequality” (sometimes also used for three lines) and can be proved
with different methods, using analyticity. A remarkable fact here is that the regularity requirements on
the coefficients are relatively low (and could be lowered with the same techniques).

Proof. We consider the relatively compact open set U = B(zg, 3r) \ B(zo,7/2). Denote ¥ = —|z — x¢| €
C°°(U;R). Moreover, we have d¥ # 0 on U, and P elliptic, so that for all x € U, the set {¥ = ¥(z)} is
a smooth strongly pseudoconvex hypersurface with respect to P at x. According to Proposition 2.4.2, the
function ® = e*¥ is thus pseudoconvex on U for A large enough, fixed from now on.

Theorem 2.4.1 applies and yields the existence of C, 1y > 0 so that we have the following estimate

e, + 7]V, < C e Pu|s,, forall w e C2(U), T > 7. (2.42)

Taking now y € C2°(U) so that xy = 1 on B(xg,5r/2) \ B(xo,r), we want to apply the estimate (2.42)
to the function w = xu € C°(U).

Concerning the right hand-side, we have Pw = xPu + [P, x]u where [P, x] is of order 1 supported in
two different connected subsets of U:

o |z — 20| € [r/2,7], where ® < e~*"/2 := p3. The corresponding term is bounded by

TP T
e P 220 ay e 2y < C€ Nl i (B o,y

o |z — x| € [61/2,3r], where & < e~"/2 .= p;. The corresponding term is bounded by
TP T
e [P, X}UHL2(|:p7w0\€[57‘/273r]) < Ce™ ull g1 (Bag,3r)

The term corresponding to xy Pu is bounded by Ce™"3 HPuHLQ(B(QST» since ® < p3 on supp(x).
The (square root of the) right hand-side of (2.42) is estimated from below by

/2 ||‘37¢)“’HL2 +7/? HeﬂbvaLz = Co HeTq)(Xu)HLQ(\m—m0|€[r,2r]) +co HeT(I)V(Xu)HL2(|m—fc0|€[r,2r]) :
But since x = 1 on |z — x| € [r, 2r], we have, for a different constant C'

T e ] o+ 2 TVl 2 OVl g I U L2y ez

> Ce™ {HVUHLQ(\zfz(ﬂG[T,Qr]) + ||u||L2(\zfa:g|€[r,2r])i|

2\

where py := e#" is chosen so that ® > p, on the set {|z — xo| € [r, 27]}.
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Combining these estimates in (2.42), we finally obtain

e’ [[ull g1 (o—ao e < O Ul g1 (p(ag,3m) + O™ {HUHHl(B(Io,r)) + HPUHL2(B(930,3T))] :

with p1 < p2 < p3. This gives

lull g1 (1o er2r) < Ce 7 ull 1 (B (2o,3r)) T Ce®?T [HuHHl(B(wo,r)) + ||Pu||L2(B(m0,3T)):| :

with C; = ps — p1 > 0 and C5 = p3 — p2 > 0. Next, we apply the following Lemma of interpolation type,
for which we postpone the proof.

Lemma 2.4.4. Given C1,Cs,Cs, 79 > 0, there exists C' > 0 such that for all a,b,c > 0, we have

= a <O, 5= G

o C1+C2.

a<e C1Th4e“7c,  forallT > T
a S Cgb

Applying this Lemma with

a = lullgi(jp—zolerr2n) /O b=l (pegsm s €= [”“”Hl(B(w)) + ”PUHLQ(B(HCOﬁT))} )

and noticing that a < b/C', we obtain, with a different constant C' > 0,

1-46
el sotetrzry < C Nl Gaan sry [l (a0 + 1Pull2 .y

Moreover, we have, if C' > 1,

1-96 é 1-46
llar 0.7y < 13530 523 3y < C Ml [l 3y + 1Pl 230,80y

This gives the expected result by summing up. O

tn(<5)

Ci14+Cy °

Proof of the Lemma 2.4.4. We minimize in 7. The minimum is reached for 7 =

in(2)

Ci1+C2 "

To simplify

(actually, it is just changing b by bC5/C1), we apply the formula for 7 = It gives, if 7y > 79,

a < 6_% ln(%)b + e% ln(%)c

IN
7N\
oo
N~
L,

o>

+
7 N
ol
~_
—_
&,

o

|

]

>

.

&

o

[=9)

(&1
C14+C2 "

In the case 71 < 79, this means % < eno(C14C2) g0 b < C(79,C1,C3)c. So, the assumption a < Csb
gives a < C3b'79b% < Cb'~%¢? with a new constant depending on 7y, Cy, Ca, Cs.
This gives the expected estimate in both cases with an appropriate constant C' > 0. O

where § =

2.4.3 Semi-global interpolation estimates for elliptic operators

Now, we want to obtain similar global estimates. This works since, as we shall see, interpolation estimates
like that of Theorem 2.4.3 “propagate well”.

Theorem 2.4.5 (Global quantitative estimates for real elliptic operators of order 2). Let Q@ C R™ be a
connected open set. Let P be as in (2.35) with a¥ € C*(Q) real-valued elliptic at all points of 2, by,
c € L (). Let K be a compact subset of Q and w be a non-empty open subset of Q.

loc

Then, there exists C > 0, § € (0,1) so that

s
-5
lall g1 1y < € |[lull g1y + 1Pull gy | el (2.43)

for any u € C=(£).
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Note that, at this point, we are not able to dominate the full ||u|| m1 (o) norm. Indeed, we did not prove
anything near the boundary 9f2. This requires additional work, see Section 2.5 below.

Remark 2.4.6. Note that interpolation inequalities like (2.43) are trivial for § = 0, and would be very
strong (but false!) for § = 1. Actually, the larger ¢ is, the stronger Inequality (2.43) is. More precisely,
Inequality (2.43) for some &y implies the same inequality for all 0 € (O do] (with the same constant C').

Indeed, since § < do, we can decompose [|ul| g gy = ||uHH1( ||u||Hl (B(a1,r,y)Where both exponent are
nonnegative. Using (2.43) with §g for the first term and Hu||H1(K) < |lull g1 () for the second, we obtain,

5
Jo 1-6
lollsier < € ([l + 1Pullizga)” Tl )™ ol

< O [lullgs oy + 1Pl gy | Tl
and (2.43) is valid for § < dy. This will be used in the proof below.
Proof. Fix first zp € w and rg > 0 such that B(zg,79) C w. By compactness, it is enough to prove the
following statement: for any x € K, there exist 0 < r,, < rg, C, > 0, 0, € (0,1) so that B(z,r,) C Q and
ull i1 B,y < C (Ul (Bor)) T ||Pu||L2(Q) el 00 - (2.44)

Indeed, we recover K by a finite number of such balls K C U;erB(zi,7,). Take C = max;er Cy, and
0 = min;eg dy,. According to Remark 2.4.6, Inequality (2.44) is still true with J,, replaced by ¢ (and Cy,
replaced by C), that is, for all ¢ € I,

ol ey < C [l ey + 1Py el

By summing up over i € I and using the covering property, we would obtain

||U||H1(K) <cC [HUHHl(B(zO,m)) + ||Pu||L2(Q)} ||U||H1(Q)

We are thus left to prove (2.44) for any z € K.
We may also assume || Pul|;2(q) < [[ul 1 (q)- Indeed, if not, the result is straightforward since the right

hand side is larger than [lu[| g q)-
We will need the following geometric Lemma that will be prove later on.

Lemma 2.4.7. Under the previous assumptions, let xg and x1 € Q and rg > 0. Then, there exist
r € (0,r0], N € N and a sequence of points yi, k =0,--- , N so that

® Yo = To, Yn = T1.
° E(yk_t,-l,'f') - B(yk,2’f‘).
e B(yx,3r) C Q.

Assuming this Lemma, we prove recursively the following property: there exist Cy and d; € (0,1) so
that

O 1-6
||u||H1(B(yk r) = < C ||U||H1(B(x0,r)) + HPUHL2(Q):| ||u||H1(]§z) : (2.45)
e The property is true for k = 0 for €' =1 and any 0 € [0,1] since [[ul| g1 (p(4y.)) < |l 1 (0)-

e Assume the property true for k¥ < N. Theorem 2.4.3 applied at the point yj (which can be applied
since B(yx,3r) C ) gives C >0, 0 < § < 1 so that

lell g1 By 2my < € [”“”Hl(B(ym) + ||P“||L2(B(yk,3r>)} lull 5 3 -
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Since B(yk+1,7) C By, 2r) and B(yx, 3r) C £, it gives
s s < € [l + 1Pl ] Tl
The assumption at step k and the fact that § > 0 gives

Sk d
1-96 1-9
||u||H1(B<yk+1,T>><C[ck [l 71 (0. + 1Pl z2ey] Nl g)+||Pu||L2(m] lullinfa

Since we have assumed [|Pul| 2 () < [[ull g1 (q), we have

Ok 1-6
1Pull oy < [lllrs agany) + 1Pl ey Ml

So, we are left with some different constant Cj1

1-6
oty S ot | [1liscotanm + 1Pulizn] Tl | ekl
< C P Ord )
< G [lull gy (Bag,ry) + 1Pl L2y lull g6y -

So, it gives the result with 051 = d19.
O

Proof of Lemma 2.4.7. Since ) is an open connected set of R™, it is connected by arc and we can find
v :[0,1] — § a continuous path in © so that v(0) = xg, y(1) = 1.

The interval [0, 1] is a compact set. Denote d = max,¢[o,1](dist(y(t), 2°). We fix r = min{d/4,70}. By
compactness, 7 is also uniformly continuous on [0,1]. So, there exists € > 0 so that [t — #/| < e implies
[v(t) = v(t')| < r/2. We take N = [1] 4+ 1 and define

yr = ~y(ke)fork=0,--- ,N—-1

yn = x1=7(1).
This fulfills the expected criterium. For instance, B(yx41,7) C B(yk, 2r) is fulfilled if |yx41 —yx| < 7. This
works since for k < N —2, |yg+1 —yk| = [7((E+1)e) —y(ke)| < r/2 by the uniform continuity assumption.

For the last step, K = N — 1, the same argument applies since yy = (1) and yn_1 = v(|1/e]e). We
observe that |1 — [1] | <& because |1 — [1]| <1 by definition. O

Below, when using estimates like those of Theorem 2.4.5, we shall need to replace local H' norms of u,
by local L? norms. This is possible at the cost of an additional L? estimate of Pu. This uses the ellipticity
of P.

Lemma 2.4.8 (Local elliptic estimates). Let @ C R" and P € ]:Biffz(Q) be elliptic with real principal
symbol. Then, for all U, U C Q open sets with U compact and U C U, there exists C' > 0 such that for all
u € C*(Q), we have

lull iy < Cllull 2@y + CllPull 2

Proof. First recall (see Example 1.3.12) that P can be rewritten as

P= ZDa z)Dj + Ry, R, € Diff*(Q),

4,j=1
where a/ = a’’. Denoting A = (a'/); ;, this may be rewritten, with b € C°°(Q;C") and ¢ € C*(Q; C), as
P =—div(A(z)V:) + b(z) - V + ¢(z).
Now, we let x € C°(U) have xy = 1 on U (supp(x) may be taken compact since U is), and remark that

[ull @y < IXVullia @) + lulfew) (2.46)
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Hence, it suffices to estimate [|xVul|2(q). Using the uniform ellipticity of the matrix A(z), and integrating
by parts, we have

||XVu||2Lz(Q) = /QXQIVu\2 < CRe/QXQAVu~W: —C’Re/Q div(x*AVu)a.

We next write
—div(x*AVu) = —x* div(AVu) — 2xVx - AVu = x*Pu — x*(b(z) - Vu + c(z)u) — 2xVx - AVu

and deduce, using the Cauchy-Schwarz inequality,

HxVuHiz(Q) < C/Qx2|PuHu| + C’/Q IX*(b(z) - Vu + c(@)u)u| + C’/Q luxVx - AVu|
< C( IxPull 20y Ixull L2 @) + IXVull 2 0y Xl 20
Il oy + IVl 2 oy 169X 2 ey )-
Recalling that supp(x) C U and supp x is compact, we have obtained, for all € > 0, the estimate
||XVU||iz(Q) <c ||Pu||2L2(U) te HXVU”iz(Q) + g HU||2L2(U) ;
which yields the sought result when taking ¢ = 1/2 and recalling (2.46). O

2.4.4 Application to tunneling estimates for eigenfunctions

From the quantitative estimate of Theorem 2.4.5, we can already get some applications about spectral
estimates of eigenfunctions of second order elliptic operators. We first describe the context.

We will denote T" = R"™/Z" the n-dimensional torus. This can be seen as [0,1]™ with the necessary
identification of points. Functions on T" can be seen as functions on R™ with periodic boundary conditions.
Let A = (a)};_, a symmetric matrix with a” € C*°(T") real-valued. We define the operator —A yu =
—div(AVu) = =37, - 9; (a”9ju). Assume also that A, is elliptic, that is there exists C' so that

n

> (@)t = Cle, for all (2,6) € @ x R™.

ij=1

The operator A 4 is also symmetric, that is (Aau,v)r2(rny) = (4, Agv)2(rny for u,v € C(T").

We can check that it can be extended to a positive self-adjoint operator on L?(T", dz), with domain
H?(T™). Therefore, since the embedding of H?(T") into L?(T™) is compact, the resolvent (—A + Id)~*
is well defined and compact on L2.

All this allows to define an orthonormal basis of L?(T™). There exist some functions ¢; € C*°(T"),
Ai € R (actually \; > 0 since —A 4 is positive) so that

o (¢;)ien is an orthonormal basis of the Hilbert space L*(T")
o —Au; = Nt
We refer e.g. to | | Chapters VI and IX for more details about this construction.

Remark 2.4.9. The same construction holds for a general compact Riemannian manifold (M, g). Let
us recall briefly objects and notations from Riemannian geometry. We denote by (-,-)y = g(-,-) the inner
product in T M. Remark that this notation omits to mention the point z € M at which the inner product
takes place: this allows to write (X,Y), as a function on M (the dependence on z is omitted here as well)
when X and Y are two vector fields on M. We also denote for a vector field X, |X|2 = (X, X),.

We recall that the Riemannian gradient V, of a function f is defined by

(Vof, X)g =df(X), for any vector field X.
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For a function f on M, we denote by [ f = [,, f(z)d Voly(z) its integral on M, where d Vol,(x) is the
Riemannian density. We denote by div, the associated divergence, defined on a vector field X by

/uding _ /<vgu,x>g, for all u € C°(Int(M)).

We denote by A, = div, V, the associated (nonpositive) Laplace-Beltrami operator.
Let us now recall how these objects write in local coordinates. In coordinates, for f a smooth function
and X =3, X2 Y =3, V-2 smooth vector fields on M, we have

n
(X,Y)g =) g X'V,
i=1

Vof=>" g”(ajf)ajci,

ij=1

[ 1= [ 1@,
. ~ 1
divg(X) = ; m&- ( det gXi) ,
n 1 iy
Agf:ig;l\/m&-( det gg ajf).

where (g___l)ij = ¢g%. Note that in particular, we have in any local chart A, € Diff? with principal symbol
>t j=1 97&i&;, which is real and elliptic.
Recall also that for f, h smooth functions and X =", X i% a smooth vector field on M, we have

Vo(fh) = (Vg f)h+ f(Vgh),
divy(fX) = (Vg f, X)g + fdivg(X),

The following result states a weak delocalization property of eigenfunctions of —A,.

Theorem 2.4.10 (Tunneling estimates for eigenfunctions). Assume (M, g) is a compact connected Rie-
mannian manifold, and let w C M be a nonempty open subset. Then, there exist C' and k > 0 such that
for all (A, 1)) € RT x H2(M) with

—AgPx = APy,

we have

1oal1 7200 < Ce™ all e -

This is a kind of observability estimate for eigenfunctions: the partial observation of eigenfunctions
on the small set w allows one to recover at least an C~'e™"VA proportion of its total energy. Another
formulation is to say that eigenfunctions leave at least an exponentially small mass on any nonempty open
set. This theorem shall be generalized later on to linear combinations of eigenfunctions.

Proof. Let us consider the manifold R x M, in which we denote the variable (xg,x). The operator P =
—d3,—Ay is asecond order differential operator with real principal symbol, which reads &5+, g7 &:&;,
hence is elliptic.

Define uy(zg,z) = e“ﬁl/»\(x). We verify that Puy = —Auy — e“ﬁAng}\ = 0. We want to apply
Theorem 2.4.5 to P and uy on an open set = (1/2,5/2) x M and K = [1,2] x M. Note that we are not
exactly in the configuration of the Theorem since R x M is not an open set of R”. But it can be checked
that Theorem 2.4.5 holds equally well on a manifold (being a consequence of a local result, proved in local
chartsés ).
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A combination of Theorem 2.4.5 (with K = [1,2] x M, Q = (1/2,5/2) x M) with Lemma 2.4.8 yields
the existence of C' > 0, ¢ € (0,1) such that

o
1-6
luall ez 1,295 00) < © [”“A”L?((m)xw) + HPW”L?((&S)xM)} lunll ez 2,572 a0 -

Using again Lemma 2.4.8 for the last term in the right handside, we obtain

) 1-6
lullzs quapern < € [luallaquz + 1Pulzoaan ] (liallzz s can + 1PuAlLL2(03)xr0 )

and, since Puy = 0, this yields

5 1-6
luall L2 n21xmy < C luallzz .2y xw 1enllzz (0,3 m) (2.47)

VAs > oVA Qg ||u/\HL2([1,2]xM) > VA ||qu||L2(M). Similarly, we have

But on [1,2], we have e

luallz2gr2yxe) < €2V 190l L2 o)

and Ui
Hu/\||L2((O,3)><M) < V3V ||7/’/\HL2(M)

Combining the above three estimates in (2.47), we finally obtain

)
Al < € (A 1l ) (€Y 10l 2 )

This rewrites as s s
Hw}\”L?(M) < 06(264_3(1_5)_1)\5 Hw)\HLQ(w) ’

which gives the expected result. O

To conclude this section, let us discuss briefly the optimality of this lower bound. The rate eV is
not always optimal. This can be seen in dimension one: on T! with the flat metric, the L? norm of
eigenfunctions (namely, 1y (z) = e*** and combinations of 4) are uniformly bounded from below on any
nonempty open set.

However, there are some particular geometric situations (M, g,w) where it is optimal. The next

proposition provides with such an example.

There are also geometries in which ¢(\;) = €° A3 can be replaced by a uniform constant, or sometimes

a power of \; or log(A;). The general question of making the link between the geometric properties of
(M, g,w) and the appropriate ¢(\) is a widely open problem in spectral geometry.

Proposition 2.4.11. Consider M = S? with
S? = {(Ilax%x?}) € RJ,IE% +I§ +:L‘§ = 1} = {l‘ € R3a |l’| = l}v

endowed with the metric g inherited from the Euclidean metric on R3. Assume w C S? is such that
wN{x3 =0} =10. Then, there are constants C,c > 0 and a sequence of functions (Y )ren such that

Ayt = k(b D (el sy = L.

and
[kl g2y < Cem k.

The eigenfunctions v, constructed below are called equatorial spherical harmonics and are known to
concentrate exponentially on the equator (which is a geodesic curve) given by x3 = 0.
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Proof. We set
up = Pilse,  Pp(1,32,73) = (21 +i22)",

and first remark that we have uj, € C*°(S?). Next, we work in a particular coordinate set. We denote by
N =(0,0,1) and S = (0,0, —1), the north and south poles, and have coordinates :

(0,7) x St — S2\ {N, S}
(s,0) — (sinscosf,sinssin 6, cos s)

Remark that s(z) = dist,(z, N), for z € S%. In these coordinates, the metric g is given by ds? + (sin 5)%d6?,
the Riemannian volume element is d Voly = sin sdsdf, the Laplace-Beltrami operator is given by

IS S LEp
g = Sil’l(S)aS sin(s)ds + Sn2(s) 0p,

and the sequence uy, is defined by
ug(s,0) = (sin s cos @ + isin s sin §)* = sin(s)*e*?.

Let us check by a direct computation that this is an eigenfunction. We have

%éﬁuk = — k2™ gin(s)~ 2
sin”(s)
and
——— 0, sin(s)Osuy, = ﬁa (k cos(s) sin(s)*) = keiike (k cos(s)?sin(s)* ! — sin(s)**1)
sin(s) ° sin(s) ° sin(s)

= (k*(1 — sin(s)?) sin(s)F=2 — ksin(s)k) .
Adding these two identities yields
Agup = =k sin(s)F — ke sin(s)* = —k(k + 1)uy, (2.48)

and uy, indeed satisfies the eigenfunction equation for the eigenvalue k(k+1) on S?\ {N, S}, that is, almost
everywhere on S?. Now compute

1 2 _ 1 2 _ 1 2k
%HukHLz(Sz) =5 ) |ug (z)]*d Volgy(z) = 277/(0,7r)xsl(sm 5)?" T dsdo

T 1 1
=/ (sins)2k+1ds:/ (1—a:§)kdx3:/ ekl"g(l—”g)dw3
0

-1 -1
=1+ 0(1))/ ek g = \/?(1 + O(E)L
k" Jr k k
and hence
ck = |Jugl|L2(s2) ~ 21/27r3/4k*1/4, as k — 4oo0. (2.49)
Finally, we have

T
. m
||uk||%2(B(S,r)) = HukH%?(B(N,r)) = 2”/0 (sin S)QkHdS < m?‘2k+27

which proves that ||uk||2L2(w) < Ce™"* as soon as w C B(N,r) U B(S,r) with r < 1, which is the case if
wN{z3 =0} = 0. Combined with (2.48), (2.49), and the fact that u, € C°°(S?), this proves the sought

result for ¢ := cgluk. O
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2.5 [Estimates at the boundary and applications

& Beware! this section needs a strong lifting (and has not been taught in class). En particulier,
il faut changer U (surfaces) et ® (carleman)
In this section, we prove quantitative unique continuation estimates (namely interpolation inequalities)
for elliptic operators near a boundary (assuming e.g. Dirichlet boundary conditions). This follows from
Carleman estimates near the boundary. This allows to generalize the tunneling estimate of Theorem 2.4.10
to linear combinations of eigenfunctions, and to prove the observability /controllability of the heat equation.

2.5.1 Estimates at the boundary for elliptic operators with Dirichlet condi-
tions

Theorem 2.5.1 (Global quantitative estimates for real elliptic operator of order 2). Let 2 connected with
smooth boundary, and P be as in Theorem 2.3.2. Let I' C Q) a non empty open subset of the boundary.
Let K be a compact subset of §).

Then, there exists C >0, 0 < 6 < 1 so that

s
1-6
HU”Hl(K) <c [||3uu||L2(r) + ||PU||L2(Q) ||U||H1(Q)

for any u € C*°(Q) with u =0 on 0.

Obtaining the previous estimates follows a similar path as previously, except that we need to prove
some Carleman estimates until the boundary. By some change of variables, it is always possible (see
Lemma ?7) to get to the following situation.

We decompose © € R™ with z = (2/,2,) 2’ € R"! x, € R. The boundary 99 becomes the set
{z, =0} and P is of the form D2 + r(z,D,) where r(z, D) is a family of operator depending on
x = (2/,z,), but with derivatives only in z’.

We denote K,, = R" NB(zo,7) and C2°(K,,) is the set of functions in C°°(R" ) supported in B(zo, 7).
The index + in the norms means that it is taken on R}.

Theorem 2.5.2 (Local Carleman estimate). Let g > 0 and P = D2 +r(x, Dy) be a differential operator
of order two on a neighborhood of K, with real principal part, where r(x, Do) is a smooth x,, family of
second order operators in the (tangential) variable x'.

Let 1 be quadratic polynomial such that ¥, # 0 on K,, and

{pAp,¥}} (2,6) >0, ifp(z,§) =0, zekK,, E#0; (2.50)
CenH O >0, W pu(n =0, zE K, T30, (2:51)

where py(z,§) = p(x, § +iTVY).
Then, there exist C > 0, 79 > 0 such that for any T > 19, we have for all u € CZ°(K,, /4)

T T 2 T
rleull . < C (e Pul, + 7 w0l
+7I(D(e W), _f3)- (2.52)
If moreover 0,1 > 0 for (z',x, = 0) € K,,, then we have for all uw € CF(K,,/4) such that u,, —o =0,
Tllem 2, . < CllemPull; , . (2.53)

Note that the Theorem applies to real elliptic operators, but also to wave type operators with the
associated pseudoconvexity condition.

We give a proof of this theorem in the appendix. The general idea is the following.

We would like to apply the same reasoning as before. Yet, we have to be more careful about the Garding
inequality in the case of boundary. One possibility is to use symbolic calculus only in the tangential variable
2’ where integration by parts are allowed without boundary terms. But the integration by parts for D2
and its conjugated operator produce some boundary terms that we need to take into account.
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How to deal with boundary terms?

In the variable z,,, the operator is D2 and the conjugated operator is explicit (D,, + i7(9,%))? =
D2 — 72(0,%)? + 2i7(0p0) Dy, — (0%1)). The integration by parts can be explicitely computed. What is
not a priori obvious is that there is no term of order 2 and 3.

What will save us is that fact that the real part and the imaginary part don’t have the same number
of derivative in z,,. Decomposing P, = Q" +iQ" as before, we check that Q" has 2 derivatives in z,, (D?)
while Q' only has one (2i7(0,,%)Dy,).

Let us look at each term, using the integration by part formula (f, D,g) = (Dnf,9) +i(f, 9)z, =0

e integrating by part of (Q"u, Q'u) = (Q*Q"u, u) + boundaryterms: the worst terms should come from
the integration by part of (D2u, (0,%)D,u) and we expect the boundary term to be of the form
i(D%u, (p1))u) s, —o- For instance, the boundary term corresponding to the to this should be of the
form

e integrating by part of (Q%u, Q"u) = (Q"Q'u, u) + boundaryterms: the worst terms should come from
the integration by part of

((Ont) Dy, DZU) = (Dy [(0p) Dyu], Dpu) 4 i((9,%0) Dy, D)z, =o
= (szz [(8n¢)u] , Dyu) +i(Dy, [(&M)DnU] ’u)xn:O +i((On?) Dyu, Dnu)xn=0

This gives the boundary terms

i((0p ) D2u, 1) o, —0 + i((Dp0n) Dy, 1), —o + i ((0nt) Dyt Dyt o, —o.

The two terms of order 2 cancel. So we are left with some terms of order 1 that come into the boundary
terms that can be handled by the Carleman method. The true computation contains some more terms,
but with less derivative in x7.

How to deal with interior terms?

The interior terms are more or less the same as in the boundaryless case. So, we could expect that
their symbol satisfy the same positivity condition. Yet, we would like to use only a tangential Garding
inequality, that is only in the derivatives in the variable 2’ (with symbol only depending on the cotangent
variable £’.)

The idea is to perform a kind of euclidian division of the commutator i[Q", Q] by D,,. Indeed, we can
factorize i[Q", Q"] = 7 [CoD2 + C1D,, + C3| where C; are tangential operators (we have also used that Q

can be written 7Q?). Moreover, since Q" contains some derivative in x,, with main coefficient D2 while the
main derivative of @' in z,, is 2i7(0,%)D,, where (0,%) # 0. This allows to perform a similar "euclidian
division" with Q", @ which allows to write

ilQ", Q" = TDoQ" + D1Q" + 7Ds.

Since the terms 7DyQ" are in some sense weaker than [|Q"||;- (and the same for Q°), we are left with
some tangential operator. Dy is not always positive, but the final task is to transfer the information we
have on p, to this tangential operator.

2.5.2 Application to spectral estimates II: linear combinations of eigenfunc-
tions

Using the boundary estimates of Theorem 2.5.1, it is possible to get a more precise result. Actually, the
previous result remain true not only for eigenfunctions, but also for finite sum of eigenfunction. Since now,
the stability estimate is still true for an open set with boundary, we state the result for an elliptic operator
P with the Dirichlet boundary conditions. The framework will be quite similar to the previous one

Let Q be a smooth compact open set with boundary. Let A = (a% ) j—1 a symmetric matrix with
a” € C=(Q) real-valued. We define the operator Pu = —div(AVu) = =3, - 9; (a”dju). We consider
(and we will still denote it P the selfadjoint extension of P associated to the Drichlet boundary condition,
that is v = 0 on 0€2. We use the same notation ¢; and \; the eigenfunctions and eigenvalues.
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Theorem 2.5.3. Under the previous assumptions on P and the related 1;, ;. Let w be an open subset
of Q. There exists C and ¢ > 0 so that we have the estimate uniform in A

2 c 2
720y < CeY ull3a(,,, -

for any u = EMSA ;.
Proof. As before, we consider the elliptic operator Q = —9? + P the operator defined on R} x .

Define f(s,x) = ZZ A< U Smh\/\/frs)w]( ) and we easily verify that it satisfies @f = 0 and f =0 on
R x 00 and {0} x Q. Theorem 2.5.1 gives, if we take I' = {0} x w. Note that we can assume without loss
of generality that w is far from 9€, in order to avoid problems with "corners" at the points {0} x 0Q. A
weak form of the inequality is then

11122 0,1 x ) < C'119s fHLz({o}xW) Hf”Hl([o 2[x )

We have 9, /(0,2) = u(@), 50 19/ | g0y ) = Il 20
As before, using Parseval identity

2
2 2 2
[ o2ixey < W lz2qo2ixe) + 190sf 20,2120 "’/0 (=Af, P2

< C/ Z|u]\ cosh\/>s + sinh(y/Ajs )ds
A;<A

< Ce Yyl < Ce jul g
A <A

And similarly

2 2
I z2qoaxe) = N1fz2qoaix0)
sinh(,/A;s)
> o3 ety
0 X<
\/>Slnh( )2
>

Y |“J|2/ INE 55y = C' |lull7aq)
i

<A
So, we obtain, with some different constants C, ¢
lull 2oy < O llulfa lul 2ty -
This gives the result. O

This type growth of the type eV is optimal whatever the geometry if @ # 2. See | ]

2.5.3 Application to the controllability of the heat equation

Our previous Theorem gives immediatly the following corollary for solutions of the heat equation at low
frequency.

Corollary 2.5.4. Under the previous assumptions on P and the related v;, A\;. Let w be an open subset
of Q. There exist C and ¢ > 0 so that we have the estimate uniform in A >0 and T > 0

c 1 g

for any f = Z/\]SA iy with u solution of the heat equation

Ou—Au = 0onl0,T]xQ
u = 0onl0,7T] x 0N
u(0,2) = f(zx)onQ
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Proof. The decay of the energy gives ||u(T)||iz(Q) < ||U(t)||iz(9) for any 0 < ¢ < T. Moreover, for any

t € [0,T7], the spectral estimates can be written ||U(t)||ig(9) < CeeVA ||u||2Lg(w). Integrating in time gives
the previous estimates and using

T T
2 2 c 2
T (T ey < / Ju()l g < CeoX / e -
O

We will prove some observability estimate for the heat equation on a bounded domain. It is known
that some observability estimates are equivalent to some result of control.

We have chosen to prove the observability and then to deduce the related result of control.

In the original paper, the idea was the following:

e Use the "observability inequality" of Theorem 2.5.3 to get some result about control of the low
frequency up to A in time 7'/4 with a cost = %eﬁ. This allows to control the M first frequency to
Zero.

e Use the decay of the heat equation on the remaining eigenvalues to get decay of e=**/4 in time T'/4.
e Iterate the result on dyadic times and tending to T

The important fact is that the power 1/2 in A in eV is strictly smaller than the exponential decay e~ *7/4.

We will work directly on the observability estimate, but still using the decay provided by the heat equation.

Theorem 2.5.5 (Observability for the heat equation). Let w C Q a non empty open set and T > 0. Then,
there exists C' > 0 so that we have the estimate

T
2 2
[u(D)lzz < C | Nlulliz )
0

for any u solution of

Ou—Au = 0onl0,T]xQ
u = 0onl0,T] x 0N
w(0,2) = wup(zr) on Q

with ug € L*(S2).

Proof. The idea is that our spectral estimate gives good estimates only when there are few high frequencies,
that is after the decay of the heat operator have operated, that is close to times T'.

We will divide the interval [0, T'] as the union of the intervals [Ty 1, T)] with Ty = T, Tpy1 = T —T27%.
We check that T}, converges to T'— >, - T27% = 0. To simplify the notations, we denote L = T2~ the
length of the interval.

For each interval [Ty41,Tx], we will select a frequency cutoff uy and decompose

U = Uk, + Uk H = Z + Z

AjSHE  Aj>pE

We will cut [Ti41,Tk] in two pieces, [Tit1,Tk+1 + Li/2] where we only use the damping and [Tj41 +
Ly /2,Ty] where we observe (using that the high frequency have been damped). We apply Corollary 2.5.4
on [Tyq1 + Li/2,Ty]

2 [T
e, (Te) 172y < C’eC\/Aka / g, (8)| 72y - (2.54)
k JTyy1+Li/2

So, by triangular inequality, noticing that the error we do from the cut off in frequency is small. For low
frequencies, we simply write [lug,L(2)l| 12y < 1u(®)]] 2y + [k, ()] 12,y Where, for high frequencies,

e, tr (D] 2y < Mozt (D] 2y < N (T + L /2 oy < €552 u(Tern) oy (2:55)
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where we have used the damping of high frequency.
Moreover, we have similarly

a1 (Ti)l| 2y < €7 F52 u(Thn) | 2 - (2.56)

So, putting together (2.54), (2.55) and (2.56), we get

2 [T _
HU(Tk)IIQLz(Q) < Cecmfk IIU(t)IIiz(w) dt + CeVPre b/ ||y(Ty )|l

()
Tr1+Li/2

2 T
< cevml / )y dt + CeVe e |u(Tyy )2 g -
k Jo

Now, we can choose p. Recall that Ly = T2~ converges to zero. Pick for instance, pj = \/C'lL,:Q with
C1 large. We have pi L = /Ch /i and pg1 = 2uy. If C; is large enough, we have

CeVikemmili < g=3eV/ikrt,
Indeed,
—c/pg + prLy — 3e/ 1 = Vi (\/ Cr—c(l+ 3\/5)) = (2% (C1 —c(1+ 3\/5)) .

This can be made arbitrary large uniformly for £ € N. Once C; and py are fixed, we have one constant C
so that

P l‘ki < Ce2eVik
L —
So, we obtain

T
lu(T) 22y < c&kﬂﬂ[;nwoﬁﬂmtﬁ+e*%ﬂﬁﬂwukuw;my

T
—3c\ Ik 2 —c/Iik 2 —3c ey 2
e VI (T |72y < Ce ‘”/0 [u() 720y dt + e >V Ju(Thr) || 72(q) -
Denoting z, = e~ 3¢VHk Hu(Tk)HQLz(Q), we get
T
=t < CV [ (o) .
0

We recognize a telescopic series and that e ¢V#* is summable. So, by summing up, we get with a new
constant, uniform in k € N,

T
—3cy/ 2 —3c 2 ~ 2
eV lu(T) a0y — €72V [[u(Th)ll72(q) SC/O [y dt

Since [[u(Tk)| 12 (q) is bounded, e~3VF* ||u(Tk)||2L2(Q) converges to zero, which gives the result. O

Theorem 2.5.6 (Control to zero of the heat equation). Let w C Q a non empty open set and T > 0. Let
ug € L?(Q). Then, there exists g € L*(|0,T], L*(w)) so that the solution of

Ou—Au = gonl0,T] x
u = 0onl0,7] x 0N (2.57)
w(0,2) = wup(z) on Q

satisfies u(T) = 0.
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Proof. We consider the dual to the heat equation, v is a solution of

—Ow—Av = 0onl0,7]xQ
v = 0onl0,T] x 09 (2.58)
o(T,z) = wvp(z)onQ

This is actually exactly the backward heat equation. It is made interesting, because at least for smooth
solutions u and v with Dirichlet boundary conditions, we have the formula that can be easily obtained by
multiplying the equation (2.57) by v (consider v real-valued for simplicity), integrating over [0, 7] x  and

integrating by parts
/Qu(T)v(T)—/Qu(O)U(O):/OT/ng.

The formula can also be extended to the case where ug € L*(Q), g € L*([0,T]; L*(Q)) ,vr € L*(Q) by a
density argument.

Our hope if u(T") = 0 would be to get fOT gv = [, uov(0). Reciprocally, we can check that if fOT guv =
Jo wov(0) for any solution of (2.58) with vy € L*(Q), then u(T) = 0.

Now, consider the quadratic form

T
a(vp,vr) :/ /Uﬂdx dt.
0 w

where v, ¥ are the associated solutions to (2.58). a is well defined for vy, o7 € L?(Q) and defines a positive
quadratic form. Our observability estimates says that it is a scalar product. Yet, it is weaker than the
L?(Q2) norm. We define the completion H of L?(Q) with respect to this norm.

Define the linear form

l(vT):/Quov(O).

Our observability estimates can be written

T
[0(0)]1220) < C / / v[2dz dt.

This says exactly that [ is linear continuous in H, since ug € L?(Q2). By the Riesz representation (or
Lax-Milgram), there exists v7° € H so that

a(vr,vy’) = l(vr)

for all vp € H.
The application 6 : L*(2) — L*([0,T] X w) defined by 6(vr) = o, 7]x. Where v is solution of (2.58)
is well defined in L?(£2), but also bounded for the norm a on H. Therefore, it can be extended to H.
Take g = 0(vy°) € L?([0,T] x w). By choice, we have

/0 ' / 9(vr) = U(vr)

for any vy € H. If we take in particular vp € L?(Q), this gives

/0 : /Q 9(vr) = /Q u0(0)

for v solution of (2.58). This gives the expected result. O
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2.6 Further results and problems

2.6.1 The general Theorem of Héormander

Remark 2.6.1 (Regarding the Carleman estimate). In the elliptic case, the "trick" of factorisation by 7
of the imaginary part of @ can be avoided. Indeed, close to {7 = 0} the symbol ps is actually close to p
and is therefore non zero.

Note that a more general assumption for treating the behavior of {Pg,ps} close to {7 = 0} is to use
the principal normality assumption

{p.p}| < Clpllgl™ 1.

The inequality is obviously fulfilled in the following two situations:

e elliptic operators (not necessarily with real-valued coeflicients) in which case the ellipticity implies
pllg™ =t = ClgpPmt

e operators with real-valued principal symbol in which case {p,p} = 0.

In the more general case of principal normality, for the behavior of %{ﬁ, Da}, close to T = 0, the inequality
allows to take advantage of the term |ps|? for proving some inequality related to (2.3). In that case, a
variant of Lemma 2.1.6 remains true, but only close to the set {ps = 0}.

We refer to Section 2.6.1 for the statemenent of the Theorem and to Hérmander | , Sections 28.3-
28.4] for the proof.

Theorem 2.6.2 (Hérmander’s theorem). Let Q an open set of R™ and xg € 2. Let P be a differential
operator of order m, possibly having complex-valued coefficients, having C*°(2) principal symbol and all
coefficients in LS (2). Assume that P is principally normal, that is the principal symbol p of P satisfies:
for any compact K of 1, there is C > 0 such that

{p.p} < Clpllg|™ "

for all (z,€) € K x R™.
Let ® € C*(Q) real-valued so that V®(xq) # 0. Assume that it satisfies

Re {pv {p7(I)}} (xo,é) > 07 pr(mng) = {p7 ¢}($()7f) =0 and £ 7& 0;
%{%717@}(370’&7') > 07 Z'fp@(m&gaT) = {p<I>7 (I)}(x(hgaT) =0and Tt > 0;

where pe(x,€) = p(x,§ + i7d®) and p is the principal symbol of P.
Then, there exists V' one neighborhood of xqo in 0 so that for any w € H™ 1 (V),

loc

{Pu = 0inV, —u=0onV.

u = 0inVN{®>d(z)}

This is Theorem 28.3.4 of | ]

2.6.2 A short bibliography

Unique continuation results have a long history going back to Carleman | | who first had the idea to
conjugate the operator with an exponential weight to get unique continuation. He proved the result in the
case of elliptic operators of order 2 in dimension 2. Calderén | | extended the result to some operators
with simple characteristics. Namely, that was in situations where py = {py, ¢} = 0 never happens. The
general version was given by Hormander | ] for real operators and | ]. Note that other works
consider the limit case where there is some higher order of cancelation. We refer to Zuily | | for more
details.

Theorem 2.4.10 was first proved by Donnelly and Fefferman | | (under a stronger form). The proof
presented here, as well as the proof and use of interpolation inequalities is from Lebeau-Robbiano | |
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The boundary Carleman estimates were proved by Lebeau-Robbiano | | in order to give the same
application that we give in Section 2.5.3, that is the controllability of the heat equation. They also proved
the spectral estimates of Section 2.4.4.

Note that there is also another proof (independently) by Fursikov-Immanuvilov | | of the control-
lability of the heat equation using directly some Carleman estimates for the heat equation. Details about
this and some link with the elliptic Carleman estimate are given in | ].

2.6.3 Further questions

Many things have not been written in an optimal way in the previous theorems and can be improved:
e the fact that the @/ are real-valued is not necessaryde .

e the regularity of u can be much lowered. Note also, that if the coefficients are regular enough, the
regularity of u can often be recovered using classical elliptic regularity results, see Brézis | | for
instance.

e the regularity of the coefficients is not optimal. The main coefficients should actually be C! while
the lower order terms can be in some LP spaces.

e the fact to be an exact solution of Pu = 0 can be replaced by some weaker assumption like | Pu|(z) <
C (|u(z)| + |Vu(z)|) for almost every x € .

Counterexamples of Alinhac

Rough coefficients, nonlinear problems
boundary conditions, interfaces
Global result
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2.7 Exercises on Chapter 2

Exercise 5 (warm up of the Exam of May, 2018). Given smooth functions ¥ : R” - R and G : R — R,
compute Hess(G o W) and A(G o ¥) (in terms of derivatives of G and ).

Correction 5. We have 9;,(G o ¥) = (0;¥)G o ¥ and 0,0;,(G o ¥) = (9;0,¥)G o ¥ + (0;0)(0,¥)G" o T,
whence Hess(G o U) = G' o W Hess(¥) + G” o Ud¥ ® d¥, that is to say

Hess(G o W)(z)(n, §) = G’ o U(x) Hess(¥)(x)(n, &) + G” o ¥ (x)(d¥ (x) - n)(d¥(x) - §)-

Also, this implies A(G o ¥)(x) = G’ o ¥U(z) A¥(z) + G” o ¥ (z)|d¥(z)|>.

Exercise 6 (Perturbations of the 0 operator, part of the Exam of May, 2018). We consider on R? the
operator P = D, +iD,, + V(z1,72), where V € L (R?;C), and U a bounded open set of R

1.

loc

Given a function ® € C*(U;R), compute Py = ¢”® Pe~"®. Decompose it as an operator in Diff (U)
plus a lower order term. Give the principal symbol of the operator in Diﬂ“i(U)7 which we call pg.

. Using a decomposition of the principal part of P as a selfadjoint part and a skewadjoint part, prove

that for all functions v € C'°(U) and all 7 > 0, we have

2 T 2
[ Povlz: = 5((M>)v,v)Lz —[Vollze -

For r > 0 fixed, we consider the set U = B(0,3r) \ B(0,7/2). Construct a radial (i.e. depending on
|z| only) function ® being decreasing in the radial variable, and such that there exists a constant
co > 0 such that A® > ¢y uniformly on U. Hint: one may choose ® under the form G o ¥ with G
and U to be determined.

Deduce that, for such a function ®, there exist two constants C, 9 > 0 such that for all 7 > 79 and
w € CX(U), we have

le7® Pu]| 7, > € lem®w[ .

Prove that for all r > 0, there exist C' > 0 and 6 € (0,1) such that for all u € C°>(B(0, 3r)), we have

&
1-96
lull 202 < € (lullz2sry) + 1Pl 2s0any) Tuliis0an (2.59)

Let w C R? a bounded nonempty open set. Prove that every C™ solution u to Pu = 0 in R? such
that v = 0 in w vanishes identically on R2.

In the case V = 0, give another proof of this result.

Correction 6. 1. We have Di(e”"®%u) = e~ "®(Dyu + i70;®u) so that €™ D1e~7™® = Dy +i70;® and

2.

P<I>:D1+i781<1>+i(D2+z‘782<I>)+V.

We have D + i791® + i (Dy + i78,®) € DiffL (U), with principal symbol pg(,£) = & — 70, (z) +
(&2 + 701®(z)). The term V(z) will be considered as a lower order term.

We write P = Pr + iPr + V where

1 1
Pr = i(Pq;. -I—P(It) =D — ’7'82@(1'), Pr= ?Z(PCI) — Pqt) = Dy +781<I>(3c),
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are both formally selfadjoint. Then, we have
|(Pe = V)oll72 = ((Pr + iPr)v, (Pr + iPr)v) > = || Prol|7> + || Pl + ([P, Prlv,v) . (2.60)

We now compute [Pg, Pr] = [D1 —702®, Do + 701 @] = [D1, 701 P] — [102®, Ds], since [D1, D3] =0 =
[02®,0:®]. That is to say, [Pr, Prlv = 7(D101®)v + 7(D20;®)v = T Adv.

Together with (2.60), we have now obtained
2(|Pyol|7. +2|Vol}s > [[(Po — V)oll72 = [ Prollzz + [Prol7s + 7 (A®v,0) 12 > 7 (Adv,0) 2,

and hence, for all v € C°(U) and all 7 > 0,

-
1Povllz. > 5 (A®)v,v) 1, — Vol

. We set ¥(z) := —|z| (Euclidean distance to zero, the sign does not matter in this question and in the
next question, but turns out to be a key point in Question 5), G(s) := ** and ®(z) := Go¥ = ¢~ I,
We have VU (z) = —Ta7» SO that |[VU(z)| = 1 does not vanish, and AWV is a smooth function on

R?\ {0}. According to the computation in Exercice 5, we have
AD(z) = Ae M AT (2) + N2 A = e £ X AT (2)) > e NN = MAT o 1)),

where U = B(0,3r) \ B(0,7/2). Choosing e.g. A, = 2|AY ||y + 1 > 0, we have A2 —
Ar [[AV| e g7y = 1 and hence A®(z) > e A3 =1 ¢y >0 for all z € U.

. From the previous two questions, we have obtained for all v € C2°(U) that

v

2 T 2 T 2 2 2
||P<1>v||L2(U) 5((A<I>)v,v)L2(U) - ||V”UHL2(U) > 5¢0 ||U||L2(U) - ||VHLoo(U) [[v]|72

V

T 2
= ||”HL2(U) )

for all 7 > 19 = % ||V||2L°°(U)' Recalling that Py = ¢"®Pe™"® and applying this inequality to
v = e"®w (which belongs to C°(U) for w € C°(U)), we have obtained

|e™® Puwl||,, > Cr HeT‘waQL2 , forallwe CX(U), > 0.

2
I2:
. The proof of this local interpolation inequality proceeds exactly as that of Theorem 2.4.3. The only
difference is that here P is of order one. Hence, commutators [P, x] are of order zero and this results
in the fact that only L? norms appear in (2.59) (as opposed to the statement of Theorem 2.4.3 in
which the operator is of order two, commutators are of order one, and the interpolation inequality
formulates with H' norms).

. Choose a point zp € w. In Question 5 (and after a translation; the assumptions on V' are translation-
invariant), we proved that for all r > 0, there exist C' > 0 and § € (0,1) such that for all u €
C*>(B(0,3r)), we have

s 1-6
HUHLz(B(zO,zr)) <cC ||u||L2(B(m,r)) ”uHL?(B(aco,?)r)) J (2.61)

where we have used that Pu = 0 on R2.

Now assume that u does not vanish identically, that is supp(u) # 0. We set ro := sup {r >
0, B(0,7) Nsupp(u) = 0}. We have ry > 0 since g € w (which is open) and ry < +o0o since
supp(u) # 0. Moreover, (2.61) with r = rg yields [u| 12 (s 21)) < 0, S0 that B(0,79) Nsupp(u) = 0.
This implies 2ry = r¢ which contradicts 0 < rg < +oc.

. In case V = 0, we have P = J (the Cauchy-Riemann operator) and solutions to Pu = 0 are real-
analytic on R2. Therefore, they satisfy the analytic continuation principle: a solution to Pu = 0
vanishing on an open set (even any set containing an accumulation point) vanishes on all R2.
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Exercise 7 (Carleman estimates for the Laplace operator, part of the Exam of May, 2018). We consider
in R™ the operator P = —A + V', where V € L (R™;R), and U a bounded open set of R™.

loc

1. Given a function ® € C*°(U;R), compute Py = ¢”® Pe~"®. Decompose it as an operator in Diff?(U)
plus a lower order term. Give the principal symbol of the operator in Difff(U), which we call pg.

2. Compute 1={Re(ps),Im(pe)}.

3. We now set ® =G oV, with ¥ : U — R and G : R — R. Express ;-{Re(ps),Im(ps)} in terms of
G, V.

4. Show that if d¥ # 0 on U, if G’ > 0, G” > 0 on ¥(U), and if % is sufficiently large on W(U), then
we have

((x,S,T) e U xR" xR",(¢,7) #(0,0), and Re(ps)(z,&,7) = O)
— %{Re(pé)Jm(P@)}(LéJ) > 0.

Hint: one may prove that the term containing |[dV|* is large, whereas the other terms either have the
right sign, or are sufficiently small when %,/ is large.

5. Deduce a Carleman estimate for P with such a weight function ®. Only explain the main steps of
the proofs, and omit the details.

We now want to give another proof of the same Carleman estimate.

6. Let f: U — R be a smooth function. Check that Py decomposes under the form
Py = Q2 +1Q1, Q2= (Pr—7f), Q1= (Pr—irf),

with Pp = Lotle p— Po-Pi - Give the principal symbol of Pg, Pr, Qa, Q1.

7. Prove that we have
2 2 2
[Povl|7e = Q2072 + |Q1v][72 + 7(Lv,v) 2,

for all v € C°(U), where L belongs to Diff]"(U) is to be determined, as well as its order m and its
principal symbol (in terms of pp and f).

8. Assume in this question the existence of a constant C' > 0 such that for all (z,£,7) € U x R"® x Rt
we have

%{Re(m)vlm(p@)}(m,fﬁ) +2f(x) Re(ps)(x,€,7) > C(IE]* + 7°). (2.62)

Deduce a Carleman estimate for P. Only explain the main steps of the proofs, and omit the details.

9. We again consider ® = G o ¥ with d¥ # 0 on U, and G’ > 0, G” > 0 on ¥(U). Prove that for all
u € (0,1), there exists Ag > 0 such that if % > Ao on ¥(U), there is C > 0 such that

1 1
17 (Re(pe), Tm(pa)} + p G” 0 W|a¥[* Re(pa) > C(E[* +72),

on U x R® x RT. Hint: One may re-use the computations and the strategy of Question 4.

10. Conclude.
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Correction 7. 1. We have already computed in Example 1.3.11 that
T (=A)e U = —Au — 72|00 *u 4 270 - du + T(AD)u,
and hence
Py = —A — 7%|0®|? +270® - 9 + T(A®) +V,

where only V ¢ Diff2(U) (since we do not assume smoothness). We also have 7(A®) € Diff}(U) and
thus
po(z,&,7) = €] — T2|0®|* + 2i70D - &

2. We have Re(ps)(z,&,7) = |€|> — 72|0®|? and Im(Ps)(x,&,7) = 270® - £ so that

{Re(pe), Im(pe)} = > Y (47&;0;00BEy, + 47°0; 90,0, 20, D) ,
J k

so that

%{Re(pcI)L Im(pg)} = Hess(®)(&, &) + 72 Hess(®) (d®, dP).

3. According to Exercise 5 we have
Hess(®)(n,€) = G’ o ¥ Hess(¥)(n,€) + G” o W(dV - )(d¥ - ).
and hence
- (Re(ps). Im(pa)} = G o W Hess(W)(€,6) + G o W(dU - €’
+7%(G' 0 ¥)? (G’ o ¥ Hess(¥)(d¥,dV¥) + G” o U|d¥|*)

4. Remark first that Re(pe)(z,&,7) = |£]? — 72|d®|? so that the condition

(&,7) #(0,0), and Re(ps)(z,&,7) =0

implies actually that 7 > 0, which we assume from now on.

Since G” > 0 on ¥(U), we first have

£ (Relp). Tm(pa)} > ' o W Hess(¥) (€, )
+ 7%(G' 0 ¥)? (G’ o ¥ Hess(¥)(d¥,dV¥) + G” o U|d¥|*)
Using the assumption that
0= Re(pa)(w,&,7) = [ = 72[d®|? = ¢ — 72(G" 0 )*|d¥[?,

and denoting |A[ = supj¢|=y A(, ), we deduce

= {Re(pa), Tm(pa)} > ~G' o | Hess(0)] ¢
+7%(G' 0 ¥)? (=G’ o V| Hess(V)||d¥|* + G" o ¥|d¥[|*)
> —(G' o U)?| Hess(V)|72|d¥|?
+7%(G' 0 ¥)? (=G’ o | Hess(V)||d¥|* + G" o ¥|d¥[|*)
G"oVU
G oV¥

> r2(G' o \11)3( [+ — 2| Hess(\I/)||d\I/|2>.

Assuming d¥ # 0 on U, G’ > 0, G > 0 on ¥(U), if we choose G such that C(’;,,/ > Ny =
| Hess(W)]

3 maxg; gz On U(U), we have obtained that %{Re(gmp),Im(p(p)} > 0 on the set {(z,&,7) €
U x R™ x R+’ (577—) e (0,0),Re(p@(x,f,r) = 0}
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Imps
p

5. We first notice that the homogeneity of (Repg)? of degree four, of {Re Do,

together with the use of Lemma 2.1.8 on the compact set U x {(£,7) € R?® x RT, [£]2 +72 = 1} yields
the existence of C1,Cy > 0 such that for all (§,7) € R” x R% ,

} of degree two,

Gy 2 1 2 2
W(Re]ﬁ;) + ;{Repq>,1mp<p} Z CQ (|§‘ +7 ) .
(Note that this inequality is actually stronger than (2.3), for we here do not need the term Klgjﬁ (Im pg )?

on the left hand-side. Note also that the explicit computation of the previous question could actually
directly yield the sought result, without making use of the compactness argument of Lemma 2.1.8).
The proof then follows that of Theorem 2.1.1, except that we have to use the semiglobal version of
the Garding inequality, namely Proposition 1.3.18. We finally obtain the existence of C, 79 > 0 so
that

7o)} < C||Pav|3s, forall v e C(U), 7 > 7.
In turn, after “unconjugating” (i.e. writing v = e”®u), this translates into

|5, + 7] Vul[r, < Clle™ Pul|r,, for all u € C2(U),7 > 7. (2.63)
6. We have as usual Py = P + iP; with Pp = 222Fe py— Pe-Po Now with Q, = (Pg — 7f) and
Q1 = (P; —i7f) we have
Q2+iQ1:(PR—Tf)"Fi(P[—in):PR+iP[—Tf+Tf:PR+iP[:Pq>.

We have Pg, P; € Diff2(U) whereas 7f € Diff}(U). Therefore, the principal symbol of both Pg and
Q2 is Re(pg) and the principal symbol of both P; and @1 is Im(ps).

7. Beware that )7 is selfadjoint but )1 is not. We have
|Pov72 = ((Q2 +iQ1)v, (Q2 +iQ1)v) 1

= 1|Q20][72 + |Q1v]| 72 + (1Q10, Q20) 12 + (Q2v,iQ10) 12
= |Qavl7: + |Q1v72 + (i(Q2Q1 — Q1Q2)v,v) 12 -

We then remark that Q7 = Pr +i7f = Q1 + 2¢7f and hence
i(Q2Q1 — Q1Q2) = i(Q20Q1 — (Q1 + 2i7f)Q2) = i[Q2, Q1] + 27 fQ2.
Remarking that 7 factorizes in the operator Q1 (it does for P; and for 7f), we may write this as
1Pov]zz = |Qevl7z + | Quoll7e + (rLv,v) s,

where L =1 |:Q2, %} +2fQs2 is in Difff(U)7 with principal symbol %{Re(pqﬁ, Im(ps)} + 2f Re(ps)

(according to the previous question together with the symbolic calculus).
8. If we now assume the symbolic estimate (2.62), we simply deduce from the previous question that
||}D<I>U||i2 Z T (LU7U)L2 )

where L € Diff?(U) has principal symbol 1{Re(ps),Im(ps)} + 2f Re(ps) > C(|¢[* + 72). The

semiglobal version of the Garding inequality of Proposition 1.3.18 directly yields the existence of
C, 79 > 0 so that

T ”U”i’i < C||Pyv3,, forallveC®U),T >,

which yields the usual Carleman estimate (2.63).
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9.

10.

In Question 4, we have obtained that Re(ps)(x,&,7) = |£]? — 72(G’ 0 ¥)2|d¥|? and

G//O\II
G oU

1
—{Re(pe), Im(pa)} > (¢ 0 )* " — 2| Hess(W)|aw|?).
AS a consequence,

1
E{Re(ﬂb)’ Im(ps)} + 1 G” 0 ¥|d¥|* Re(ps)

12
)\
>0 G o \I/|d\11|2(|§|2 (G o \IJ)2|d\I/|2) +72(G o xp)?’(g, :’\Ij |t — 2| Hess(\p)udw)
GI/ Oq]
= 1 G o WAl + 72(G 0 W) (1 — 1) g 1" — 2/ Hess(¥)]|dv?)

Henceforth, if 1 € (0,1), both coefficients in front of [£|? and of g,lg\%’ are positive (recall that we
still assume d¥ # 0 on U, G' > 0, G’ > 0 on ¥(U)). We assume u € (0,1) from now on. If we then
choose G such that & > \g := 3maxﬁ% on ¥(U), both coefficients in front of |¢|? and 72
are positive (and independent of (£, 7)) and therefore there is a constant C' > 0 such that

1 11
17 (Re(pa), Tm(pa)} + 11 G 0 W|dW[* Re(pa) > C(I€]* +72),

on U x R" x Rt.

In the end, we have obtained another proof of the Carleman estimate (2.63). Starting from any
function ¥ with d¥ # 0 on U, it may be “convexified” so that to yield an appropriate Carleman
weight ® = G o U. Note that this can always be achieved by starting from Gy a convex increasing
function, then the function G(s) = Go(As) will do the job for A sufficiently large. We usually take
Go(s) = e® for convenience. The functions ¥ and ® have the same levelsets.

Note that this strategy has the advantage of only using a Garding inequality for a genuine differen-
tial operator L, whereas the usual one makes use the Fourier multiplier (—A + 72)~! (in order to
downgrade the order of the operator P}%). This strategy however only works with elliptic differential
operators.

Exercise 8 (7). Let (2 be and open subset of R" and z¢ € Q. Let P € Diff?(2) be a (classical) differential
operator with real-valued principal symbol ps and ® € C®(;R). Assume that Assumption (2.3) is

satisfied.
1. Prove that
7ll3n + 7 [Poll7z < C|Pev]|72,  for all v € C(B(xo,7)), T > To;
2. Prove that the same estimate is true for P replaced by P+ V for V € L% .

3.

In case P is elliptic, prove that

7Y 0l|%: < C||Pev|3s, for all v € C°(B(xo,7)), T > T0;

4. Still assuming P is elliptic, prove that the same estimate is true for P replaced by P+ W -V + V

for Ve Lz and W € L™ & avec des inj de Sobolev

Correction 8. 1. Recall that from (2.2), we have

T[ol3: < C||Pov|,  for all v € C2(B(xo,7)), T > To.
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Py = GTCDJS(:’N_T(I) and prove (2.4). To this aim, we notice that it is again equivalent to prove the
result with P = ZZ;‘:1 D;a" (z)D; instead of P. We decompose the operator Py again as in (2.5)

as Pp = Qg +iQ with Q% = Qr, QF = Qr1, Qr, Q; € Diff2 given by

Qr= Y Dia"D; —7%a"(9;2)(9;0) = P -7 > a"(9;0)(0;9) = P+ R— 7> Y a"(0;®)(9;®)

i,j=1 1,j=1 i,j=1

with R € Difﬂ. In particular, we have, using Qr = Py — iQ; in the second equality
1Pv]lrz < |Qrv] Lz + [|Ro| L2 + C7[v]| 2
< [Povlicz + Qrollzz + Cllvllay + C7?|[vl| 22 < ||Povllzz + Crl|v] -

Hence R ~
T HPol|72 < [|[PavlF2 + C7llv]|7n < C||Povll7e,

where we have used the Carleman inequality in the last place. This implies the sought estimate.

2. We write the Hélder inequality ||[Vv|[2, < [|[|[V[?|| o [||v]?||L» where % + i = 1. Next, if n > 3 the

Sobolev embedding is H* — L7"2, and thus |||U‘2||Lﬁ = ||v||i% < C||v||%:. Choosing p = 5%,

we obtain p’ = % and thus
[Vollz < VI g o]l

Therefore...

3. In this case, the result follows from local elliptic regularity (ref?): there is C' > 0 depending on the
coefficients of P and r > 0 such that

|vllgz < C||Pv|;2 + Cllv||gr  for all v e CZ°(B(zo,7)).

Combined with the first question, this yields the sought result.

Exercise 9 (Agmon estimates). Let V' € Cp°(R™), bounded as well as all of its derivatives and real-valued.
We consider the operator P, depending a large parameter 7, defined by

Pou=—-Au+72Vu
Let U an open bounded subset of R™ so that
V() >e>0 forall zeU,

and let W be an open set such that U € W.
Let ¢, ¢ € C*(W) so that 0 < ¢,¢ <1l and ¢ =1 on U, ¢ =1 on supp(¢).
Assume also

supp(¢p) € W € {V(z) > ¢} .
1. Compute e’™¥ P,e~%7% for one § > 0 to be chosen later on. Compute its principal symbol Drob-
2. Prove that for ¢ small enough and one ¢y > 0, |pr4|? > ¢o for all z € W, [¢|> + 72 = 1.

3. We admit the following elliptic type estimate.

Let Q, € Diff" with principal symbol ¢ so that ¢ # 0 for all z € K, (§,7) # 0, then, for 7 large
enough

loll g < C1Qr0l e
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for all v € C°°(R™) supported in K.

Prove the estimate
e‘swqﬁuH , < He‘STwPT(/ﬁuH )
H H?2 L

for all w € C°(R™), 7 > 79.

4. Using the properties of the support of V¢, prove the estimate He‘s”" [Py, d)]uHL2 <C HUHHI(W) with
W so that supp(¢) € Wew.

. 2 2 2
Here, we use the notation HUHH_}(W) = HVu||L2(W) + 72 HUHLQ(W)'
5. Let U; € U;y open subset. Prove that
”uHHg(Ul) <C ||PTUHL2(U2) +Cr? ||UHL2(U2) .

for u € C°(Uy).
6. Conclude that

lull oy < O™/ ull gy + C I[Pl o -

7. Give an interpretation of the previous estimate.

Correction 9. & To be written one day.

For the last question :

We write h = 1/7 the (small) semiclassical parameter, and consider the semiclassical stationary
Schrédinger operator Py, = h?P; /h = —h?A + V(x). We have proven the following statement so far:
for all € > 0, all bounded open set U C {V > ¢} and all W such that U € W, there is 6 > 0 such that we
have

el g2 0y < e ull g2y + Ch ™2 [ Prull 2 oy -

One can also check that this statement remains valid if V is replaced by V — Ej with E;, € R and
Ej;, — E € R. This implies in particular that for any bounded open set U such that U C {V > E} and all
W such that U € W, there is § > 0 such that we have

lunllp2ory < Ce=%/h lunllp2gwy,  for up such that (=h*A + V)uy, = Epup, Ej, — E,h < hg. (2.64)

This can be interpreted as follows: A classical particle in the potential well V(x) has classical Hamil-
tonian H(x,&) = [£]|? + V() (« is the position of the particle and ¢ its momentum). If the particle has
energy F, it lives in the energy layer {(z,&) € R™ x R", H(z,£) = E} (this follows from the fact that H is
preserved along the Hamiltonian flow it generates). In particular, the position of the particle is necessarily
in the so-called classically allowed region at energy E defined by Kr = {x € R",V(x) < E} (projection of
the energy layer on the z-variable).

If we now consider a quantum particle at energy E, its wave-function uy(x) solves the semiclassical
stationary Schrodinger equation (—h2A + V)uy, = Ejpuy, with Ej, — E. If the eigenfunction is normalized
|unllz2gn) = 1, the square of its modulus |us(x)[? is a probability density, which models the likelihood
of the particle to be at position x € R™. For an open set U C R", the quantity HuhHiQ(U) models
the probability of finding the quantum particle/state u; in U. What we have proved in (2.64) may be

reformulated as -
UC{V>E} = |lun|7s, < Ce /M.

That is to say, if U is in the classically forbidden region at energy E, namely R" \ Kg = {V > E}, the
probability of finding a particle at energy E in U is exponentially small in the semiclassical limit h — 0T
(i.e. in the limit from quantum mechanics to classical mechanics).
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Exercise 10 (Warm up, part of the Exam of May, 2019). Given a bounded open set 2 C R™, we consider,
for m € N, the class Diff:fv(Q) consisting of operators (depending on two large parameters 7,y > 0) of the
form
P= Z paﬁ’g(x)Tﬁfy‘sDa, (e e N*", e N6 €N),
la|+B8+5<m

with coefficients p, s € C°°(Q) bounded as well as all their derivatives. We define by p,,(z,&,7,7v) =
Ela\+ﬁ+6:m Pa.p.s(7)TP2E its principal symbol in this class.

Prove that:

o if P, € Diff"}(Q2), P> € Diff]"2(Q), then PP, € Diff:rfi/erz (©) with principal symbol py,, Pim,;

e if P, € Diff7"} (), P, € Diff"2(Q), then [Py, P3] € Diffff}ﬁmz_l(ﬁ) with principal symbol 2 {py,,, pm, };
e if P € Diff]" (Q), then P* € Diff”" (Q2) with principal symbol py,.

Hint: one might consider first the case of operators of the form P = a(x)7?y°D® and use known results.
Correction 10. & to be written one day

Exercise 11 (Limiting weights and limiting Carleman estimates, part of the Exam of May, 2019). This
Exercise is not independent from Exercises 3 and 10. The inequality 2ab < a? + b? might be useful in this
exercise. The goal of this exercise is to prove the following Carleman estimate.

Theorem 2.7.1. Let Q@ C R™ be a bounded open set. Assume P € Diff2(Q) is elliptic with real principal
symbol pa. Assume that v € C(2;R) satisfies di # 0 on §Q together with

{Pg,pup}(x,&,7) =0 forall (z,6,7) € 2 x R" x RT, (2.65)

where py(x,&,7) = pa(x, § + itdy(x)). Then, there exist C, 19 > 0 such that

2|2, + ||V, < C eV Pult,,  for allu € C2(Q),T > 7. (2.66)
1. Compare this Carleman estimate with the usual one.
2. Is this Carleman estimate insensitive to the change of P into P+V (x)? respectively into P+W (x)-V?

3. Prove the following lemma.

Lemma 2.7.2. Let G € C®(R) and ¢p € C®(;R), and set ¢ = G o1p. Assume pa(z,€) is a
homogeneous symbol of order two with real-valued coefficients, and set py(x,&,T) = pa(z, {+iTdo(x)).
Then we have with £ = (G’ o) (z)n

s 5o} (,6,7) =r(G” 0 0)(@)(G 0 6)(@) (1o ¥} (& P + 4P, (2)?)

1.
(G 0 ) (@) 5 TP} 7).
4. In all the exercise, we only consider the function G(s) = G, +(s) = s + 7-s?, and hence ¢ = ¢, =
Got =1+ Ly2.
(a) Prove the existence of Cp > 0 such that for 7 > Cyy, we have 1/2 < G' o) < 3/2 on .

(b) Compute d¢ in terms of dip. Prove that there is C' > 0 such that |0;¢| < C holds for j €
{1,---,n}, uniformly for v, 7 in the range 7 > Cp~.
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5. Prove that if ¢ satisfies (2.65), then

7521w 6 77) = (P2, 0} (@, O + 40+ 76(2) ol d())?

for all (z,£) € Q@ x R", 7,7 > 0. What is the homogeneity of 5-{Ps,ps} in the variables (£,7,7)?
From now on, we assume that P = P* that is, P = Z;L,jﬂ D;a"(z)D; with a¥(z) = a’'(z)
Py—Pj

real-valued and uniformly elliptic. We denote P, = e?Pe~7? PR = P"’szd’ and Py = —5—

6. Give the explicit expression of Py, Pr and Py in terms of ¢ and its derivatives.

7. Give the explicit expression of Py, Pr and P; in terms of i and its derivatives. Deduce that
P,,Pr,P; € Diffiﬂ(Q) and compute their principal symbols py, pr,pr in this class.

8. Prove that (Prv,v)r2 = 3.1 ;_,(a” Djv, Div) 2 — (p2(-, 7dd)v,v) 2 for all v € C*(Q). Deduce the
existence of a constant C' > 0 such that

Vol < Cr2|v]32 + O 2 || Proll72,  forallT >0, ~e(0,7/Col, veCX(Q).

9. Prove that we have i[Pg, Pi] = 5-{Pg, py}(z, D,7,7) + R, with R € Diffiw. Here, {Pg,pe}(z, D, 7,7)
denotes the differential operator having {DPg, ps} as full symbol.

10. Prove that for all R € Diff?

7+ there is C' > 0 such that

((Rv,v)12| < C (# v]2. + HVUH%Q) forall7>1, ~e(0,7/Col, veCX(Q).

11. Prove that (i[Pr, Pr]v,v)p2(q) = 47 [[(T + ’yw(a:))pg(x,dw(x))vH%Q + v(Rav,v)r2 + (Rv,v) 2 for all
v € CX(R), where Ry € Difffﬁ is to be determined as well as its principal symbol.

12. Deduce that there is C > 0 such that

Y(Bav,0) g2 + (Ro,v)e = =C (72 ol + [ Vol3.)  forallr =1, 7€ (0,7/Col, veCR(Q).

13. Deduce that there are vy, C' > 0 such that
72 ||’UH§2 < C(i[Pr, Prlv,v)p2() + C HVUH%2 for all v > v9, 72> Coy, veCX(N).
14. Prove that there are ~y, C' > 0 such that
v ol 7247 [Vl 72 < C (i[Pr, Prlv,v) g2y +Cym 2 | Proll7a  for all v > 70,7 > Coy, v € C(9),
15. Deduce that there are 9, C' > 0 such that
¥ olle + 7 [IVollze < C | Psoll. forally >0, 72> Coy, ve CX(Q).

Prove that this estimate remains true if P is replaced by P + W (x) -V + V(z) (up to changing the
constants involved).

16. Prove that there are 79, C' > 0 such that
72 |e™ulls, + |7Vl 1, < C e Pulf;, . forallu € C(Q),7 > 7,

and conclude the proof of (2.66).

Correction 11. 1. & to be written one day
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2.

3. We start from Lemma 2.2.3, implying

o (5o} (5,6,7) = I [0epa(, € — i79(x)) - Dep(a, € + 7o)
+ Hess(¢)(2) [O¢pa(x, § — itdd()); Oepa(, € + iTdg(x))] .
Recalling that d¢ = G’ o9pdi), taking & = (G’ o4p)n and recalling that pa (resp. d¢p2) is homogeneous
of degree 2 (resp. degree 1) w.r.t the second variable, we obtain
5= (75 e} (,6.7) = L(G 0 0)° T [0epa (. — imd(2) - Oupa(a, m + i ()]
+(G" 0 ) Hess(¢) () [0¢pa (2,1 — irdip(x)); Oepa (w,n + iTdip())] -
We have Hess(¢) = (G’ o ¢) Hess(¢)) + (G o ¢)dy) & dip so that

(G 0 )* Im [Ogps(, ) — irdih(2)) - Dupa(a, + irdis(x))]
(G 0 4)* Hess(4) (2) [epa (.1 — irdis(2)); Depa (. + irdib())]
(G 0 )2 (G" o) (94 (x) - Depalw,n — irdih(x))) (0%(x) - Depa (. + irdip(x)))
= (G 0 0)’ 5 PH e} &0 7) + (G 0 9)(C" 09)
X (OY(x) - Oepa(a,n — iTdip(x))) (8¢ (x) - Depa(z,n + iTdy(x)))
Using that depy is homogeneous of degree 1, we may expand
(09(x) - Bepa(w,n — itdip(x))) (OY(x) - Depa(a,n + iTdy)(x)))
= (00(x) - Oepa(,m))” + 72 (09 () - Bepa(a, dip(x)))”.

Then, we notice that {ps, ¥} (x,n) = Oepa(z, n)- 09 (x). Moreover, since p; is a real-valued quadratic
form, we can write po(z,£) = > a"&;&; with a/* = a real, and thus & - Oepo(z,£) = > 2aY&E; =
2pa(x, &), whence Oy (x) - Oepa(x, dip(z)) = 2p2(z, dip(x)). Combining all these computations, we have
obtained

1 1
%{Pmpqs}(xaf,ﬂ ==
+
+

1
5 1Porpo}(@,6,7) = (G0 0)’5 {Pwapw}(%ﬁﬁ)
+ (@ G” o) ((0(@) - Oepa(w,m)” + 7%(D0 () - Oepa(w, dip())) )
= (@0 uz)?’ﬁ{m,pw}(z,w)
+ (G ow)X(G" o) (({p2, ¥}, m)” + 72 (2p2(a, (@) ) |
which proves Lemma 2.7.2 after multiplication by 7.

4.
& to be written one day

Exercise 12 (Carleman estimates with linear weight, warm-up of the exam of May, 2020). In this exercise,
we consider the flat Laplace operator P = —A on a connected bounded open set 2 C R"™. We take
a € R"\ {0} a fixed vector and consider the weight function ®(z) = « - z.

1. Compute Py = "®Pe~7?, its full symbol, and its principal symbol pg.

2. Write Py = Pr+iP; where Pr and P; are both selfadjoint. Compute the principal symbols pg, p; of
Pr, Py respectively, as well as their Poisson bracket {pg, pr}. What can we deduce, as far as classical
Carleman estimates are concerned?
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3. Let L > 0. Prove that for all v € C2°((0,L) x R"~1) and all z; € (0, L), we have
[ ot a)Pds’ < 2 0l 1002 oy

4. Deduce that there is C' depending only on Q,a such that [|[Prvl|2q) = CT [0 12(q) for all 7 € R

and all v € C°(Q). Hint: one may reduce to the case o is proportional to e; = (1,0,---,0), and
consider Q C [0, L] x R"~1.

5. Prove that there is C' > 0 such that

™" Aul| 20y = CT2 €7 Ty, for all w € C°(Q),7 € R.

6. Conclude that there is C' > 0 such that

72 ||€m'$UHiZ(Q) + ||em'xvu||izm) <cC HemmAUHiz(sz) , forallu e C(Q),|7] = 1.

7. Compare with usual Carleman estimates. Is this Carleman estimate sufficient for proving the follow-
ing result: for a nonempty open set w C €2,

(wECOO(Q), Aw =0 1in , szinw) = w=0o0n?

Correction 12. 1. We have Py = —A — 72|a|? + 27 - V, its principal symbol and its full symbol are
equal and given by py(z,&,7) = [£]2 — 72|al? + 2iTa - &.

2. We have P = —A — 72|a|? and P; = 27a - D, with respective principal symbols pg(z,&,7) =
€12 — 7%|a)? and pr(z,&,7) = 27 - €. Finally, we have {pgr,pr} = 0 identically (neither depends
on z). The classical Hérmander subellipticity condition (2.3) is not satisfied: on the characteristic
set {pp =0} = {(x,&,7) € A xR" x R4,& L a,|§| = 7|a|}, the Poisson bracket {pr,ps} vanishes.
Hence the usual Carleman estimate cannot be true.

3. We have [v(0,2')|?> = 0 and thus
1 1
lo(zy,2")|? z/ Dslv(s,2')|*ds :/ 2Re (v(s,2")0s0(s, a"))ds,
0 0

and hence

1 L
/ lv(z1,2")|2da’ :/ / 2Re (v(s,2")0s0(s, 2"))dsda’ §/ / 2Jv(s, 2')||0s0(s, 2")|dsdx’
R -1 o Jrno 0 Jrn-1
< 2{Joll 2o, 1) xrn—1) 102, 0]l L2 (0,1 xRA-1) -

4. Then integrating in 21, and dividing by (|02 (g 1jxgn-1) (if nonzero) implies for all v € C2°((0, L) x
Rn71)7

[0l 20,y xn-1) < 2L 110210l 1210, 1y xmn-1) -

Next, the operator A is rotationally/translationally invariant, so we may assume that a = |ale;
(that is to say o+ D = |a|D;) and Q C [0, L] x R"~1. We thus obtain, for all v € C2°(Q),

2L
[0l L2y < 2L [[D1v]l g2y = Tal llec- Dvll 2 -

Recalling that Pr = 27« - D, we have obtained

L
1 Proll 2y = 27 la - Dol g2y 2 Tial [vll 20 -
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5. We remark that [Pg, Pr] = 0, so that, for all v € C°(Q2) and 7 € R,
||P<I>U||2L2(Q) = ||PIU||2L2(Q) + ||PR11|\%2(Q) + (i[PR7PI]U7U)L2(Q)

LQ
2 2 2 2
= ||Prollz2(q) + 1PrvI|72(0) = [Prvll72g) = TQW [0l 220)

taken for v = e™* %y with u € C°(Q), this yields the sought result.

6. Then, we remark that
2 2 2
(Pro,v)12(0) = (—A0,0) 120y — 7210 [[0[|72(0) = IV0ll72(0) — T2l [0l 720

As a consequence,

2 2
VoIl () = (Prv,v)ra) + 7%l ]l q) E 1PrYNZ2 ) + laf 10l 2y + 72l [0l 72y

() —4|

Recalling that HP¢11||2L2(Q) = ||P1v|\iz(9) + ||PR11||2L2(Q), and using the previous question, we have
thus obtained, for all |7| > 1,

|af* 2
||VU||L2(Q) S 4| E ||P<I>’UHL2(Q) +2— T2 [ Povl|T2(q) -

TO-T

Undoing the conjugation, we have v = e™**u hence Vv = e™**Vu + Tav and

1 |Oé|4 |Oé|4 TaT 2
T —1—4—4—2 72 |le Pu||L2(Q).

o7l 0y < 20l + 27l ol < (

Together with the previous question, we obtain, for all |7| > 1,

Tox, |12 TOT 2 1 |Oé‘4 TOT 2
ol €l gy + 1€ Vullaoy < (g + 75k ) 17 Pul e

7. We have a loss of a power of 7 in the left handside. This is a consequence of the fact that the subellip-
ticity condition (2.3) is not satisfied. This Carleman estimate allows to propagate uniqueness in the
direction «, but not in all other directions. Hence it does not imply straightforwardly unique contin-
uation from any nonempty open set. For example, to fix ideas, if Q@ = (—1,1)? C R? and o = ey, the
Carleman estimate from which we want to extract information essentially reads | xwl| 2@ =
Clle™ A, x]w| 12(q)- But if w = (=1,1) x (=4,4), we cannot choose x € CZ°((—1, 1)?) such that
supp(Vx) has two connected components, one included in w, and both contained between two lev-
elsets of & = 7.

Note that this Carleman estimate is actually a particular case of Theorem 2.7.1 in Exercice 11.
However, the two proofs are very different. Here, we have an exact cancellation of the commutator
[Pr, Pr] and the positivity comes from coercivity of P; (a Poincaré inequality). In Exercice 11, only
{pr,p1} = 0 (hence [Pg, P;] € Diff? instead of Diff?) and we convexify (in a subtle way) the weight
function to have positivity (in class Diffi only, whence the loss of a power of 7) from the commutator
[PR7 PI} .

Exercise 13 (Carleman estimate for the Laplace operator with singular weight, part of the exam of May,
2020). In this exercise, we consider the flat Laplace operator P = —A on R™ \ {0}, together with the
weight function ®(z) = —log |x|. We also denote (with a slight abuse of notation) by F(z) the operator
of multiplication by F(z), e.g. the operator Dj|z|” is defined by (D;|z|"u)(z) = D;(|z["u(z)). The
derivative of the function will be denoted with parentheses, e.g. D;z7 is an operator (= #3D; 4 ;)
whereas Dj(x?) = 2z, is a function.

1. Compute D, ; = |z| " Dj|z|".

89



10.

11.

Compute [z|'""D?|z|"*! = Pg; 4+ iPr; where both Pg; and Pr; are formally selfadjoint. Write
Pr ; in terms of the operator z;D; + Djx;.

Write —|z|'~"Alz|™t! = Pgr +iP; where both Pr and P; are formally selfadjoint. Write Pr in terms
of the operator
1 n
A::i(m~D+D~x):x~D75,
where we have taken the gradient/divergence notation (z-D)u(z) = Z?Zl z;Dju(z) and (D-z)u(x) =

Z}l:l D;(zju(x)). Compare with the usual computation of Py := e™® Pe~7%.

. (About the operator A). Compute principal symbol a(x, &) of A and the Hamiltonian flow of the a.

For a smooth function f : (0,4+00) — R, compute {a, f(|z])}.

Compute the principal symbols pg, pr of Pg, Py respectively, as well as their Poisson bracket {pgr, pr}-.
What can we deduce, as far as classical Carleman estimates are concerned?

. Compute all following commutators: [iA, D;], [iA, z;], [iA, D3], [iA, A, [iA, |z|].
. Compute [Pg, Py].

(a) In this question, we consider the operator Py := —A + X for A € R. Prove that for all u €
C*(R™\ {0}), all 7 € R and A € R, we have

121~ Pyt 2 gy > 472 ||~ (2.67)

2
“HLz(Rn) :
(b) In this question, we consider the operator Py := —A + V(z) for V € L2 (R™). Prove that for

all R > 0, there exists 79, C > 0 such that

[l]* =7 Pyul%, )2 7C 2] Tl ey for allue CE(B(O,R)\{0}),7 > 7. (268)

(®"

. (Positivity estimates for the operator A) Using the positivity of |[(A — if(|z])) v||iz(Rn) for real-valued

functions f, prove that for all R > 0, there is C' > 0 such that
2
2
140] 22 gny > C H |ac|v‘ poguy for allv € CE(BO,R)\ {0}),
1
v
log(R) — log(|x|)

Compare these two inequalities with each other.

2

”AU”?L?(]R") >C

, forallve C*(B(0,R)\ {0}).
L2(R™)

Deduce that for all R > 0, there is C' > 0 such that

1l 2, . foralluc C(B(0,R)\ {0}),7 € R

2

2
> 07 |af " Hul
) L2(Rn)

(R™
o] 7

log(R) — log(|z|

|||17|177A“H2L2(Rn) > Cr?

, forallue C*(B(0,R)\{0}), 7 €R.
L2(R™)

)u
Compare these two inequalities with each other, and compare with (2.67)-(2.68).
We now want to obtain an estimate on the gradient term.
(a) Compute [—A, f(|z])] on R™\ {0} for a smooth function f : (0, +o00) — R.
(b) Prove that for all R > 0, there is a constant C' > 0 such that

2
| Dlaf*2]| | < Clllal Al ], s for all v € C2(BO, B)\{0}), 7] = 1,

D (1oe( ) o 2

L2

<C H\:10|1*TA|:E|T+11)H2L2 , for all v € C°(B(0,R/2) \ {0}),|7] > 1.

NB: as above, D f(|z|)|z| stands for the composition of the (vector-valued) operator D = 1V
and the multiplication by f(|x|)|x].
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12. Prove the following Carleman estimates: for all R > 0, there is C' > 0 such that

2 2
9 1 7-+ 1—7 2
W Y F e
for all u € C°(B(0, R) \ {0}),|7] > 1,
) 2
—7— R - -7 R o -7 2
ol =7 (1og (|x)> u a (log<x|>) Du < O lal' =" Aul| 2 )
L2 (R™) L2(R™)

for all u € C°(B(0, R/2) \ {0}),|7] > 1.

13. (Bonus: only treat this question if some time is left) Reprove these Carleman estimates in polar
coodinates (r,w) € (0,4+00) x S"~1, where r = |z|. We recall that the Laplace operator is given by

1 1 1 1
A = 63 + ;67n + ﬁASn—l = ;87«7'8T + T?Agn—17

where Agn-1 is the Laplace operator on the sphere in the variable w.

14. (Bonus: only treat this question if some time is left) What can we say if we replace —A by P =
Dk a’*(x)D; Dy, € Diff?>(R") such that C|¢[*> > Dok a’*(2)€;€, > C|€|? for all (z,£) € R™ x R™?

Correction 13. 1. We compute D, ; := |z|~"D,|z|™ by
0;(l2|™w) = |2["Ou + ud;(jz|") = |2|"0ju + urw;|z| 72,

and hence .
_ -T7. T _ s J
Dj - = |z|""Djlz|" = Dj —it—5.
]
& parler des facteurs de |z| ajoutes pour avoir de l’invariance par scaling.

2. Hence we can compute

2= D2Ja|* = Jal (lo| " Dylal" ) (|27 Dyla|") 2] = |o|Djr Dir o]

Lo x;
= |z <Dj - ZT|J:]2> (D] ZT|2> |z

Expanding this expression, we obtain

22 . .
|| '~ TD2|:10|T'Irl |x\D2|x\ L ir <jD-x| + |$|D-])
TR T Tl
Now, remarking that | 0;(|z|) + |x|0; (%) ﬁj || ( mg) =0, we deduce that
=L Djla| + |2] D; ;D; D(|a) + Dy + |#|D; (%) = 2;D; + Dja;

] ]\I || ]

is selfadjoint, so that

2

x4
|$|1 TD2|!L‘|T+1 PJR"FZPJ I, Pj’R: |$|D?|$|—T2ﬁ, Pj,l— (SUJD + Dy xj)
3. We deduce that
—|z|* TAlz|" = Pgp +iP;, with
Pg = —|z|Alz| = 7% = [2||D]?|2| - 72,

P[Z—TZ(.’EJ'DJ‘ +Djl‘j):—T(I'D+D-x):—27'A,
j=1
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Note that the choice ®(x) = —log|z| leads to e~ 7®(®) = |z|7. Hence, the usual computation is
Py :=e™®Pe™™® = —|z|"Alz|", so that

Advantage : scale invariant.
4. We have a(x,&) = x - £. Its Hamiltonian flow is defined by (x4, &)(xo, &) where
&y = Oga(we, §) = T4, ft = —0za(z, &) = =&,

hence we have (x4,&)(w0,&0) = (elwo, e t&y). This linear flow is (for positive t) a dilation in the
space variable z and a contraction in the frequency variable . Finally, we have {a, f(|z|)} =
O¢a-0.(f(|z]) = - %f’(m) = |z|f'(|x]). In particular, {a,®} = {a, —log |z|} = —

5. We have pg(z,£) = |2]?|€]? — 72 and p;(z,€) = —272 - € and thus (on the whole R x R™)

{pr,pr}(x,&) = Oepr(x,€) - Oupr(x,€) — Oupr(®,§) - Ocpr(2,§)
=2|z’¢ - (—27€) — 2|¢)Px - (—272) = 473 [P + 43P |z = 0

6. We have
[iA, D;] = [;0;, D;] = —=Dj(x;)0; = —Dj,
(1A, z5] = [2;0;, x5] = x;0;(x;) = x5,
[iAv Dgz] = Dj [ZAvD]] + [ZA7 Dj]Dj = _2D]2'7
(A, A] == [iA, D3] =2 D? = —2A,
j=1 j—l
n n 2
[iA, |z] = ) [0k, o] = Zxkak ) = Z |—k = |a].
k=1
7. Recalling that P; = —27 A, we instead compute using the last question

[iA, —Pr] = [iA, [z|Alz]] = |2 [i4, Alz[] + [i4, [«]] Alz|
= [x][iA, A || + |2[A[iA, |2]] + [i4, |2]] Alz|
= [z[(=24)[z| + |z[Alz] + |2|Alz] =0,

that is to say, [Pr, Pr] = 0. Note that this is consistent with the fact that {pr,pr} = 0 (but this is
even stronger!).

8. (a) Now we consider Py = —A + A, and we perform the same decomposition:
|JC‘17TP)\‘.Z‘|T+1 — —|$|17TA|£E|T+1 4 )\|1,|2 _ PR,/\ 4 iP[,
where Pg ) := Pr + Az|? is formally selfadjoint. As usual, we have for all v € C>°(R™ \ {0}),
@ny = (PRA+iP1) v, (PRX+iP1)v) 12 gy

2 2 .
= HPR,/\U”LQ(Rn) + ||PIU||L2(Rn) + (Z[PR,)\; PI]U7'U)L2(Rn) .

[l Pafa| Lo 7,

Here,

i[Prx, Pr] = i [Pr, Pr] + i [Az|?, Pr] = 0+ [Az]?, —27A] = 274, |2|7],
where [iA, |z|%] = |z|[i4, |z|] + [i4, |z|]|z| = 2|z|*>. Hence, i[Pg x, Pr] = 47A|z|* and we have the
inequality:

_T . 2 . 2
|||$|1 P)\|J3‘ +1’UHL2(R”) > (Z[PR7>\? PI]U7U)L2(R") = (47'/\‘$|21}, U)L2(]Rn) =47A |||x|v”L2(R") :

As a consequence, writing v = |z|"*1v, that is v = |z|77"tu (for u € CX(R™ \ {0}), that is,
supported away from zero) we obtain the inequality (2.67).

Note that this simple inequality has applications to the absence of embedded eigenvalues. We
refer to Proposition 14.7.1 in | | and Theorem 14.7.2 (which is a unique continuation
statement from infinity) stating that no eigenvalues are embedded in the continuous spectrum
of —A + V if V is a suitable short range perturbation of the flat Laplace operator A.
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(b) We first fix A=1. If Py = —A+ V(x) = P, + (V(x) — 1), application of (2.67) with A =1
yields for all 7 € R and uw € C°(R™\ {0}),

A )| 2 gy < 2T Pr s gy < 2112 T Pt gy + 2 [l T (V () — D2

(&™) (") ") (=)

Using that supp(u) C B(0, R), we further have

H|$|1_T(V<x) - 1)UHLZ(Rn) < |||.T‘(V(l‘) - 1)HLOO(B(O,R)) H'x‘_‘ru”Lz(Rn)

= HlerUHL?(R")

These two inequalities imply
(4T - 2R (”VHLOO(B 0,R)) + 1 ) H|$| TUHiﬂ(ﬂgn) < 2 H"rll_TPVuHip(Rn) )

whence the sought result when taking 7 > 79 with 79 = 2R2(||V||Loo(B(07R)) +1)%

9. As above, we have

(A, F@)] =2 VFG), A f(a] =2 (7)) = Feblol. (2.69)

We see that [iA, F'(z)] is maximal when F' is radial and increasing. The second commutator is then
more precise.

Then we compute, for a real-valued function f,
1A = i £ (12) 0l 2z = IV + (20l gy — LA, (D0 0) 12
2
= [ A40] 22y + (£, ) gy — (F/(JeDllo, ) oy

Hence, we may write

140l sy = (£ 2l)lz] = £(1])?)o,0) (2.70)

L2(R™)
We now choose the function f. Taking f(s) = 5% implies

2
, 9 s s s sR s
— :7—7>7_7:4 .
P& =16 =g~ 23r arp —ar Cvthesct{0<s<l

Together with (2.70), this yields

2 (ee)
1 40]22 gy > (4R . forallv e C®(B(0,R)\ {0}).

-z Ve,
If we try to optimize and instead choose f so that f’(|x|)|z| = 2f(|z])?, this will imply

2
1AV 72 gy = F ()0l 72 gy

This means f/(s)s = 2f(s)?, that is to say, for R > 0 and s € (0, R], f(s) =
(2 log (%))_1. Coming back to the last inequality, this yields

)L2 (Rm) L2(R™)

1 —
2(log(R)—log(s))

1 2

123

1
log(R) — log(Ja]) "

, forallve CX(B(0,R)\ {0}).

]2 g
2(Rn)

These two inequalities have exactly the same form, except for the weight in the right handside.

Notice that the function s (log (%))71 may be extended by continuity by 0 at

log(R) log(s)
s = 0, tends to +0c0 as s — R~ and is strictly increasing on [0, R). Near 0 it is bigger than every
power of s7, v > 0 (the smaller v, the better the estimate is). Hence, the second estimate is better

than the first one!
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10. The usual computation together with the nullity of the commutator in Question 7 implies that for
all v e C°(R™\ {0}),
_r r 2 2 2 .
H‘xll A|.1‘| +1UHL2(R”) = HPRU||L2(R”) + HPIUHL?(R”) + (Z[PR)PI]'UvU)L?(R")
2 2
= [Proll 2@y + 1Pr0l L2 gy -
We have moreover proved that P; = —27A, so that
|||£L’|177A|CE|T+1

2 2 2
UHLz(Rn) > ||va||L2(R") = 47? ||Av||L2(Rn)~

We deduce from the previous question that

el Al 0| gy > H\/p; v for all v € CX(B(0,R)\ {0}),7 € R (2.71)

L2(Rn)
1
log(R) — log([z])*

2

H‘xll—‘rA|m|'r+1

, forallveC(B(0,R)\{0}), 7 €R.

UHLQ(]R") 2T ()

(2.72)

As a consequence, writing u = |z|" "1, that is v = |z|7""!u (for u € C(B(0, R) \ {0})) we obtain

1—7 2 —1,2 I oo
ot Al oy = B (ol 7R, forall we O (B, R)\ {0)).7 € B

2

—7—1

2|
log(R) — log(J«]) "

'~ Al oy > 7

, forallue C(B(0,R)\{0}), 7 €R.
L2(Rn)

As above, the second inequality is better than the first one. When comparing with (2.68), both of
these inequalities have a better power of 7 (72 instead of 7), and moreover a better power of |z| near

1 ‘z‘7T71 . —r —r—1 - . .
zero (Jx|~7~2 or even Tog()—Tog(ay \nstead of |£|~7). The case of a power |z is critical with

respect to scaling and requires a finer analysis.

Note however that (2.67) does not require functions to be supported in a compact set, and can also
be useful near infinity as already mentioned.

11 (a) We have [Dj, f(|z])] = D;(f(|x]))

L% #(|2|) and hence

el

(D5 () = Dyl F(Ja]+ Dy, F(2DID; = Dy 7 () + 5 2% /(D
Di1Dy, 1) + (2 £

11 1 1z, / lz;
= 571 UaDDya; + (e, 0y |+mej(f(|x|))+;mf(\x|)D
— 1if’(|x|)D-x» (m)ﬁ _7f”(| )+ 1 f'(|z))z; D

i]a] 5% 2[5 Ja? |x| ’

Summing in j and recognizing the definition of A (in the first + last terms), we have obtained

1D, 4] = § ez + ZED — g, (2.73)

(b) We want to use that |z||D|?|z| = Pr + 72 and that we have control on Pgrv and on v (in
appropriate weighted norms). To this aim, we compute for real-valued f

IDF(Dlalvl2s gy = (DF(Dlalv, DS (fal)]o) gy = (12l DI £ (2l lalo, F(1])0) 1o g,
= (j2l| DPlalv. £(12)*0) 1o g + (121D, F(aDlllo. £(12)0) oo,
= (Prv, F(12])20) gaggn, + 7 1F (D02 oy
+ (I[P, £ lele, £(12l)0) oo, -
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Note that the quantity on the left handside is real, so that we may take real parts:

1D (|a]) 2 [vl|72(gny = Re (Pro, f(12)*0) oy +7° (1207220,
+Re (D, f(lzD]lzlv, f(j2])[v) 2 gn) - (2.74)

Now, if A, B, C are selfadjoint, [A, B]* = —[A, B] and Re(C[4, B]) = 1 ((C[A, B]))+(C[A, B])*) =
5 (C[A,B] [A, B]C) = 1[C,[A, B]]. This, together with (2.73) 1mphes

Re (F(la) DI, (1)) = 5 [, D1 (2] = 5 | £, | | f(ja))24
- %ﬁf’qxn [(2]), A] = m ()£ (el = £(2])?,

after having used (2.69). Coming back to (2.74), we deduce
2 2
IDf(jz)z[vl2gny = Re (Pro, f(121)*0) o gny + 72 [ (120l 720
+ (F (2|2, |2]v) 2 gy
= Re (Prv, f([121)*0) oy + 7 (D)0 2 ny + L (20l 2 gy -

We have seen that |||z|'~7Alz|™+ = ||PRU||iz(Rn) + ||P1v||ig(Rn), so that

2
UHLZ(Rn)
Re (Pro, f(|z])?v) 2 < |[la]' 7 ALz ol| L || £(12])?0]] 2,

and hence
IDf (=) zlvll7- < [l Al ]| . || £(2)?0]) L
+ 72 F (Dol Faggn + 1 (D) 20l 72 gy - (2.75)

We may now choose the function f. Taking for instance f(s) = (s/R)'/? and recalling that
functions are supported in B(0, R) \ {0}, we obtain

2
=l ol o R ol o + 7B |Vl + @) |l
1 1 1
3 Il Alal o, 4 SR el + (74 1) R \wa '
1 -7 T 3 — 2
5 el =7 Alaf 1|7, + <72+ 4> R |Vl

Using our estimate (2.71), we have now obtained, for v € C°(B(0, R) \ {0}) and |7| > 1

IA

2
[P
L2

2

IN

IA

2 1 5
R! HD|$|3/2 H < 5 fllal*- Al |2, 4 2|2 T Al )2, = = 2]~ Al 2,
(2.76)

(c) We also remark that D|z|>/?v = %m%/zv + |2[*2Dv so that using again (2.71), we have, for
[Tl >1

2
etrzpell, < 25 ViR
L2 = 2

Coming back to u = |z|""1v, we have Du = |z|7T'Dv + (7 + 1)|z|""'2v and thus

5
e N el e N [ o NP e [

L2(R")

2 ‘ 2 2
§2H|w|3/2DvH +872H\x|1/2v‘
2 L2

2 2
H|33‘7T+1/2DUH §2H|x|3/2D1}H +2(7—+1)2H|$|1/2vH
L2 L2 I Lo
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for |7] > 1. Together with (2.76) and (2.71), this is
R—l —T+1/2D 2 <5 1_TA 2 8 1_TA 2 13 1—7'A 2
] ufl , < 5l A + 8 [l Aul[ . = 13|l Aul[.
Adding this with (2.71) finally yields

2 2
R~ ||z|"™2Du||  + R |||x|77" V2| <14 H|x|1_TAuH22 .
L2 L2 L

If we now choose for s € (0, R], f(s) = m = (2log (%))_1 and recall that f/(s)s =

2f(s)?. For functions supported in B(0, R) \ {0}, we obtain from (2.75) that
1D (eDlalollZs < o' Alal™ o] o £l 0 + 72 £ (lollZa + [ £l 2,
1 3
< S el =7 alel™ o, + S (Ll o3 + 72 1 £(2lells

Using that f is increasing, we have f(|z]) < f(R/2) = (2log2)~! < +oo for z € B(0,R).
Hence, for v € C°(B(0, R/2) \ {0}), we have

1 . - 2 3 _
IDS(aDlelelfs < 5 el alal o3, + (5 21og2) 2 72 Il

IN

]‘ —T T
5 el =7 Al |7, + 272 1 (2ol 72

for |7| > 1 after having used (2log2)~2 < 1.
Using our estimate (2.72), we have now obtained, for v € C°(B(0, R/2) \ {0}) and |7| > 1

1 1
IDf(2lalole < 5 ol Alal™ 0|7, +25 [lal* = Alef* o7, = o]~ Alal™ o]},

(2.77)

We then remark that D f(|z])|z|v = f(|z])|z|Dv+3 (xf’(|x|)+ﬁf(\x|))v so that using again (2.72),
we have for v € C(B(0,R/2)\ {0}) and || > 1

17 ()21 DollZz < BIDS(e)lelvl|Z: + 311 f (2])olFe + 3 [l21f (2ol 72
Using f/(s)s = 2f(s)? < 2f(R/2)f(s) = 2(2log2) "1 f(s) in the last term, we deduce
3 _
1f(zDle| Dellze < 3D f(ehlelv]7z + (3 + 3 (log2) =) 1f (2o
Combining with (2.77) and (2.72) (and using 2 (log2)~2 < 2) finally yields
If (2]l Dol 72 + [ (2ol 7= < 3IDf(al)elvl7z + 611 f (2])ollZ:

< Bl Al o + 6 llal = Al
that is to say

\ (e (%) " i 2 (e ()

L2
Coming back to u = |z|7!v as above yields the sought result.

2

+ < 18H|ac\1_TA|ac|T+1vHi2 .

L2

Exercise 14 (Strong unique continuation, part of the exam of May, 2020). Let £ be a connected open
set containing 0. Let V' € C*°(Q) and let u € C*(Q2) be a solution to (—A + V)u = 0 in Q. Assume
that 0*u(0) = 0 for all « € N™. Prove that w = 0 in Q. Hint: use one of the Carleman estimates of the
previous exercise.

96



Correction 14. We write Py = —A + V. Fix R > 0 such that B(0,7R) C Q. If u € C*°(Q) satisfies
9°u(0) = 0 for all a € N, then u = On(|z|") for all N € N. Hence, for all 7 > 0 |z|~"u € L2(B(0, R)).
Moreover, the same holds for Pyu so that |z|~" "1 Pyu € L2(B(0, R)) as well. We now take yr € C°(Q)
such that supp(xr) C B(0,R) and xg =1 in B(0, R/2).

Next, we need to remark that the Carleman estimate (2.68) generalizes to all functions v € C°(B(0, R))
such that 0%v(0) = 0 for all @ € N” (here, any of the Carleman estimates proved in the previous exercise
works). Indeed, for such a function v, set v, = (1 — x(z/n))v € C*(B(0,R) \ {0}) for x € CX(R")
such that y = 1 in a neighborhood of zero. For all 7 € R, we have |z|~"v, — |z|~"v in C*°(B(0, R))
and since v = On(|z|V) for all N € N. Similarly, |z|'~"Av,, — |z|'*""Av in C*°(B(0, R)) (this uses that
|77 [A, x(z/n)]vll 1250, ryy — 0). As a consequence, the Carleman estimate (2.68) for 7 > 7 applies to
Un:

. 2 , 2 a2 2
H|$|1 PVUHLQ(B(O,R))(_HLTP PV”HHL?(B(O,R))270H|$| ”nHm(B(o,R))_)Tme‘ UHL2(B(O,R))

We may then apply this inequality with v = xgru, where u is the function satisfying (—A + V)u =0 in Q
vanishing at infinite order at 0. This yields

|||1‘|17T[PV,XR}u||i2(B(O’R)) 2 TO |||$|7TXRU|’12(B(O)R)) ? for a‘ll T 2 7-0'

But [Py, xr] is a differential operator of order one with coefficients supported in B(0, R) \ B(0, R/2). On
that set, we have |z|~7T! < (%)7T+1. Therefore, we have

. R —7+4+1 R -7
[l [PVvXR]“HLz(B(o,R))S 9 [ull 21 (B0, mN\B(O.R/2)) = b} Cu.r,

where Uy r does not depend on 7. Coming back to the above Carleman inequality, we have obtained, for
some Ty > 1, and for another constant C',, g > 0 independent of T,

R —T
’||$|_TxRuHi2(B(O,R)) S <2> Cu7R7 fOI‘ al]. T Z T0-

This rewrites as

R 2

eTlOg(W)X u‘ < éu,Ra for all 7 > 7.

L2%2(B(0,R))

The same argument as in the course shows that this implies xgu = 0 on the set {log (%) >0} ={Jz| <

g}. On this set, xg = 1, so that v = 0 on B(0, R/2). This is an open subset of 2, which is connected;
hence, from a result of the course, this implies u = 0 on the whole € (recall that it is connected).

Exercise 15 (Uniqueness under conditional pseudoconvexity, part of the exam of May, 2020). In this
exercise, we aim at proving the following result.

Theorem 2.7.3. Let Q be a bounded open set of R® and xog € ). Let P € Diff? and Q € Diff* with
respective principal symbols pa and q1, with py real-valued. Assume that the oriented hypersurface S =
{U = U(x0)} satisfies (dV(xo) # 0 and) pa(zo,d¥(x0)) # 0 and

{p2, {p2, ¥} }(x0,&) >0 for all £ € R™ \ {0} such that pa(xo,&) = {p2, THz0,&) = q1(x0,£) = 0. (2.78)
Then, there exists a neighborhood V' of xg so that for all u € C*°(Q), if we have

|Pu(z)| < C(|Vu(z)| + |u(z)]) for all z € Q,
|Qu(z)| < Clu(x)]| for all z € €, (2.79)
u=0in QN{¥ > V(xp)},

then we have u =0 1in V.

We write and py(z,&,7) = pa(x,& + i7d¥(x)) and assume (2.78) all along the exercise.
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1. Given a function ®, compute the operator Qg = e"®Qe~"®, give its order and its principal symbol
qs-

2. Prove that {py, U} (x0,&,7) # 0 for all £ € R™ and 7 > 0 such that pg(zo,&,7) = 0.
3. We define

ca(E6:7) = {PEpa k0, 7). for 7> 0 and  eq(E,0) = 2pa, {p2, U} (w0, 6).

Prove the existence of Cy,Cy > 0 so that
cu(&:7)+C1 (1{pw, U(ao,& 1) + Ipo (w0, &, ) + lqu(20,€, 7)) > Co,

for all (¢,7) € R™"! such that 7 > 0 and |¢]? + 72 = 1.

4. We now set ® = ¢*¥. Deduce that there exist constants Ay, Cq,Cs > 0 such that for all A > \g we
have

2
x(6.7) + O ('pgf” + Q<I>(330,€,7')|2> > Ca(Jgf + 7). (2:80)
for all (¢,7) € R 7> 0.

5. We set P = P%P* and Pp = e"®Pe~"®. Prove that if ® satisfies (2.80), then there exist C,r, 79 > 0
so that

-2
T ||UH§{1 <C HP@UHB +Cr ||Q¢U||2LQ , forall ve CX(B(xg,r)), T > T0.

Hint: one may write Py = Pgr + itP; where Pg and P; two formally selfadjoint operators to be
-2

determined, compute % HP(I)'UH , and link the principal symbols of the operators involved with those
L

appearing in (2.80).
6. Deduce that there exist C, 79 > 0 so that
(e w5 + 7 [TV, < C [l Pulfy, + Cr e Qu .
for all w € C°(B(xo, 1)), T > To.

7. Assume u € C*(Q) satisfies Pu = 0 and Qu = 0, and let x € C°(B(0,r)). Then prove that there
exist C, 79 > 0 so that for all 7 > 7

e xu|t, + 7|V (x| 5y < C |l [P xul| (2.81)

8. Prove Theorem 2.7.3 in this case. Only explain the main steps of the proofs, and omit the details.

9. Assume now that u only satisfies (2.79) and prove Theorem 2.7.3. Only explain the difference with
respect to the preceding question.

Correction 15. 1. We have Qg = ¢"®Qe "% ¢ Diff!

+, with principal symbol ¢¢(2,&,7) = q1(z, € +
iTd®(x)).

2. This is a reformulation of Lemma 2.2.8.

3. We first recall that cy is continuous up to 7 = 0 according to Lemma 2.1.6. We thus consider on
St ={(&7),/¢)* + 72 =1,7 > 0} the two continuous functions cy (&, 7) and

f(§7T) = |{p‘1’a \II}(xOv§7T)|2 + |p‘1’(x07§77-)|2 + ‘q\Il(x(),f,T)IQ-
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We have f > 0 and S" compact: if we prove that f({,7) = 0 = cg(§,7) > 0, the result
follows from Lemma 2.1.8. Question 2 gives that f(§,7) =0 = 7 = 0. But if 7 = 0, we have

p\p($0,£,0) = pQ(x07§)7 {pq,,lll}(x()’g,O) = {an \I/}(J,‘o,f) and Q\I/(l‘(),g,O) = Q1($0,§) so that

F(£,0) = {p2, W} (0, €)[” + [p2(o, )1 + a1 (o, ).

Condition (2.78), then precisely implies cg(£,0) = 2{pa, {p2, ¥}}(20,&) > 0. Lemma 2.1.8 thus
yields (2.80).

4. Similar to the proof of Proposition 2.2.5 from Lemma 2.2.6.

5. idem cours

6. & ...
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Chapter 3

The wave equation with coefficients
constant in time

In this chapter, we focus our attention to very specific operators of wave type 92 + @ where Q = q(x, D,,)
is a positive elliptic operator. In Remark 2.3.6, we have seen that, in the framework of regular coefficient,
the unique continuation theorem of the previous chapter, starting from sets of the form {(¢,z), ¥(z) > 0}
{¢(z) <0} requires some (strong) convexity assumptions of the surface. Yet, in the Holmgren Theo-
rem 1.2.4, the condition is less restrictive (in particular, unique continuation always holds across any
surface of the type {(¢,z), ¥(z) = 0}). It only requires the surface to be non-characteristic. In the case
of the flat wave operator 97 — A for instance, the latter reads |3;¥|? # |0, ¥|?. It means that the surface
should not be tangent to the light cone. More or less, this is the weakest condition that one could ex-
pect but would not contradict the finite speed of propagation. But we would like to relax the analyticity
assumption. The counterexamples of Alinhac and Baouendi | , , | actually prevent from
relaxing this assumption completely.

It turns out that some analyticity with respect to part of the variables can be sufficient, for instance
the time in our example of the wave equation. The results presented in this chapter have been proved
in | |, and revisited /generalized in | , , |. Our presentation is inspired by [ ]

3.1 Setting and statement of the unique continuation result

In the following, the variable will be z = (¢,7) € R1™" with dual variable ¢ = (&,¢,) € R, To keep the
notation coherent with the elliptic case, we will denote & = &, and &, will be written &, = (&1, ,&,).
The main theorem of this chapter will be the following.

Theorem 3.1.1 (Wave type operator with coefficients constant in time). Let T > 0 and Q, an open set
of R™. Denote Q =] — T, T[xS,.
Let

n

Z aij(:zc)DZ-Dj + Z by () Dy, + c(x)
k

i,j=1

Q

be a differential operator of order 2 with a' € C*(§,) real-valued, by, ¢ € L>(,). Assume also that Q
18 positive elliptic, that is there exists C > 0 so that

n

q(z, &) = Z a'l(x)&;€; > C|&,|?, for all (z,&,) € Q, x R™

i,7=1

Define P = 8? + Q on Q, having principal symbol p(t,x, &, &) = —€2 +q(x,&). Let z9 = (tg, o) € Q and
U € C?(Q) with d¥(z9) # 0 so that p(z0,d,V(z0)) # 0, i.e.

(0 9(20))* # > a" (20)(0:¥(20))(9; ¥ (20))-

.3
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Then, there exists a neighborhood V' of zy so that for any u € C*° (),

{Pu = 0in Q,

uo= 0in QN {T > Uz} = u=0onV. (3.1)

The main tool will be an inequality of Carleman type, but with an additional weight in the Fourier

2
variable. Namely, we let e~ %> be the Fourier multiplier defined naturally by

5 (e—s?f u) (6 =% a(e), ueSE),

where &; is the Fourier variable corresponding to the variable ¢ and £ =

(&, &:). Note that this amounts to
solving the heat equation with ¢ as a “spatial” variable, during a “time” -

. Using the explicit expression of

. . €41 . . . .
the Fourier transform of the Gaussian e~ 2+, this may be rewritten as a convolution with a heat kernel:

2 1/2 .
< “) (ta) = (5=) / e F D u (s, m)ds.
m R

This operator has several interesting features: it localizes close to D; = 0 (i.e. in low frequencies w.r.t.
|Dy|?
2T

the time variable ¢), in an analytic way (the function e* u produced is an entire function in the

= |Dy|? ; . . _E\Dtl2 .
27 12t17 is not local; in particular, e™¢ 727w is not

t-variable). However (and consequently), note that e~
compactly supported, even if u is.
For a smooth real-valued weight function ® (later on, we will assume that it is polynomial of order 2),
the Carleman estimate below will make use of the operator
3 D2 1o

_ _—€
esu=e "7 e

The following is an analogue of the Definition 2.1.5, under which the Carleman estimate of Theo-
rem 2.1.1 holds. Here, the condition is weaker for it is only restricted to & = 0.

Definition 3.1.2 (Pseudoconvex function in & = 0). With the above assumptions for P, let ® be smooth
and real-valued. We say that ® is a pseudoconvex function with respect to P in & = 0 at zg if

{pa {pa (D}} (20,5) > 07 if p(ZOag) = 07 ft = 07 5 7é 07 (32)
%{ﬁq),p@}(zo,g,r) >0, ifps(20,&,7)=0, & =0, 7>0, (3.3)

where po(2,£,7) = p(z,& + i7dP(2)).

Theorem 3.1.3 (Carleman estimate for wave type operators with coefficients constant in time). With
the above assumptions for P, let ® be a quadratic real-valued polynomial such that ® is a pseudoconver
Sfunction with respect to P in & = 0 at zg, in the sense of Definition 3.1.2.

Then, there exist r,e,d,C, 19 > 0 such that for all T > 79 and u € C°(B(zg, 1)), we have

2 _ 2
Q2 ulfy < O @2 Pull + € [l 3.4

Note that if we set ¢ = 0, this would be a classical Carleman estimate. Yet, the role of the Fourier
multiplier will be to kill the high frequency in the variable ¢t. So, we will just need to look at the very
small frequency in &. That is why the pseudoconvexity assumption is only made in & = 0.
3.2 Proving unique continuation using the Carleman estimate
In this section, we assume that Theorem 3.1.3 is proved and we will prove Theorem 3.1.1. Some part
will be similar to the classical case, that means constructing an approriate function ®, pseudoconvex for

functions in & = 0 from the function ¥ defining the surface S = {¥ = ¥(z)}.
The main differences are the following:
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e the pseudoconvexity is only on & = 0, so it requires a small adaptation of the convexification
procedure. Moreover, we want ® to be quadratic.
. . . " . R |Dy|?
e the Carleman estimate implies an additional Fourier multiplier (e = ) that changes the proof of
unique continuation. The additional difficulty comes from the fact that the Carleman estimate (3.4)
only dominates the low frequencies in & of the function wu.

—€

3.2.1 Convexification

Quite similarly to the classical case, the natural assumption for the unique continuation Theorem 3.1.1 is a
strong pseudoconvexity condition similar to that of Definition 2.2.1, but restricted to the set {&, = 0}. We
define this notion, and then check that any noncharacteristic surface is strongly pseudoconvex in & = 0.

Definition 3.2.1 (Pseudoconvex surface in & = 0). Let Q 3 z, be an open set, P € Diff*(Q) with
real-valued principal symbol py and ¥ € C°°() real-valued. We say that the oriented hypersurface
S ={¥ =U(z)} > 2z is strongly pseudoconvex with respect to P at zp in & = 0 if

{p27 {p27\11}} (2075) > 07 if pQ(ZOag) = {p2>qj}(2035) = ft =0 and 6 7é 07 (35)
%{Waqu}(zmgﬁ) > 07 ifP\I/(ZOafﬂ') = {qu7\I/}(Zo,£7T) = gt =0and 7> 07 (36)

where py(2,§,7) = pa(z,§ +i7d¥(2)).

The next lemma explains that the noncharacteristicity condition assumed in Theorem 3.1.1 is a par-
ticular case of Definition 3.2.1.

Lemma 3.2.2 (noncharacteristicity implies strong pseudoconvexity in & = 0). Let Q, P as in Theo-
rem 3.1.1. If the surface S = {¥ = U (z)} > 2o is noncharacteristic for P at zy (p(z0,d.¥(z0)) # 0), then
it 1s strongly pseudoconvex with respect to P at zg in & = 0.

Proof. The principal symbol of P is p(t,z,&;, &) = —€2 + q(x, &) where q(z,&,) = Do a(z)&&;.

So, we notice that for & = 0, we have p(t,x,0,&,) = q(x,&;). Since ¢ is assumed to be elliptic, the
assumption p(zg, &) = & = 0 implies £ = 0 and therefore Condition (3.5) is empty.

We now check that (3.6) is also empty (note that we have actually already proved that (3.6) is empty
if p(x,d¥) # 0 in Proposition 2.2.7). Denoting p(zo, -, -) the symmetric polar bilinear form of p(zo, -), the
computations of Lemma 2.2.11 give

{p‘I’a \II}(Z()v g? T) = 25(207 ga d\IJ(zO)) + 2iTp(ZO7 d\II(ZO))
The assumtion is p(zp, d¥(zp)) # 0, hence Im{pg, ¥} never cancels for 7 > 0, and (3.6) is also empty. O
Next, we will follow the same previous steps of convexification as Section 2.2.1.

Proposition 3.2.3 (Analytic convexification). Let Q, P satisfy the assumptions of Theorem 3.1.1. Assume
that the surface S = {U = W(z)} is strongly pseudoconvex with respect to P at zy in & = 0, in the sense of
Definition 3.2.1. Then there exists g > 0 such that for all X > g, the function ® = e*¥ is a pseudoconvex
function with respect to P at zg in & = 0, in the sense of Definition 3.1.2.

Note however that, as opposed to the classical case, the Carleman estimate of Theorem 3.1.3 does not
apply to the weight function ® since it is not quadratic.

Proof. The proof is very similar to Proposition 2.2.5. Again, we assume that U(zp) = 0 for simplicity, and
denote

C‘I’(év’r) = %{va\l/}(z()vga,r)v for T >0 and C‘I/(Svo) = 2{p2a {p27 \I/}}(Zo,é_),

with a similar definition for ¢ (¢, 7). Lemma 2.1.6 still applies and ¢y (€, 7) and cg (€, 7) are both continuous
on the whole R™® x R*. Then, using Lemma 2.1.8, Definition 3.2.1 may be equivalently reformulated as
the existence of some constants Cy, Co > 0 so that

2
cw(§,7) + Cr | [{pa, Wz, & 7)) + W F1&l*| = Callel® +7%).
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Lemma 2.2.6 still applies, giving

C@(ga T) = )‘C\P(ga )‘7—) + 2/\2 |{p\1/a \I’}(Zo, fa AT)‘Q .

The same arguments then lead to

2
20,&, T
eaer) + 0 | RS T i) > oy(ie 4 42)
l§1> +7
for A large enough. This implies the result. O

It remains to perform the Geometric convexification and to ensure that we can take the weight function
® quadratic.

Proposition 3.2.4 (Geometric convexification). Let ® be a pseudoconvex function for P at zg in & = 0,
in the sense of Definition 3.1.2. Assume further that ®(zp) = 0.
Then there exists a function ¢ such that

1. ¢ pseudoconvex function for P at zg in & =0,
2. ¢ is a quadratic polynomial,
3. ¢(z0) = 0 and there exists Ry > 0 such that for any 0 < R < Ry, there exists n > 0 so that p(z) < —n
forze {® <0} N{R/2 < |z — z| < R}.
Proof. For 6 > 0, we take
©0(2) = ®p(2) — 0|z — 20/%

where

or(z) = Y —(0°®) () — 20)°

lal<2

that is @7 is the Taylor expansion of ® at order 2. Indeed, this is almost the same construction as in the
classical case, except that we have replaced ® by its Taylor expansion at order 2.

First, we notice that the pseudoconvexity condition only involves derivative up to order 2 at zy;. Hence,
@1 is also a strongly pseudoconvex function in & = 0 at zg. Moreover, the same stability argument as in
Proposition 2.1.9 applies. So, for § small enough, ¢ is as well a strongly pseudoconvex function in & = 0
at zg. We fix § > 0 sufficiently small. It remains to prove the geometric properties.

Since @ is the Taylor expansion of ® at order 2, there exists Ry small enough so that &7 — | <
|z — 20]?6/2 for |z — 29| < Ry. Now, take R < Ry.

Let z € {® <0} N{R/2 < |z — 20| < R}. Since ®(2) < 0, we have ®7(2) < |z — 29/?6/2. Therefore,

p(2) < =0z — z0*/2.

So, in particular since |z — zp|? > R?/4, we get ¢(z) < —0R?/8 and we can take n = §R?/8. O

3.2.2 Unique continuation

In this section, we conclude the proof of the unique continuation of Theorem 3.1.1 assuming the Carleman
estimate of Theorem 3.1.3.

Proof of Theorem 3.1.1. Let u solution of Pu = 0 in © so that w = 0 on Q@ N {¥ > 0}. The surface
S ={¥ = W(z)} is strongly pseudoconvex at zg in & = 0. Propositions 3.2.3 and 3.2.4 allow to produce
some quadratic function ® (it is the function called ¢ in Proposition 3.2.4, which we now rename P)
that satisfies the pseudoconvexity for functions at zg in £ = 0. In particular, Theorem 3.1.3 applies. We
therefore obtain the following properties
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1. there exists R,C,d,e > 0 and 79 > 0 so that we have the following estimate
2 dr | T 2
T||Q§Tw||%& <C HQSTPWHB + Ce™d ||e ‘I)wHHi (3.7)
for any w € C*°(B(zo, R)) and 7 > 7.

2. ®(zp) = 0 and there exists n > 0 so that ®(z) < —n for z € {¥ <0} N {|]z — 20| > R/2},

3. ®(z) < d/4 in B(zg, R).

All the properties were already obtained. We only added Item 3, which follows from a continuity statement
(holding up to reducing R) using ®(zg) = 0.

Pick x € C°(B(z0,R)) so that x = 1 on B(zo, R/2). As before, we want to apply the Carleman
estimate to w = yu € C°(B(zo, R)), solution of Pw = xPu+ [P, x]u = [P, x]u. Again, [P, x] is a classical
differential operator of order 1 with coefficients supported in the set {£ < |z — z| < R}. Moreover, we
have supp(u) C {¥ < 0}, and thus [P, x]u is supported in {¥ < 0} N {& < |z — 29|}, where we have

® < —p. In particular, we have HQ?TPwHLZ, < HeT{waHL2 < Ce ™ |lul| -
For the second term in the right hand side, we use Property 3 to get

2
e—d7 ||6T¢.wHH}_ < 67d7-6d7'/2 Hw”i{; < 67dr/27,2 ||1UH§{1 < 67d7/4 Hqu17

for 7 large enough.
So, we have obtained that there exist C,d, 79 > 0 so that

1Q2 wlr2 < Ce™®™,  forall 7 > 7. (3.8)

We will use the following lemma that we prove below. It contains the main novelty with respect to the
proof of Theorem 2.3.2.

Lemma 3.2.5. Let ® € C*(2) be a real-valued function such that d® # 0 on Q. Let v € CX(Q2) and
assume there exists Cy, 19, > 0 such that

1Q2 vl < Co  for all > 7. (3.9)
Then, v is supported in {® < 0}.

To apply the lemma, we rewrite (3.8) as ||Q§Te‘57w||Lz <Ci.e. ||Q§’7‘T“‘5w||Lz < C. Lemma 3.2.5 applied
to the function ® + ¢ implies that w is supported in the set {& +J <0} = {® < —§}. Since we have
®(zp) =0 and x =1 on B(zg, R/2), the set V = B(zg, R/2) N {® > —J} is a neighborhood of z; on which
u = w = 0, concluding the proof of the theorem. O

We need to prove Lemma 3.2.5. Note that if we had ¢ = 0, the proof would be (easy and) another
formulation of the proof of Theorem 2.3.2. Before describing the details of the proof, we first give a sketch
of it to present the main new ideas.

1. Proving that supp(v) C {® < 0} <= Proving v = 0 on {® > 0} <= Proving that z — y o ®(z)v(z)
vanishes identically on R for all test function x € C°°(R), such that supp(x) C [0, +o0). Again,
this may be reformulated equivalently in a weak form (still for all x € C°°(R) such that supp(x) C
[0,4+00)) as

f(2)w(2)x(®(2))dz =0, forall f € S(R*™).
R+

2. We change slightly the point of view and, considering f fixed, see this quantity as a distribution on

R, with x as test function:

(hgs X)erw),co®) = (f,X(®))er@n+1),co0 (Rr+1) = /Rn+1 f(2)v(2)x(2(2))dz (3.10)
This corresponds in fact to make a kind of foliation along the level sets of ®: if we want to measure v,
we rather define the distribution hy = ®,(fv). Heuristically, h(s) is the integral of fv on the level
set {®(x) = s}. According to the first point, the sought result supp(v) C {® < 0} is now equivalent
to proving that
supp(hy) C (—o0,0].
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3. We shall see that the Fourier transform of Ay is

B0 = (s = € ooy = [ FEa)e s,
R+
and can be extended to the complex domain if v is compactly supported (which is assumed here).
In particular, for ¢ € iR, ¢ = iT, we have E}(W) = (f,ve™®). The assumption (3.9) gives an
information on the norm of e"®v for 7 large which can be translated in a uniform bound on |E}|
on the upper imaginary axis. A Phragmén-Lindelof type argument allows to transfer this uniform
bound on ‘}/L;‘ to the whole upper half plan.

4. From the bound |E}| < C on the whole upper half plan, a Paley-Wiener theorem (roughly saying
supp(g) C (—0,0] <= |g| < C uniformly on the upper half complex plane) allows to conclude that
supp(hy) C (—o0,0] for all f, which is the sought result according to the first two points.

Let us now proceed to the details of the proof.

Proof of Lemma 3.2.5. We will work by duality. Let f € S(R"*!) with Fourier transform f compactly
supported in B(0, R) for R large. We define the distribution hy € &'(R) by (3.10). Note that hy is a
distribution of order zero since

(g, X)er @)oo )| < /R » [ Ix(@(2)ldz < [[fllg2 vl supx],

@ (supp(v

and is indeed compactly supported because supp(hy) C ®(supp(v)) = {®(2);z € supp(v)} which is com-
pact. We shall prove below that h; is in fact a smooth function (using that v is).
Since hy € £'(R), the Fourier transform of hy can be computed for ¢ € R by

hi(C) = (hsr € ey ooy = (s er@nn) o) :/R 1 f(2)v(2)e™ ) gz,
We notice that this formula still defines a function for ¢ € C satisfying the bound

7 (Q)] < /

supp(v)

|f(z)v(z)|e1m(<)‘1’(z)dz < C1lm(Q) £l gz vl e, Ci= ma(x) |®|. (3.11)
supp(v

Its derivatives satisfy similar bounds, and we may derivate under the integral. The holomorphicity of
the integrand with respect to ¢ implies that ﬁ;(() satisfies the Cauchy Riemann equations and is thus
holomorphic on the whole C.

For ¢ € R, the Cauchy-Schwarz inequality (3.11) yields the general bound

o (OF < 1l g2 1oll 2 = Cro-

Now, we use the assumption of the lemma, namely (3.9), to obtain a bound on the upper imaginary axis.
Indeed, for ¢ =i7, and 7 > 79, (3.9) implies

h(ir)| = |(fv,e"®)

= | <f7 UeT¢>S’(R"+1)7$(Rn+1) |

8/(R"+1),C°o (Rn+1)

|D4 |2 _ _ID4|? q>>

= <6E 27 f,e 2r pe’ S/(Rn+1) S(Rn+1)

|Dy|2

|Dg |2 e
e "2 we

e 2r TP

IN

L2(Rn+1) L2(Rn+1)

eR?2
N ||fHL2(R"+1) HQ?TUHL2(RTL+1) S Ce=r Hf||L2(Rn+1)
Le°(supp(f))
< C&f"mco'

IN
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. |Dy]? . .
Note that at that point, the term e® 55 was harmless because the Fourier transform of f is compactly

2
supported in B(0, R). Otherwise e° = f does not have any meaning, even for f € S(R"*1). That is why
we had to work by duality.
Moreover, for 7 € [0, 79], the estimate

hy(iT)| < C

follows by compactness and continuity, with some appropriate constant C' independent on 7.

Now, |hy| has a uniform bound on RUiR,, as well as an a priori subexponential growth (3.11). We are
thus in position to transfer the uniform bounds to the whole upper half plane by the Phragmén-Lindel6f
Theorem.

Lemma 3.2.6 (Phragmén-Lindel6f Theorem). Let g be a holomorphic function in Q1 = {z + iy;x > 0,y > 0},
continuous in Q1. Assume that there exist ¢ > 0 and C > 0 such that

g(2)] < Ce?l. forall z € Q,

|
lg(2)| <1, forall z€ 0Q; =R, UiR,.

Then, we have |g(z)| <1 for all z € Q1.

Applying this result to the function g = ﬁ; on both @7 and the quarter plane {x + iy;z < 0,y > 0},
we obtain that

hp(Ol <€ forall ¢ € C,Im(C) > 0.

We now want to apply the Paley-Wiener Theorem 3.2.8. We need first to prove that h; is in fact a smooth
function. To this aim, let us study the derivative of hy,

(Wpx)emy,com = (b, X e wy,com = —/R » F(2)v(2)X (2(2))dz.

Taking advantage of the assumption d® # 0 on ), we may assume (up to using a partition of unity of )
for instance that d;, ® # 0 on the whole 2. We integrate by parts

U Nerm.on == [ 16100 5—gs0n (o )z = [ 00, (500055 ) o ¥

and, since v € C2°(€2), we obtain [(h, x)| < C|lx[l~, and k', is also a distribution of order zero. Iterating

this procedure (using the assumption v € C°(2)) implies that K™ is of order zero for all m € N, hence

hy is a C*° function on R. Since moreover, hy € £'(R), we finally have hy € C2°(R).

& new version We may now apply the following version of the Paley-Wiener theorem to hy.

Theorem 3.2.7 (Paley-Wiener-Schwartz). Suppose g € £'(R), of order zero. Then the following two
statements are equivalent:

e supp(g) C (—o0,0],

e g can be extended continuously as an entire function which is uniformly bounded in the closed upper
half-plane
Ct={z+iy;z € R,y >0}.

This is a particular case of the general Paley-Wiener-Schwartz theorem, see e.g. | , Theorem 7.3.1].

Proof of Theorem 5.2.8. The direct implication is simpler. Notice first that §(¢) = (g, ") e/ (r),c ()
holds for ¢ € R but also for ¢ € C, and 9¢:g(¢) = (g,0ce ) g/(r),coor) = 0. Hence, g(¢) is an entire
function. Moreover, using the assumption supp(g) C (—o0,0], we let xs € C°(R) such that xys = 1 on
supp(g) and supp(xs) C (—o0,d]. We have g = gxs and thus, for ( = z + iy € C,

—isT sy

9(0) = (g, " Vermy.co®) = (9, €€ x5(8))er (r),co (R).-
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Using that g is of order zero implies existence of C' > 0 such that for y > 0,

9] = | (g, e e x5(s))er ), oo )| < Csuﬂg}e e ys(s)] < Ce.
se

Since this is true for all § > 0, we deduce that |g(¢)| < C uniformly for Im(¢) > 0.

Let us now prove the converse implication (that used in the proof of Lemma 3.2.5), and assume § is
holomorphic in the interior of C*, and uniformly bounded, say, by Cy on the whole CT. We define, for
d,e > 0 two small parameters (aimed at tending to zero), the function

g(z + i)

Ges(z) = 0 —iea)’

which is a shift (by —id) and a regularization of g. Note that G. s has a pole at the point —é, and is
holomorphic in {z € C,Im(z) > max(—4, —1)}, and in particular in a neighborhood of C*. Also, according

to the uniform boundedness of g on C*, the function G. 5 satisfies the bound:

Ge+id) _ G
|1 —iez|?2 = (1+ey)?+ (ex)?

|Ge 5(2)] = ,  withz=x+1iy,y > 0. (3.12)

In particular, for any y > 0, the function z — G.s(x + dy) is in L*(R). Now, we are interested in its
inverse Fourier transform (on the real line)

1 .
ges(s) = —/ e G, s(x) dx,
z€eR

2m
which belongs to L>°(R). Notice first that we have

g= lim hm ges, inS'(R), (3.13)

e—0t §—071

since, for all ¢ € S(R),

495’5(8)@(8)d8:/g€5 dm—/Geg d$—>/ dx—/Rg(s)go(s)ds,

as § — 07 and then ¢ — 0T. This follows from two dominated convergence arguments, using that
g € L>*(R), thus gp € L>*(R). According to (3.15), we are only left to proving that g. s(s) = 0 for all
s> 0.

To this aim, we write (using again the dominated convergence arguments with G. 5 € L'(R))

N
ges(s) = lim — / G 5(C) dc.

N—o+oo 21 J_ N

Using that G s is holomorphic in a neighborhood of C*, we change the integration contour from [—N, N|
to the oriented rectangular contour vy = [-N, =N +iN]U[-N +iN,N 4+ iN]JU [N +iN, NJ:

1 .
ges(s) = lim —/ e"*Ge 5(2)dz.
YN

N—+4o00 27
We now estimate the integrand for s > 0, using (3.14):

e On [-N,—N +iN], we have [e!**G. 5(2)| < using that Im(z) > 0 and s > 0.

Co
T N2’
e On [-N +iN, N +iNJ, we have |¢*G, 5(z)| < W using that Im(z) = N and s > 0.

e On [N +iN, N| we have as in the first case |[e"*G. 5(2)| < W
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Taking into account that the length of the path are of order IV, we obtain for s > 0

Co Ooe_SN Co
< N—— +2N N
ST ENe TN A e TV T e

2—>O as N — +oo.

/ €"*G. 5(2)dz
TN

This yields g. s5(s) = 0 for all s > 0,¢ > 0,6 > 0, and thus (3.15) concludes that supp(g) C (—o0,0], and
hence the proof of the theorem. O

& old version We may now apply the following version of the Paley-Wiener theorem to hy.

Theorem 3.2.8 (Paley-Wiener). Suppose g € S(R). Then the following two statements are equivalent:
e g(s) =0 for all s >0,
e g can be extended continuously as a bounded function in the closed upper half-plane
Ct={z+iy;z €R,y >0},
with g holomorphic in the interior.

Applying this result to the function hy gives supp(hs) C] — 00, 0]. Therefore, we have proved that for
x € C*(R),

supp(x) C [0,4+00) = 0= (hy,x) = (fo,x(®)) = {f, x(®)v) .

Since this is true for a subset of function f dense in S (those having compactly supported Fourier trans-
form), this means that the function y(®)v is identically zero on R!*" as soon as supp(x) C [0, +oc). That
is to say v = 0 for ® > 0 or supp(v) C {® < 0}, which concludes the proof of the lemma. O

It now remains to give a proof of the Phragmén-Lindel6f Theorem (Lemma 3.2.6) and the Paley-Wiener
Theorem (Theorem 3.2.8).

Proof of Lemma 3.2.6. First note that the sector (J; can be rotated, say to quadrant

T

= C —_—— — .
Q={z€Carg(z) €[5, 7))
We use the principal determination of the logarithm that is if z = re?® with —7 < 6 < 7. We define

3
95(2) = g(z)e**",
(where 23/2 = p3/2¢318/ 2), which is holomorphic in the quadrant Q.
Also, we have the bound

3
|6—6z§ ‘ _ 6—67‘3/2 cos(36/2)

On @, we have |0| < 7/4 and therefore [30/2| < 37/8 < w/2 and cos(36/2) > cos(37/8) =:n > 0.

So, the first assumption on g gives |gs(re’?)| < Cee="""*n_ This implies lim,cq,|2|—o0 [95(2)] = 0.
As a consequence, there exists R > 0 such that |gs(2)| < 1/2 on {|z|] > R} N Q. Now, on the bounded
set Q' = Q N {|z| < R}, we apply the maximum principle (maxan, lgs| = maxygr |gs]) to the function
gs- According to the second assumption we have |gs| < 1 on Q. This yields |gs| < 1 on QF and hence
lgs| < 1 on Q. Finally letting ¢ tend to zero, we have |gs(2)| — |g(2)| for all z € @, which yields the sought
result. O

Note that the a priori subexponential growth at iI;ﬁnity in the first assumption of the theorem could
be replaced by the weaker assumption |g(z)| < Ce*I"" for some ¢ > 0. However, the result is false for
e = 0. The classical counterexample on the quarter plane @ is the holomorphic function z +— e, for

N . . +i28 : .
z = reti | it satisfies indeed e*” = ¢ = ¢*"* and hence |ezz| =1 on 0Q (however, e* is clearly
not bounded on the real axis).
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Proof of Theorem 3.2.8. The direct implication is simpler. Assume g(s) = 0 for s > 0, then g(¢) =
fs <0 e~#¢g(s)ds for ¢ € R. This formula can be continuously extended to CT with the estimate

G +iy)| < / e lg(s)|ds < / 19(3)|ds = gl prey . for all y > 0.

s<0 s<0

Its derivatives satisfy similar bounds (still on C"), and we may derivate under the integral. The holomor-
phicity of the integrand with respect to ¢ implies that g(¢) satisfies the Cauchy Riemann equations and is
thus holomorphic in the interior of C*, with the estimate [g(C)| < |9/l 11 (r)-

Let us now prove the converse implication (that used in the proof of Lemma 3.2.5), and assume § is
holomorphic in the interior of C*, and uniformly bounded, say, by Cy on the whole CT. We define, for
d,e > 0 two small parameters (aimed at tending to zero), the function

g(z +10)
(1 —igz)?’

Ges(z) =
which is a shift (by —id) and a regularization of g. Note that G. s has a pole at the point fg, and is
holomorphic in {z € C,Im(z) > max(—§, —1)}, and in particular in a neighborhood of C*. Also, according
to the uniform boundedness of g on C*, the function G, s satisfies the bound:

|9(2 +i0)| Co . .
G = < th z = . 3.14
Ges(2) 1 —icz|? = (1+ey)?+ (ex)?’ with 2=z +1y (3.14)
Now, we are interested in its inverse Fourier transform
1 isC
9e,5(8) = 5= et Ge5(C) d¢,
27T £eR
since we have
g(s) = lim lim g.s(s), forall seR. (3.15)

e—=0t §—=0t

This follows from two dominated convergence arguments, using that § € L'(R). Therefore, we are only
left to proving that g. s(s) = 0 for all s > 0.
To this aim, we write (using again the dominated convergence arguments with G. 5 € L'(R))

N
Ges(s) = lim — / ¢ G 5(¢) d.

N—o+oo 21 J_ N

Using that G s is holomorphic in a neighborhood of C*, we change the integration contour from [—N, N]
to the oriented rectangular contour vy = [-N, =N + iN]U[-N +iN,N + iN]JU [N +iN, N]:

1 .
ges(s) = lim —/ €"*G, 5(2)dz.
YN

N—+4o0 2T

We now estimate the integrand for s > 0, using (3.14):

e On [-N,—N +iN], we have [e"**G. 5(2)| < using that Im(z) > 0 and s > 0.

Co
1+(eN)2?

N

e On [-N +iN, N +iN], we have |[e"*G. 5(z)| < %, using that Im(z) = NV and s > 0.

e On [N +iN, N| we have as in the first case [¢***G. 5(2)| < H((/;i(}v)"‘
Taking into account that the length of the path are of order N, we obtain for s > 0

Co Ooe_SN Co

<N 2N N
2 F (1+5N)2+ 14 (eN)?

—_— 0 N .
< 1+(5N) — as — +00

/ €"*G. 5(2)dz
TN

This yields g. 5(s) =0 for all s > 0,¢ > 0, > 0, and thus (3.15) concludes that g(s) = 0 for all s > 0, and
hence the proof of the theorem. O
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3.3 The Carleman estimate

3.3.1 The “conjugated operator”

As in the classical case, we need to check the effect of the conjugated operator. Yet, we have to be a little
2
careful, first because e® 52 is not well defined on any Sobolev space and even not on S.
As before, we make the change of variable v = ¢"®u and for getting (3.4), we are left to prove

2
+Ce™I |lolf3,
L2 T

,E\Dt,|2
e 2r Ppv

|Dy]2
Tlle= F |3, < C

Dy¢|?

Our operator P commutes with e™ 2+ since its coefficients are independent on ¢. Yet, the operator
Py = ™ Pe~7® may depend on t because ® depends on . We will take advantage of the fact that since
® is quadratic, the principal symbol of Pg only involves derivative of ® of order at least 1 and is therefore
linear. We first prove the following simple lemma.

Lemma 3.3.1. Let u € S(R"*1), then

|Dy]2 12

D |
e~ 2 (tu) = <t + i€t> e,
T

Proof. We first recall the classical formula

to(€) = / e Mtem Sty (t, 1) dadt = / 0, e e eyt x)dadt = i0g,0(€).
R+ R

n+1

—_—
€412 — 13 1€¢12 1€¢12

(=55 @) © = = F (e = v, ae) = id, [ + a(g)] +i (e

—_—
D12 eD;

= [t u](©) +i [Au} (©)-

This can be rewritten as

_ 1Dy __IDy)? . Dt __1Dy)? . Dt __IDy|?
e " (tu) =te™ " 2 utie—e T 2 u=|(t+ic— |e T 2 u,
T T
which proves the lemma. O

Remark 3.3.2. Lemma 3.3.1 could easily be iterated to get the formula

k
IDy |2 D
e (thu) = (t + i£t> e Fr
T
where the exponent k is meant in the sense of composition. For f polynomial in ¢, we would get

6_5%(]"@)’11,) =f (t + iaDt) es .
T

|Dy |2

This means that the “formal” conjugated operator of f(t) by e~¢ 2r
is given by the degree of the polynomial f.

For a general (even smooth) function f(t), it seems therefore very hard to give a precise meaning to
f(t+iek).

Even in the analytic case, f (t + is%) would be an infinite sum of differential operators, that means
an operator of "infinite order". This is not clear how to define this in an exact way. Yet, some authors
managed to give some meaning of an approximation of this formula. Namely, the idea is to replace t—&—ie%
by some approximate operator y (é) t+1x (%) 5% for k small. These operators have the advantage
to be bounded and we can consider some infinite series. We refer to Hérmander | |. Similarly, it is
possible to replace the holomorphic function f with a cutoff near small x and &, see Tataru | , |

is a differential operator, whose order
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We now want to understand how QfT “commutes” with an operator P. To this aim, let us first consider
the simplest case in which P = D;. We have the following key lemma.

Lemma 3.3.3. Assume ® is a real polynomial of degree two in the variable t. For all k € {0,--- ,n} (with
the convention t = zg, Do = Dy)

ETDk = (Dk)cb,sQ:T,
where (denoting @}

t,2k

= 9,0, ®)
(Di)o,e = Dy + i70,®(2) — e®

t,zy

D;.

Note that since ® is quadratic in the variable ¢, the quantity <I>2’ 2, I8 actually constant in ¢! In particular,
the principal symbol of (Dy)s ¢ is & +i70r® — @}, {;. & on suppose quadratique partout ou juste
en ¢

Proof. Since ® is quadratic in the variable ¢, 9y ® is a polynomial of degree 1 in ¢ and can be written as
O® = fi(x) +tfo.

where f1(x) (resp. fo) is polynomial in x of order 1 (resp. a constant). In particular, Lemma 3.3.1 gives

|D¢|2 |Dy
2T

e B (Dy + 105 ®)u] = == (D + i (f1() + tfo))ul
= {Dk +ir <f1($) + (t +z‘glzt> fo)] B

|Dy]2

= (Dk + 170, P — é‘foDO@is 27 U.

To get an intrinsic expression, we notice that fo = 0,0, ®, so fo Dy can be written 9,0, ®D;. This concludes
the proof of the lemma. O

This lemma allows to compute the principal symbol of the “conjugated operator” of general differential
operators (with coefficients independent of t).

Corollary 3.3.4 (The “conjugated operator”). Let Q C R"" =R, xR, and P € Diff"(Q) be a (classical)
differential operator with principal symbol p,,. Assume also that all its coefficients are independent
on t (that is po(2) = pa(x) for all |a] < m). Let @ be a real-valued function being quadratic in t. Then,
for any € > 0, there exists a unique Py v € Diff"(Q) so that we have

P P=Py. Q7.
Moreover, the principal symbol of Pg . is

Po.e(2,6,7) = pm(2, & +iTd®(2) — £®Y &),

where we use the notation ®f & = Hess(®)((&,0,---,0);-) = &V with V' the constant vector with coeffi-
cients Vi, = (0:0, D).

We stress the fact that all coefficients of p should be independent of ¢: this is not an assumption on
the principal part of the operator only.

|Dy]2
2T

Remark 3.3.5. The expression “conjugated operator” is a bit abusive since e® is not well defined as

an operator. Yet, we would like to write formally

|D¢|2 |Dy|2 |Dy|2 |Dy|2

_1 _ _ _
Py v = iTP( fﬁ) v=e 2 P Pe TP 2 v =" 27 Ppet 2 0.

Proof. The proof is similar to that of Lemma 1.3.10. We first prove the result for D* = Dg° D" - - - D;‘j - Do,
Using composition formula of Proposition 1.3.6 together with Lemma 3.3.3, we obtain that the “conjugated
operator” (D) . of D is in Diff7"(£2) and has principal symbol

n

[T +im0x® — e(010:®)&) 1 = (€ +iTVE — e®] &),

k=0
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where we use the notation @y & = Hess(®)((&;,0,---,0);).
Since all the functions p,(z) do not depend on ¢, they commute with Q?T. So, we get the conclusion

of the corollary.
O

Remark 3.3.6. In the case of a second order operator P (with coefficients independent of t), with real
symbol p, we have (denoting by p the polar symmetric bilinear form of p),

p@,s(zv 5, T) = p(Z, 5 + ZTd(I)(Z) - gq)g,zft)
=p(2,& = e®} &) — 7°p(2,d®(2)) + 2imp(2, € — €@} &, dD(2)).

As in the classical case, an important point here is that Im(pe . (2,§,7)) = 72p(2,§ — €@} &, dP(2)) and
may be divided by 7.

A very important feature of the previous formula is that the principal symbol of Pg . is actually close to
the principal symbol of Py if € is small. So, we can expect that it satisfies the same subelliptic estimates.

3.3.2 A first subelliptic estimate

We first write the following Lemma on pg¢, that we have actually already used and proved in Proposi-
tion 3.2.3, using Lemma 2.1.8 and homogeneity, so we skip the proof.

Lemma 3.3.7. Let Q, P satisfy the assumptions of Theorem 3.1.1. Assume that the function ® is pseu-
doconvex with respect to P at zy in & = 0, in the sense of Definition 5.1.2. Then there exist C1,Cs > 0
such that for any (€,7) € R" x RY, we have

|pq>(20,§77')\2

2
pee Tl

%{%,p¢}(zo,£,r)+01 202(|£‘2+T2).

where we have extended L{ps, ps}(20,&,7) by continuity at T = 0 with the value 2{p, {p, ®}}(z0,&).
By perturbation, we can get a similar conclusion for the perturbated operator.

Lemma 3.3.8. Let Q, P satisfy the assumptions of Theorem 3.1.1. Assume that the function ® is pseu-
doconvex with respect to P at zg in & = 0, in the sense of Definition 3.1.2. Then there exists g > 0 so
that for any 0 < & < eq, there exist C1,Co > 0 such that for any (£, 7) € R™ x RT, we have

po.c(20,&,7))

|§|2 + 2 + |€t|2 > CQ(|§|2 + TQ)'

1
;{p@,a;p@,e}(z(h 6; T) + Cl

where the quantity %{p¢7s,p¢75}(zo,§,7') is extended by continuity at T = 0.

Proof. The Lemma mainly follows by saying that ps . is a perturbation of pe and using Lemma 3.3.7.
Yet, we have to be a little careful because of the factor % Noticing as before that %{E, Dot =
%{Repq),g,lmpq),g}. Then, using Remark 3.3.6 we can write Impg . = Tﬁi;i. Moreover, ]E;i and all its
derivatives are all continuous in . Hence, we can write ={ps,ps..} = 2{Reps.c, ﬁq}“el} It can therefore

be extended by continuity to 7 = 0 and the result follows by a perturbation of Lemma 3.3.7. O

We are now ready to prove a first subelliptic estimate that will be crucial for the final proof of Theo-
rem 3.1.3.

Proposition 3.3.9. Let Q, P satisfy the assumptions of Theorem 3.1.1. Assume that the function ® is
pseudoconvex with respect to P at zg in & = 0, in the sense of Definition 3.1.2. Then, there exist ¢ > 0,
r>0,C >0 and 79 > 0 so that we have the estimate

7 |olfn < CllPscoll: + O7 || Devl 7, (3.16)

for any v € C°(B(z0,7)) and T > 19.

112



Note that the parameter £ > 0 is fixed by this proposition (in fact, by Lemma 3.3.8). Note that this
estimate is extremely close to the usual Carleman estimate (2.2) of Theorem 2.1.1. The only difference is
the last term 7 HDtU||i2 in the right hand-side. This term comes from the fact that the pseudoconvexity
assumption (and hence the symbolic estimate of Lemma 3.3.8) is made on & = 0 only, i.e. on D, = 0
only. Also, remark that this additional term has precisely the same strength as the term 7 HU||§{1 on the
left handside of the estimate. ’

Proof. The proof is as well very similar to that of Theorem 2.1.1. A little care is needed to factorize the
skew-adjoint part of the operator. Note first that the form of Estimate (3.16) remains unchanged under
addition to P of a (classical) differential operator in Diff'(Q), the coefficients of which do not depend on
the variable ¢. Indeed, after conjugation, the latter perturbation will yield a perturbation of Pp . being

in Diff!(Q), which, applied to v, is bounded by ||v||§{1 and thus can be absorbed in the left handside for
T > 79 with 7y large enough. .
We then notice that, with P satisfying the assumptions of Theorem 3.1.1, we have

P=P+R,, with P=-Di+ Y Dia’(z)D; and R e Diff1(Q),

1<ij<n

where a™/ () = a’%(z). See also Example 1.3.12. The operator P is chosen to be selfadjoint. According to
the previous discussion, it is sufficient to prove Estimate (3.16) for P replaced by P. Applying Lemma 3.3.3
and the fact that QST exactly commutes with a% (z), we have the exact formula:

Py =—(Dy+ir0,® — @ Di)* + Y (D; +ir0;® — e®}, Dy)a" (z)(D; + i70;® — e®}, Dy).
1<i,j<n

We now collect all terms being factored by 7 to obtain, for some M € Diffi (Q),

Pyo=—(Dy—e®!,Di)*+ Y (D;—e®}, Dy)a"(z)(D; — @y, Dy) + 1M,

1<i,j<n
and remark that ]5¢75 — 7M is a selfadjoint operator. As a consequence, when defining
p_ PectPi. Py — Pj
R, — 2 ) s 2 )
we notice that we have, as in the proof of Theorem 2.1.1, Pr. = w =: T]/Dj: (that is, 7 can be
factorized in the skew-adjoint part of P;.). With this decomposition, we have Py, = Pr. + iPr. =

Pr. + 7;7']3;/5, and may now proceed to the key computation, following the proof of Theorem 2.1.1. We
obtain

1Pacolze = IPnevls + 1 Prevlie + (lPrs Prlo,v)
|Preel} + I1Prolye + 7 (P, Prolo.v)

The same computations lead to

1
~||Pycv|2, > (Lo, v),
-

with

L = CiPre(-A+7)"'"Pre+CiPro(=A+7*)""Pro+ —[Pre, Pr.e]

1
o

= CvlljR,e(_A + 7-2)71PR,5 + Clpl,e(_A + 72)71PI,E + Z.[PR,Ev I/DI:]a

for 7 > 79, 19 large enough, and C; being taken as in the conclusion of Lemma 3.3.8. We thus obtain

1
= |Py.cv||3, + Ci || Do 32 > (L + C1D3)v,0). (3.17)
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The principal symbol of L + C;D? is

|p¢’75(27§77-)‘2

2
|f|2+7'2 +‘§t| .

1
E{p‘b,sapq),e}(za 57 T) + Cl

We conclude as before using the symbolic estimate of Lemma 3.3.8 at the point zy, together with the
Géarding inequality of Proposition 1.3.14. O

3.3.3 End of the proof of the Carleman estimate

Equipped with the subelliptic estimate (3.16), we may now proceed to the proof.

Setting v = Q2 u = e~ 37 1P:* (¢7®4), we need to prove the estimate

_ 2
7l[olF < CllPscol7a +Ce™ [lemully, -

The latter is very close to (3.16), except for the last term, and it is very tempting to apply (3.16) to our

function v = Q2 u. The hope is then that the term 7 HDthiz is estimated by using that the multiplier
2
e=='%5 “ocalizes” where Dy is small. This will indeed be done at the end of the proof. However, the first

3]
€,T

supported in the variable t. Indeed, the operator e~ 2r is not local. We thus need to introduce an
additional cutoff in time, and estimate all commutators it produces.

problem we have to face is that, even if u is compactly supported, the function v = u is not compactly

|De|?

Proof of Theorem 3.1.3. We assume for simplicity that the point 2z involved is zg = (0,xz¢), i.e. top =0.
We let ¢ > 0 and r > 0 be fixed by Proposition 3.3.9. We choose g > 0 with 2ryg = r, and, all
along the proof, we consider functions u € C°(B(z0,70/4)). Let x € C°(] — ro,79[) such that y =1 on
] — 7'0/2,7"0/2[.
Since v is not compactly supported in the variable ¢, we set f = x(¢)v(t,z) and we have supp(f) C
[—70,70] X B(xo,70/4) C B(z0,219) = B(z0,7), so that we shall be able to apply Proposition 3.3.9 to the
function f. Our goal is to estimate v, so that we write

ol < [ fllay +llv = Flla:

where ,

v—f=(1-x0Q%u=(1-x)e FP" (xe ),
for some additional cutoff function x € C2°(] — ro/3,70/3[) with x = 1 in a neighborhood of [—7¢/4,r0/4]
so that xu = u. We are in position to apply the following lemma to estimate the remainder v — f.

Lemma 3.3.10. Let x1 € C®°(R""1), yo € C°(R™) with all derivatives bounded such that

dist(supp(x1), supp(x2)) > 0.

Then there exist C,c > 0 such that for all u € S(R™) and all A > 0, we have

_1DyI? —ex _1DyI? —ex
xiem 2 (xeu)| < Cemluf e, xiem 3 (xeu)|| < Cemlufly
L2 H! "
As a consequence of Lemma 3.3.10, we obtain, for 7 > 7
[ollzs < Wf Nl + Ce™ % [le™ ul| 1. (3.18)
The subelliptic estimate (3.16) applied to f gives
2 2 2
T f I < CllPocfllze + CTIIDef72 s (3.19)

and we need to estimate the two terms on the right handside in terms of v.
First, we estimate the term [Py f|l ;> = [[Po,eXxv| ;2 < [[XPao,v] ;2 + ||[Po.e, X]v] ;2. For the commu-

tator, we write [Py, x]v = [Po.c, xJe™ 7 P xe™u. We notice that [Py, x] is a differential operator of
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order 1 in (D, 7) with some coefficients supported on supp(x}) that is, away from supp(x). In particular,
Lemma 3.3.10 implies ||[Ps -, x]v|| ;. < Ce™¢% eTq’uHHl. This yields

1Poefll 2 < [1Po.cvll 2 + Ceme

e tull - (3.20)

Second, we estimate the term || D;f]|L2. We obtain in a similar fashion

.

= 2 —cT
IDefll2 = IDe(xv)llzz < lIxDevllzz + X (e F PP xe™ul 12 < || Dyvl| 2 + Ce™¢

e"tull,, (3.21)

where we have used again Lemma 3.3.10 in the last inequality.
Let ¢ a small constant to be fixed later on. We distinguish between frequencies of size smaller and
bigger than ¢7. We obtain

2 2
IDwll > = ||Die” =PV e™u| L2 < [|Dip,j<ervll L2 + 1D pysere™ 37 P e 0| 2

_ & 2
<Dl p,j<ervll> +  max  (&e 2 16 e ul| 2.
&r€lsT,+00)

. _ e g2 . . . .
Now, on R*, the function s — se™ 2% reaches its maximum at s = \/? and is decreasing on [/ T, +00).

Hence, if 7 > g%s, then \/§ < ¢7, the function s +— se~ 57 is decreasing on the interval [¢7,400), and
thus bounded by its value at ¢7. This yields, for all 7 > max(7, Q%E), the estimate

rs2e

1Dz < s7llvll2 + gTefTHeT(DuHLz. (3.22)

Combining all estimates so far, namely (3.18)-(3.19)-(3.20)-(3.21)-(3.22), we have proved that there are
some constants ¢ > 0 (depending on €) and C' > 0 so that for any ¢ > 0, we have for 7 > max(7p, &%),

2 2
ol < CIPocollfs + C2rlola + € (67 + 2% [l ul .

We now fix the constant ¢ small enough so that the term C<?73||v||2, < Cs?7jv||%,: can be absorbed in

the left handside of the estimate. This yields the sought estimate for 7 > max(ro, (%E), and concludes the
proof of the theorem. O

Proof of Lemma 3.3.10. Using the Fourier transform of the Gaussian (classical computation), we have

= () [ s o

We have

[N

e ) = () [ e 1o ) d

1
/\ 2
<4) Xl(t,z)/ e 11 (au) (s, 2) ds
™ s,|t—s]>d

where we have used the properties of support for the second equality, so that

A

1
_ D12 A2 L Ale_g2
e el < Bale () [ e ) as
a 8,|t—s|>d

N

1
A\ 2 e
< xallze <47T> (1\~|2d€ 3117 g, |X2UI('»$))(t)~

As a consequence, using the Young inequality, we have

]R) ||X2U||L2(]Rn+l). (323)

4

1
_1Dy? 2\ 2 a2
Ixre™ > (xaw)llz < Ixall e (w> Hﬂrlzfze i ‘u(
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Next, using that

/+°° A2 2 [t 2 [T 2

Y R ¥ dszf/ eV dy = = e e dy
L*R)  Jq VA Java)2 VA Javase
2

+o00 +oo
B e T B L N
VA dv/x/2 VA 0

Coming back to (3.23), we have obtained the existence of a constant C' > 0 such that for all A > 0,

)\‘|2

e
- . e
2 [-|>d

1D¢ |2 a2

Ixie™ " (au)llze < Clxall e Ixell e € Mlull 2oy,

which implies the result in L2. The proof in H! or in H! follows the same. O

3.4 Lowering regularity

In Theorem 3.1.1, we have assumed the solution u to Pu = 0 to be C* near (to,xo). Looking carefully
at the proof, one can notice that local H! regularity suffices to develop the arguments of the proof (up
to using an appropriate generalization of the Paley-Wiener theorem & ). For such H' solutions, we first
notice that the required regularity of the coefficients of the principal part of Q(z, D,) in the x-variable is
only C, as in the classical case, see 7?.& In case of

3.4.1 Unique continuation for C' coefficents

3.4.2 Unique continuation for distributional solutions

In the present section, we explain how, in case the coefficients Q(z, D, ) are C*°, the regularity of u solution
to Pu=0is only u € D'(Q). See | , Remark p205]

3.5 Global unique continuation and non characteristic hypersur-
faces

3.5.1 Distance and metric

Let Q,, P be as in Theorem 3.1.1. Assume 2, connected. We are going to define the Riemannian distance
related to the operator Q.
We can assume that a% (z) is symmetric without changing the operator P. The ellipticity and positivity
assumption shows that for any = € Q,, we can define the matrix (g;;) = (a*)~! which is still positive.
For any = € Q, and v € R" (~ T,R"), we define

‘v‘g(:c) =

the Riemannian norm of the tangent vector v at the point x. Moreover, if v € C1([0,1];9,) (or even
v e Wh([0,1]; Q) or v € WH1([0,1];9,)) is a smooth path, we define its length as

1
length(y) :/0 5@l g(v ey dt-

This allows to define the Riemannian distance associated to g as

dist(zq, z2) = inf {length(v),v € C*([0,1];2),7(0) = z1;7(1) = 22} .
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3.5.2 The global theorem

Theorem 3.5.1 (Semi-global unique continuation for waves). Let Q,, P be as in Theorem 3.1.1. Let x,
x1 € Q. Let wg be neighborhood of xg in Q. Then, for any T > dist(xg,x1), there exist € > 0 and Vy,
one neighborhood of x1 so that for any u € C*(Q),

= u=0in]—e,e[xV,,. (3.24)

Pu = 0in]—T,T[xQy,
u 0in | —T,T[xwq

As a corollary, we deduce the following result. Given an open set Int(M) C R™ endowed with a metric
g and for E C M, we introduce the largest distance of E to a point of M:

L(M, E) := sup dist(z, E), dist(z, F) = inf dist(z,y). (3.25)
reEM yer

Corollary 3.5.2 (Global unique continuation for waves). Let Int(M) C R" be a bounded domain and let
Ay be an elliptic operator on M. For any nonempty open subset w of M, if u satisfies

ue C®((=T,T) x Int(M)), 0fu—Ayu=0in (-T,T) x Int(M), T >L(M,w),
then u vanishes identically.

Proof of Theorem 3.5.1. According to Lemma 3.5.3 below, we can find local coordinates (w, z,) near v in
which the path v by v(s) = (0, sfp) and the metric is given by the matrix m(w, z,,) € M, (R) with

/
m(w, z,) = < mi(e) 0 ) + Ous @ (lw]),  for w € Bgai(0,6),8 > 0, (3.26)

with m/(x,) € M,_1(R) (uniformly) definite symmetric. With these coordinates in the space variable,
and still using the straight time variable, the symbol of the wave operator is given by

p(taw7xn7€t7£wa§n) = p(waxn>€t7§w7fn) = _§t2 + <m(w7xn)£?§>7 f = (€W5€n)7 (327)

where we have used & for the dual of the time variable and &, &, for the dual to w € Bgrn-1(0,6) and
Ty € [0,50].

We now aim to apply Theorem 3.1.1 and we need to construct appropriate non characteristic hyper-
surfaces.

Pick again tg with £y < tg < T. For b < § small, to be fixed later on, we define

Ty =1, 2'=(tw), D= {(t,w) ’(Z)QJr (%)2 < 1}
G(t,w,e) = elo) ( (%)2 + (;)2> , (tyw,xy) = G(t,w,e) —x,, €€]0,1]

where 1 is such that

P even, ®(£1)=0, ¢(0)=1,
P(s) 20, [¥(s)] <a, fors e [-1,1],

with 1 < a < ;—0. This is possible since E—" > 1.

Note also that the fact that P is even gives that G(t,w,¢) is actually smooth.
Note also that the point (t = 0,w = 0,x, = £y) corresponding in the local coordinates to x! belongs
to {¢1 = 0}. We have

antenma =)'+ (G)) o (VG ) (5 +5) -0
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Given the form of the principal symbol of the wave operator in these coordinates (see (3.26)-(3.27)), we
obtain

oo dotwn)) = i (2)+ (fo)z)l WP
+£3§—i<m’<wn>w7w> ((Z)Z + (;)2)_1 [/ + 1

+0(Jul ><1+2£0| 2 ((3 )2+(;)2)_1|w’|2>,

2 2
where [1’|? is taken at the point < (%) + (%) . Now, since a < z—‘; and m/(z,,) is uniformly (for

€ [0, £o]) definite positive, there is n > 0 so that for |w| < b small enough, we have

5 03
1+O0(wf?) > §+n
0

(m' (zn)w, w) + O(Jw|*)|w* > %(m’(afn)ww)ZO-

Hence, there is a sufficiently small neighborhood (taking again b small enough) of the path (i.e. of w = 0),
in which we have (for any ¢ € [0, 1]), and any (¢, w,z,) € D x [0, {o]

0”(2)2((?)2+(;)z)_1|w'|2+a2§+n

2.2
0

\%

p(UJ, Ly d¢€(ta w, xn))

So, the surface {¢. = 0} is noncharacteristic for any e € [0,1] and, therefore, strictly pseudoconvex with
respect to the wave operator.

Now, define K, = {z,, < G(t,w,e)} N {z, > 0}.

Consider g9 = sup{e;u=0on K.}. A continuity argument yields that that v = 0 on K.,. A com-
pactness argument on the compact set (taking into account the "corners") and the successive application
of Theorem 3.1.1 gives the result. & un peu rapide... O

Lemma 3.5.3. Let~: [0,1] = Q, be a smooth path without self intersection (that is to say, 7 is injective)
of length £y so that v(0) = zg and v(1) = 2.

Then, there are some coordinates (w,l) € Brn-1(0,¢) x [0, £o] in an open neighborhood U near ([0, 1])
so that

7([0,1]) = {w = 0} x [0, b},

e the metric g is of the form m(l,w) = < (1) m9(l) > + O, ) (Jw)),

Proof. The path ~ is of length ¢y so, we can reparametrize it by v : [0, 6] — €, such that + is unitary
(that is [¥(s)|(s) = 1 for all s € (0,4y)). Moreover, since v does not have self intersection, there exist U a
neighborhood in 2, of v and a diffeomorphism 1 such that

o Y(U) c{(z,y) eR" [z € [—¢,lo +el,Jy| <e},
e Y(v(s)) = (5,0),

e Y(U) = {(z,y) e R, fi(y) <z < foly) |z € [—¢,4 + €], |y| < e} for some smooth functions f; lo-
cally defined
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Then, we make some change of variable to diagonalize the metric on . By unitarity of the coordinates,
the metric on v has the form
1 (=)
m(z,0) = ,
w0=(uty o))

where [ is a line vector and g is a positive definite matrix. We perform the change of variable ® : (x,y) —

~ _ (1 —a 1t - 1 0 .
(Z,7) = (r —az - y,y). Iny =0, we have D®(x,0) = ( 0 Id ) with *D®(x,0) = ( e, Id ) (in

particular, the change of variable is valid for small ) and D®(z,0)~! = < é ?2 ) with {D®(z,0)~!

1 . . . . .
( tq, IOd ) Moreover, in the new coordinates, the set in {y = 0} and the metric there is given by

t -1 -1 _ 1 I(z) + a(z)
DG, 0) (e 0)D(0) = (e by
So, we choose a(x) = —I(x) so that in this new coordinates m(x,0) is of the form
1 0
m(z,0) = ( 0« ) . (3.28)

The expected property of m is then obtained by the mean value theorem using the diagonal form (3.28)
on 7. O

3.6 Approximate controllability
3.7 Further remarks

3.7.1 The general theorem

of Tataru Robbiano-Zuily, Hérmander

3.7.2 Quantitative estimates

boundary Carleman estimates
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3.8 Exercises on Chapter 3

& Mieux preciser la regularite des solutions dans les 2 exos

Exercise 16 (The Gaussian multiplier). 1. Compute the Fourier transform of s — e=*" on R. Hint:
differentiate the Fourier transform and solve a differential equation.

2. Deduce the Fourier transform of the Gaussian z — e~ 1#l* on R™.

. x|? ) )
3. Deduce the Fourier transform of z — e~"% for A > 0 on R™. Hint: use a scaling argument.

4. For A > 0, we define the Fourier multiplier S, = e~ on S(R™) by F(Sxu)(§) = e_%?(u)(ﬁ).

Prove that Syu = f) * u with
A\ "2 |2
f)\ = (47{_) 67)\ 4,

5. Relate Syu to the solution of the heat equation on R™ with initial datum v € S(R™), namely

{ ov—Av = 0

v(0,2) = wu(x). (3.29)

2 _ =2
)n/ e 7 .

Deduce that the solution v of (3.29) writes v(t, ) = K; * u with Ky(z) = (14

6. Let u € S(R™) be nonnegative and not identically vanishing. Prove that for any A > 0, and = € R",
(Sxu)(z) > 0. Deduce that Sy is not local: the property supp(Syu) C supp(u) does not hold.

7. (a) Prove that for z > 0, we have

+oo +oo ,—2%(1452)
1
/ e ds = —/ eids < ﬁe*zg.
P ﬁ 0 1 + 82 2

(b) Prove that for all m € N, there is Cy,, > 0 such that for all » > 0,¢ € (0, 4],

(c) Deduce that there is C), > 0 such that for all closed set E C R™ all z € R™ and all t € (0,4],
we have

ist(x, 2
/ emtle—ul? dy < C,, (dist(z, E))" 2 Vie— ) (3.30)
E
where dist denotes the Euclidean distance in R™.
(d) Conclude that there is C' > 0 such that for all u € CP(R"), all z € R™ and all A > 1, we have

o~ dist(z,supp(u))? ull oo -

[Sxu(x)] < C (dist(x, supp(u)))" AT

(Note that this might be interpreted as a refinement of the result of Lemma 3.3.10: here, the
coefficient in the exponential decay is made explicit — and is optimal — in terms of the Euclidean
distance).

Correction 16. 1. We denote f(s) = e~ differentiate

df d . . - ,
() eTis8e 45 = —i/ P P %/ 6725£3s(6752)d5

dg dg Je
_ ¢ —ise 5?5 _ &7
=3 Rne e ¥ ds= 2f(f).

120



So, this equation can be explicitely solved by f(f) = f(O)e_é. It is still a Gaussian, but we have
to find the normalization constant f(O) To compute f(O) = [ e~*"ds, notice that (fR e~ ds>2 =
Jre e~ @) dpdy = Jso e (2nr)dr = —m dy(e="")dr = 7. We thus have Jr e ds = /7
and f(¢) = V/re~ 5.

. In higher dimension, we compute

_ _ 2 _ _ _ .2 _ 2
/ g g=lal / / il e @b e T L L ey - day,
Rn Ro, R,

Tn

r>0

112

F(&) - F(&n) =27

z|2
. Now, we want to compute gx(£) where gy = e 5 By scaling, we have

() = / eiiz{@i%dx = )\n/2/ eiiﬁy'feﬂy\zdy = /\”/le(ﬁg) _ (7‘(‘/\)”/267)‘%_

—

=2 n/2 —)\ﬁ
That is e= > (§) = (mA)"/2e 1.

. Now, we want to give a convolution formulation for Sy. We have for u € S(R"), §,\\u(£) =e  » u(f).
So, using (1.24), we have

Sywu = F! (e_ilﬂ) =F! (e_i> xu = fy*u,

with

2 1 -3 n/2 o2 n/2 o2
fr=F (e—i> -5 )nef% - (7(72/\))“ R <4A) e M (3.31)
™ i /I

. Assume u € S(R™) and v is a smooth solution of the heat equation (3.29) with v(t, ) € S(R™) for
t > 0. Then, applying the Fourier transform in x yields

{3t@(t,€)+|§25(t,§) =0
v(0,§) = u(f)

This leads to 9(t, &) = e e a(¢), ie. v(t,) = e tP=ly = Sy 1u. Together with the expression

. . . . _ 2
of Sy/; as a convolution operator in the previous question, we deduce v(t,-) = e D=y, =

n/2 _l=l?
)

I % U.

S1/tU =

(47rt
. We deduce that

n/2 5
Shu(z) = faxu(z) = (4);1_) /n oA

This is nonnegative for all z € R™ since the integrand is nonnegative. Moreover, having Syu(z) =0

u(y)dy, ze€R" A>0.

IR "
would yield e=* = u(y) = 0 for all y € R™, which is not the case except if u vanishes identically.

In particular, we have fr A > 0

(u € L*(R™),u > 0,u not identically vanishing ) = supp(Syu) = R".

The conclusion holds even if supp(u) = B(0, 1), and thus S is not local.
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7.

(a)

To prove the equality, differentiate both terms with respect to z > 0:

+oo —2%(14s%) 1 +o0 9 52 +00
/ —— 7 ds| = 7/ 9z (s gg — Z€ / —ze %% ds
dz Nz 1+ s? LN VT Jo

2
2e % oo 2 2 d oo 2
= —e Vdy=—e7* =— e ®ds]|.
v Jo dz </z >

Moreover, for z = 0 both integrals coincide, thus the formula for all z > 0. Then, the inequality
follows from

00 7z2 s 00 72 52 00
/Jr (e ds /Jr /Jr ﬁesz
N 1+ 52 \f 1+ 52 f 1+ 32 2

As a consequence, we first have

“+oo . 2 i1 “+oo
se”Tds =1 2
T T

Integrating by parts once, we obtain

> m_—y? 1 m—1_—a?> -1 m—2_—y?
y"e Y dy = ia e + T y e Y dy.
« (03

Iterating integration by parts, we see that for all 0 < ¢t <4, r > 0, we have

yme Y dy

(s/VE™e™ T ds/ Vi =

r/\V/t

m o0 m T2 T‘2
tTH/ y"e” ’ <Cp, 3 (r/x/i}m_le_T < C’m<r>m_1tle_7,
/Vt

which yields the sought result.
As a consequence, there exists C,, > 0 such that for all » > 0, ¢ € (0,4],

2 1 02 1 N2 -2
/ e” i dy=1|S"" |/ e" TPV T dp < Cp (1) T teT T
ly| > p=r

Given a closed set £ C R", if the point = does not belong to E, we have ENB(z,dist(z, F)) = 0,
and hence FE C B(x,dist(x, E))°. As a consequence, if x ¢ E, then for any t € (0, 4], we may
apply the last inequality to deduce

/ e tlrul® gy < / e~vleyl gy < (dist(z, E))" "% te™
E B(z,dist(z,E))°

If x € E, we simply notice that for any ¢ > 0

/ e*%\mfyIQ dy S/ e*%\mfyﬁ dy = (ﬂt)%.
E n

(this inequality actually holds for all z € R™). The last two inequalities imply the sought
estimate valid for all z € R".

dist(z,E‘)2
t

n z|?
We recall that Syu = fy xu with f\ = () /2 oAl Taking ¢t = 4/X € (0,4] in the above

estimate and writing |u| < ||ul| e Lsupp(u) yields, for A > 1,

n/2 n/2
A \lz—w? A L Jo—ul?
sl < () [ e s () ol [ e
7 n ™ supp(u)

< ON? |Juf o (dist(x, supp(w))" ™ A7H/2e™ 7 distlesupp()?,

dy

whence the sought estimate.
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Exercise 17 (Schrodinger equation). In this exercise, we consider solutions to the Schrédinger equation
in R™, namely

{ 1w —Au = 0, (3.32)

w(0,2) = wug(x).

1. Compute the Fourier transform in the space variable of a solution to (3.32) in terms of ig. Prove
that if u solves (3.32), then we have for all s € R and all t € R, [[u(t, )|l g7« gny = llwol| s (g

yp exit | (&) =e , fora

(the Fourier transform is understood as an element of S'(R™)). Hint: Use an analytic continuation
argument together with Exercise 16.

2. Prove that

3. Prove that there is C' > 0 such that

C

Hu(tﬂ')“L‘” < |t|"/2

lluoll o, forallt=0,

for any smooth solution v with u(t) € S(R™) of the Schrédinger equation 3.32.

4. Assume n = 1 for simplicity, and let C,~ > 0 be two parameters. Prove that if ug € L'(R") is such
that

lug(z)| < Ce™ 2l for all z € R, (3.33)

then for any ¢ # 0 the solution « — u(t,z) can be extended as a holomorphic function in a neigh-
borhood T'; C C of the real axis, to be determined.

5. Still in the case n = 1, deduce that if ug € L2, (R) does not vanish identically, then, for all ¢ # 0,

comp
the associated solution u(t,-) to (3.32) cannot vanish on a nonempty open set w C R.

We now consider the Schrédinger equation (3.32) set on the torus x € T™ := R"/(27Z)"™. We denote
by e~ "*Auq the solution u(t,-) of (3.32).

6. Prove that there exists 7' > 0 such that e *(“+T)2yq = e~ 24 for all ug € L*(T™) and all ¢t € R.

7. Deduce that the analogues of Questions 3 (decay of the L> norm for data in L') and 5 (solutions
arising from compactly supported data “fill the whole space” for all times t # 0) are false on T".

Correction 17. 1. If u solves (3.32), then we have a(t, &) = ey (¢) for all t € R. In particular,

| aieriawors = | 0+lekylao©Pds

and hence [[u(t, )|l 7= gn) = U0l s (gny for all £ € R.

2. We have seen in Exercise 16 (see (3.31)) that

1\"? e 2
F () em | (&) =eE" forallt>o0.
47t

We now wish to formally replace ¢ by —it in this formula using an analytic continuation argument.
To this aim, take a text function ¢ € S. We write C* = {z € C,Re(z) > 0} and define the function

1\™? e 1 \"? 1.2
2= fo(z) =(TF () e” 3= |, p = () <e_4z,<ﬁ> , z€CT.
Az 4z S'.S
S,8 s
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in which we choose the principal determination of the logarithm (that is, taking arguments in
(—m, 7)), which is holomorphic on C*. The function f, defines a holomorphic function on the
half plane Ct = {z € C,Re(z) > 0} (use derivation under the integral). Moreover, according to
Formula (3.31), it coincides with the function

9o (2) = <e’z"‘2,<ﬁ>s,

s’

for z =t € R%.. So, since f, and g, are two holomorphic functions on C* that are equal on R, we
have f, = g, on C* by analytic continuation.

Moreover, the formula defining f,, extends by continuity (using a dominated convergence argument)
to the set o
Ct\ {0} ={z€C,Re(z) >0,z £ 0}.

It is also clear that g, extends continuously to that set; hence both functions coincide on that set.
Taking z = —it for t # 0 finally yields the sought formula.

. From the above two questions, we have obtained, say, for ug € S(R™), ¢ # 0,

u(tr) = T, (M ag(€)) = 51 () 7 (o) ()

e | @) = — s [
= it 0 = @t 0 .
(—4mit)"/? (—4mit)"? Jrn

As a consequence, we have for the following estimate for ¢ # 0,

1
luo(W)ldy = ———— lluoll L1 (mn) -
(47T|t|)n/2 L1 (R™)

1
el o gy < —— /
L (R) (47T|t|)n/2 R

This is a so-called dispersive estimate: although the L? norm of the solution is preserved along time,
its maximal value decays.

. We set

1 (z=w)?
u(t, z) == 7/6 Tt ug(y)dy, (3.34)
(—4rit)/? Jr ’

and want to understand for which z € C the integral converges absolutely. Note that here, it is key
that we write (z — y)? (usual square of a complex number) and not |z — y|? (modulus of a complex
number) in order to obtain in the end a holomorphic function in the variable z. Writing z = a + ib
with @ = Re(z) and b = Im(z), we have

(eo? Re((a—y:»ib)Q) Re((afy)beiﬁfzib(afy)) bla—)
e & uo(y)’:e " ue(y) = B luo(y)] = e~ 2 Juo(y)|.

So the above formula for u(t, z) is well-defined whenever [, e 5t luo(y)|dy < +o0. Since we assume
lug(y)| < Ce 1 it is enough that Jr e*%e"y‘mdy < 400, that is to say:

o ift>0,b>0,v> %, i.e. b < 24t (integrability condition at —oo);

e ift<0,b6<0,v> %, ie. b = —=b < 2y(—t) = 2v]t| (integrability condition at —oo);

_b
2t

e ift>0,b<0,v> —%, i.e. |b] = —b < 24t (integrability condition at +00).

o ift<0,0>0,7> ie. b < —2ty = 2v|t| (integrability condition at +00);

That is to say, |b| < 27v[t|. As a consequence, if we set

I'y :={z € C,|Im(2)| < 2vJt|]}, fort#0,
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we may differenciate under the integral (3.34) in any compact set of I'y; applying 0 then yields
0.u(t,z) =0 for all z € Ty and t # 0. Hence, we have extended u(t,-) as a holomorphic function in
T';, which is an open strip containing the real line.

Notice also that, for t > 0, say, the decay of ug near 4+oo dictates the width of the strip under the
real axis, whereas the decay of ug near —oo dictates the width of the strip above the real axis.

5. If ug € Lg,,(R), then it satisfies (3.33) for all v > 0; hence, for all ¢ # 0, we have I'y = C. As a
consequence, for all ¢ # 0, the function u(t,-) is an entire function: if it vanishes on an open set,
it then has to vanish identically, that is u(¢,-) = 0 on R. Since the Schrédinger equation (3.32) is

well-posed backward, this then implies that ug vanishes identically on R, which prove the statement.

6. We use Fourier series on the torus: the family (eg)rezn with ey(z) = (271)"/2e’** forms a Hilbert
basis of L?(T™). Therefore, v € L?(T™) writes:

1 1 ik
W(v,ek)y(w) = (27‘(‘)” /" v(m)e - dx.

v(x) = Z (’U,ek)L2(Tn)€k($) = Z U;\ceik"r7 v =

kezn keznr

Moreover, We have, for j € {1,--- ,n}, Djex(x) = D;e?*® = k;e’*® so that

_Aek — ZD?ek — (Zk?)ek = |I€|26k'
j=1 j=1
Therefore, the solution to the Schrodinger equation (3.32) writes:

—itA it|k|?
e Uy = g etk (uo, ex) L2 (Tn)Ck-
kezm

We next remark that for any k € Z", we have |k|2 € N and thus ¢'(+2mIk* — ¢itlkl®  That is to say
e~ t2m) Ay g = e~y for all ug € L*(T™): the Schrédinger flow is 27-periodic on the torus.

7. From this periodicity property, we deduce in particular that for any ug € L (T™) C L?(T"), we have
w7, )| oo (pny = [[t0ll poc (pny,  forall £ € Z,

preventing any decay to zero of the L norm. Note that we have conservation of the L? norm, so
that

||u0||L2(T") = lu(t, ')||L2(1rn) < (27T)n/2 [Ju(t, ')HLOO('JT”)
which already prevents decay of the L>°-norm (or any LP norm). Note that this remark holds in any

domain with finite Lebesgue measure.

The property of Question 5 is slightly more subtle. Here, if uy € L°°(T") vanishes in some open set
w C T", then we have
u(2ml,-) =ug =0 a.e. onw, forall £ e Z.

This disprove the property of Question 5 for the Schrédinger flow on the torus.

Exercise 18 (Carleman estimate, part of the exam of May, 2016). & uniformiser notation avec le
e|D

2
reste : 1 — ®... For e > 0 7 > 0, define the Fourier multiplier e~ "7 defined by

(=)@ = Fae) veer®

for u € S(R™) (notice the slight difference with the one used in the main part of Chapter 3). Using the
Fourier transform of the Gaussian, we also have the formula

_ e|D|2 T \"/2 T lm—yl?
e 7 u(l:)=< ) / em %PV u(y)dy.

2me
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e|D|?

Here, we denote by Q¥ the operator defined by Q¥ .u = e~ 2 (e™u) for u € S(R") (as opposed to the
main part of Chapter 3)).
We also let P € Diff™(R"™) with principal symbol p and zg € R™.

Let ¢ be a real-valued quadratic function defined on R™. More precisely,

n

Y(z) = Z Ak 1TKT] + Z by +c

k=1 k=1

where ay;, by and ¢ € R are some constants.
Assume p(zg, Vip(zg)) # 0.

1. Denote py(x,€,7) = p(x,§ +i7Ve). Check that for £ =0, py(z,&,7) = (i7)™p(x, V).
Prove that

£E=0,7>0=> |p¢,(xo,§,7')|2 > 0.

2. Prove that there exist some constants C; > 0, Cy > 0 so that
Py (20, &) P + CLIE[P™ > Co(€% +72)™. (3.35)
for all £ € R™, 7 > 0.

3. Let l(x) = Z;L:1 l;xz; a linear function with /; € C constants. Compute the operator I, ; so that

_elp|? _zp)?
e” 7 (lu) =l. e 2w

4. Compute the operator D;stﬁ so that QﬁT(Dju) = DfEVTQg”Tu. Prove that D;-ljsﬁ = D; +itVip —
€ 3 k=1(jn + aj) Dy
Denote A the constant matrix with coefficients Ay ; = a; 1 + ax ;. Compute the principal symbol of
DY_ e Diffl.

2,€,T

5. From now on, assume that P can be written P = Z\a|<m peD* € Diff™ with p, € C, that is an
operator with constant coefficients. -

Denote Py . the operator so that Q¥ (Pu) = Py Q¥ u. Prove that Py . € Diff”" is a differential
operator depending on 7 of order m. Prove that its principal symbol denoted py, . is

Pue(,6,7) = D palé+iTVY — AL,

lal=m
6. Prove that there exists € > 0, C3, C4 > 0 so that we have
[Py, (0, & 7)|* + C3l€™ = Ca(€* + 7)™ (3.36)

for all £ € R™, 7 > 0.
7. Now, we fix € > 0 so that (3.36) holds.

We admit the Garding type Lemma 3.8.1, written below, for operators of order 2m.

Now, prove that there exists C5, Cg 79, 79 so that
2 m 2 2
[Pp.efllze + Cs IIDI™ Fllz2 = Collf [ gm (3.37)

for all 7 > 19, f € C§°(B(x0,70))-

Here |D|™ is the Fourier multiplier of symbol |£|™.
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8. Let u € C§°(B(wx0,70/4)). Denote v = Q¥ u. Let x € C5°(B(xo,r0) so that x = 1 on B(zo,70/2).

Denote f = ywv.
Prove that there exists C' > 0, ¢ > 0 so that
10 =00l < Ce™ [|e™ull4,,
IPyedoll s < Cem e ully,,
DI fllyz < CHIDI™ 0l + Ce™ T [[e™ull

For the last one, we could consider (or not) to simplify that m = 2k is even so that |D|™ = (—A)*.

9. Conclude using (3.37) that (for some different constants C' > 0), uniformly for 7 > 7
2 2 m, |2 —cT T 2
[0l < ClIPpcvlle + CNIDIM™ ]2 + Ce™ [l ul (3.38)
10. Prove the estimate (for some different constants C' > 0), uniformly for 7 > 7
2 2 —cT T 2
1R -ullyy,. < CllQEPull, + Ce™ [|e™ ull,, (3.39)
Lemma 3.8.1. Let N € Diffim with principal symbol n(x, &, 7) real-valued. Assume moreover that for
xg € R™, there is the inequality
n(xo, &,7) > C(E% + 7)™
for all e R™, 7 > 0. Then, there exists ro > 0, 19 > 0 so that
Re(Nf. 1) 2 C [l
for all T > 1, f € C§°(B(x0,70))-

Exercise 19 (Unique continuation, part of the exam of May, 2016). Let P be an operator as in the
introduction of the previous exercice. We assume to have proved the following statement: If ¢ is quadratic
real and satisfies p(zg, Vip(xg)) # 0, then we have the estimates (3.39) for any u € C5°(B(zg,r0)) and
T 2> T9.

Now, let ¢ € C*°(R") real-valued so that p(zg, Vio(xg)) # 0.
Let Q be an open neighborhood of zg. Let u € C*° () so that Pu = 0 on 2 and u = 0 on QN{p(z) > 0}.

1. Define 9 (x) = Vp(zo) - (z — 20) — |z — 20|? for some A > 0 to be chosen later on. Compute Vi) (o).
2. Prove that there exists A > 0 and r; > 0 so that

() <0and |z — x| <71 = Y(2) < —|z — 20)? (3.40)

3. Now, A and rg, r are fixed so that (3.41) and (3.39) are true. Prove that there exists ro > 0 so that
|z — o] < 1o = ¥(x) < c¢/4 (3.41)
where c is the constant in (3.39).

4. Let r = min(rg,r1,72). Let x € C§°(B(xp,r) so that x = 1 on B(zg,7/2). Denote w = xu. Prove
that there exist some 7 > 0 and some new constant C' > 0 so that

lQE Pl < Ce™

e eV < Ce
for all 7 > 9.

5. Conclude a unique continuation property and formulate the Theorem that we proved.
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Appendix A

Appendix

A.1 The Dirichlet problem for some second order elliptic opera-
tors

& No taught in class. Moreover, faut changer le poids de carleman en ® pour coherence des

notations

In this section, we shall consider a particular class of operators as described in Remark 77, that is, with
symbols the form ps(x, &) = Q. () where @, is a smooth family of real quadratic forms. Assuming that
the variables z, are tangent to the boundary, and that the functions satisfy Dirichlet boundary conditions,
we prove a counterpart of the local estimate of Theorem 7?7 for this boundary value problem. For this, the
main goal to achieve is to prove a Carleman estimate adapted to this boundary value problem. All local,
semiglobal and global results shall then follow.

This situation is of particular interest for the wave equation for which z, is the time variable, which is
always tangent to the boundary of cylindrical domains.

For the sake of simplicity, we shall further assume that the operator principal symbol of P is independent
of the z, variable (we would otherwise need to assume the coefficients of P to be analytic with respect to
xq). This allows to avoid some additional technicalities in the (already rather technical) proofs.

A.1.1 Some notation
Here, we shall always assume that the analytic variables are tangential to the boundary, that is
= (Tq,7p) ER™ xR},  with R =R™ ' xR,, andx = (27,z}).

When the distinction between analytic and non-analytic variables is not essential, we shall split the variables
according to

z=(2',2,) ERT =R" ' xRy, witha' = (z,,2}) € R™T™ 1 and z, =2} € R,

We also denote by &’ € R"™! the cotangential variables and &, the conormal variable, by D’ = 1(0,/) the
associated tangential derivations and D,, = %8% the normal derivation.
For any rg > 0, we define

K., ={z e R}; x| <ro} = Brn(0,10) N {z, > 0}. (A1)

We denote by C2°(R?) the space of restrictions to R’} of functions in CZ°(R™), and by C°(K,,) the space
of functions Cg°(R") supported in K. the trace of a function f € C°(R’}) at x, = 0 is denoted by

f\wnzo-
We denote by (f,9) = [zn [T, Hf||g + = (f, f) the L*(R") inner product and norm. For k € N, the
T :

norm ||-f|, , will denote the classical Sobolev norm on R’} and |[|-[|, ,  the associated weighted norms,
that is,

2 j 2
Il er= > 7710%fllos. 721

jt+la|<k
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We also define the tangential Sobolev norms, given by

2L =D+ e, ~ S0 ¥ essl,, T>1.
Jt+lel<k

We shall also use, for f,g € C2°(R"), the notation (f,9)o = [pn-1 flz,=0(2")g|w,=o0(z")dz’.

Finally, for j € N, we denote by D¥, the space of tangential differential operators, i.e. operators of the
form

P(x,D',7) = Z aj.o(x)T? D",
Jjtlal<k

and by
o(P)=p(x.&,7)= > aja(z)r’¢"

J+lal=k

their principal symbol.

A.1.2 The Carleman estimate

In this section, we state and prove the Carleman estimate of Theorem (2.5.2) asociated to the Dirichlet
problem . Note that it applies also to elliptic operator, but also to wave type operators.

To prove Theorem 2.5.2, we define the conjugated operator Py = eV Pe™ = P(x, D +ity’).

When proving the theorem, we shall drop the index + in the norms to lighten the notation; of course,
all inner norms and integrals are meant on R”}. We first need the following proposition.

Theorem A.1.1. Under the assumptions of Theorem 2.5.2, there exist C > 0, 79 > 0 such that for any
7> 19 and f € CP(K,,), we have

TIFI5 - < CUPSfIG + 781 fia=ol§ + TID fiu=ol3- (A2)
If moreover 0,1 > 0 for (', z, =0) € K,,, then
TIIfI3 . S CIPfI2,  for all f € C(K,,) such that fi,, —o = 0. (A.3)
Proof. Defining Qo = L(Py+ Pj) and Qi = 7= (Py — P}), we have
Py = Qo +itQn,

and denote by ¢; the principal symbol of Qj7 7 =1,2. We have

5. P2
(& - 0%, (A4)
Ql == DTLw;cn + 1/}an71 + 2Q1?
where Q2 € D? and Q; € D} with principal symbols
q2 = _72(¢;n)2 + T(QL'7 gl) - 7'27“(1', {ll)/m’)

q = T(wy,& ),
where 7 is the bilinear form associated with the quadratic form r. Note that, even if it does not appear in
the notation, all these operators depend upon the parameter 7.
With this notation, we hence have py = G5 + 747, so that ;={p,,py} = 2{,¢)}. Assumptions (??)
and (?7?) then translate respectively into
(@, @} (@,€) >0, ifp(z,§) =0, z€Ky,7=0; (A.5)
{3, (2,8) >0, ifpy(r,&) =0, x€K,,7>0, (A.6)

where the second assertion is a direct consequence of (??), and the first one follows from (??) together
with the fact that, using that p is real, we have

. 1 _ o1,_
Tlig)l+ ;{pd,;pw} - 5;{p¢apw} . - 2{])7 {paw}} .
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Next, we have the integration by parts formulee:

{(gaQQf) = (C:ng,f)—i[(g, Dy f)o+ (Dng, fo)ol , (A7)
(9. Q1) = (Qug, [)—2i (¥}, 1), '

So, we have for f € C°(K,,)
1Puflly = ||@or |+ @] +ir [(@1.Ga8) — (@25.015)] (45)

So, we get, using the integration by parts formulee (A.7)

~ 2 ~ 2 ~ o~
1Pufllo = || @af |, +72 | Que|[ +ir (102, @1l £) +7BLS). (A.9)

with the boundary term

B(f) = |:Q1fa nf O+( anf7f)0:| _2<w;nQ2f7f>0
= '(/) nfa nf)O"’(leaan)O"'(M{an;f)O"'(Mvaf)Ov (AlO)

for some tangential operator M; of order 1 (in &’,7) (note that terms of order two in D,, cancel).

Now that we have made the exact computations, we will make some estimates on the symbols of the
interior part of the commutator. The idea is to tranfer the positivity assumption of the full symbol to
some positivity of a tangential symbol, which will then allow to apply the tangential Géarding.

The first step is to perform a factorisation of [Qg, Ql] with respect to Q; and Q- to have a tangential
reminder. Since [Q2, Q1] is of order 2, it can be written i[Qs, Ql] Cy + C1D,, + CyD;, where C; € DL
But using (A.4), and v, # 0 on K,,, we can replace D, = 2w' Q1 + D! and D? = Q, — Q. So, in

particular, we can write
i[Qa2, Q1] = BoQa + B1Q1 + Ba. (A.11)
where B; € D% with real symbol b;. Now, we need to
e use the assumption to get some positivity of the symbol {p,,, py}, this is Lemma A.1.2;
e transfer this information to a tangential information on the symbol, this is Lemma A.1.3.

Lemma A.1.2. There exist C1,Cy > 0 such that for all (z,£) € K,y x R™ and 7 > 0, we have

Ipw(m,ﬁ)q |

(1€ +72) < C1{a, @}z, €) + Ca { € + 72

Proof. All the terms are homogeneous of degree 2 in (£,7) and continuous on the compact (z,£,7) €
K., x {(&,7) € R" x RT,|£]> + 72 = 1}. Thus, on this set, the result is a consequence of (A.5), (A.6) and

Lemma 2.1.8 applied to f = %%?2‘2 >0,9=1{3,3)} and h = 0. The result on the whole K,, x R" x RT

follows by homogeneity. O

Now, we set

wa,8) = (q1)* + (¥5,) .

The symbol u(x, ') satisfies the property that p(x,&’) = 0 if and only if there exists &, real such that
py(x, &, €,) = 0. This is easily seen by noticing that the zero of ¢; can only be with &, = fw‘f,l .

Notice also that p(z,£’) is a tangential symbol of order 2.
Lemma A.1.3. There exist C1,Cy > 0 such that for all (z,¢') € Ky, x R"™! and 7 > 0, we have

[(z, €))*

112 2 < b
(|£| JFT)—Ol 2+ C2 |§’|2—|—T2

(A.12)
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Proof. Note first that for any (z,¢’,&,) with &, = qlf £) e have G (x,€,€,) =0 and

Py(2,€&n) = G2(2, €, 6) = (¥5,) *u(,€).

Now, assume p(z,£) =0 and &, = 0. Setting &, = — ( £) , we have py(z,¢,&,) = 0. Using Lemma ?7?,

we have {ga, ¢1 }(z,£',€,) > 0. According to the deﬁmtlon of By in (A.11), we have ba(x,&',&,) > 0. As a
consequence, we have

,U(l', 5/) = 0 = b2(l‘,€/7 fn) > O
Moreover, all terms in (A.12) are homogeneous of degree 2 in the variables (¢, 7) and continuous on (¢',7) #

(0,0). Hence, applying Lemma 2.1.8 below on the compact set K,, x {(¢/,7) € R*~! x RT [¢/]2 + 72 = 1}
yields (A.12) on that set. The conclusion follows by homogeneity. O

Taking the real part of (A.9) and using (A.11), we obtain

1Puflly —Re (B() = |@ar |, +7* Q1] +7Re(Bas, )+ 7Re (B + BiGEF) . (A13)

Concerning the remainder term, we have

IN

7\ flloll @2 fllo + 71 £ 11Q1 Fllo
7—1/2( 2 +\\Q2f\\3+72||¢}1f||g), (A.14)

r= (Q1)2 + (’(/}wn) Q27

with principal symbol p, and for an operator G with principal symbol I g(lg

7| Re ((BOQ2 +B1Q1) f, f) |

IN

Defining now

+T)2, the tangential Garding

inequality (that means with some derivatives only in the variable z’), in which symbols are allowed to
depend smoothly upon the variable x,, yields, for 7 sufficiently large,
[fli; < CRe(Baf, ) +Re(Sf,Gf). (A.15)

Writing ¢, Dy = %(Ql — [Dn, 7, 1) — Q1 (where 1, does not vanish), this allows to estimate the full
norm || f|1,- according to

£l < CUQLf o + 1 f]1.7)- (A.16)

Recalling the definitions of Q; in (A.4), we also have

5 - @(Q ~ (D)) - ¢an")2
+(¢4,)? (02 - D2)
= (5@ - vt ) - 4,0, 5@~ Dt )

(5,02 (@2) (A.17)

N =

and hence i
¥ € (¢;,)°Q2 = 594, Du@1 + D101 + D} + DID,.

We now want to estimate the term Re (X f, Gf) in (A.15). For this, integrating by parts in the tangential
direction z,, we have

’(Kbg,,”wa (('(/}:/vn)an + Qﬂ/);n;Da) fv Gf)‘ S CH <Da> f”Hf”l,T
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This yields

(ELGH1 < Cl@lolf o+ | (500, @17.G1
0
HIQ ol e + 1710l + €l (D) S 7
< | (Get.@r6r) |+ Ol (= 1Qaflo + +10171o + 7k + 10119
0

According to (A.15) and (A.16) and (A.18), this now implies

+ 7 2|Q2f 115 + I Da 13-

~ 1 ~
I8, % Re(Bafi) + 115 +| (500, @067
0

Coming back to (A.13), we obtain, for 7 large enough,

2. < IP,flI> = 7Re (B —|Q2 2—72 )1 2+T
198 % 1P~ R (B() — [@af]| — 72| @],

(50t @urc)
¢ 0

S IPsfllg —TRe (B(f)) +7

(ze.@ut0r)
¢ 0

Recalling te definition of Ql, we have 1/);71@1 = D,, + G, where Gy € Dl is a differential operator of order
1 (in (7, D")), we finally have

I3 S NPufll; = TRe(B(f)) + 7 |(Duf + G1f, Gf)ol (A.19)

where G a tangential pseudodifferential operator of order zero, Recalling the form of B(f) in (A.10) gives
the bound |B(f)| < 72|fz, =013 + |Dfz, =03, which concludes the proof of (A.2).

Now if f|;,—o = 0, all tangential derivatives vanish. With (A.19) and the form of B(f) in (A.10), this
yields

TIAIE - S IPofllg — 27, D f, Duf)o,

which proves (A.3) since 1, > 0 for (2, x,, = 0) € K. This concludes the proof of Proposition A.1.1. [
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Appendix B

Correction of (some) exercises

B.1 Exercises on Chapter 1

B.1.1 Exercice 1

Let A= ao.5(x)D*7P. B = by g () D 77" of respective order m; and mg and full symbol a and b.
Ao Bu = a,p(x)Dr? [ba/ﬁ/(x)Da'TB/u] = aaﬁ(x)TB*B/DO‘ [ba/ﬁ/ (2)D* u

Using Leibniz formula

ua= X (D)@ n@s),

y+i=«
we get
’ ]_ ’
D~ {ba/,g/((ﬂ)Da U] = W <a) (avba/”g/)(a&Da u)
L y+o=a v
So, we get
1 / /
AoBu=— g (x) PP <O‘> (07bar 5)(0° D w)
e ¥

y+o=a

Each term in the sum is a differential operator of order S+ '+ |6| + |&/| < B+ ' + |a| + |&/| = m1 +ma.
This maximum is reached only for the term § = «, v = 0, (:) = 1 where we have the term
1 B+6 o o’ B+6’ o pa’
Z‘\Tlaa’ﬁ(x)T bor g () (0D u) = aq,g(x)T bor g (x)(D*D u) = (ab)(z, D, T).
Let us now see the terms of order mj +my — 1. They are so that 8+ 8’ + 0| + || = m1 +mg — 1, that is
|6| = my —1 and |y| = 1. Moreover, v = (1,0,0--- ,0) or v = (0,1,0--- ,0), etc... We denote these vectors

€;. The sum is amongst terms so that «; > 1. In each of these cases, (s‘) = (%1) . (alj) (aon) = a.
J
1 n
W Z aavﬁ('r)TlB+ﬂ Oéj(ajba/ﬁ/)(8a76-7 D« u)
j=1l,a;2>1
1 n

Its symbol is

3
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We ony recognize o ;™% = J¢,£*. And the formula is still true and equal to zero if a;; = 0. So, the term
of order my; + mgo — 1 is therefore

n

« (X 1
,Za (@) (D5b0r 1) (De, 7)€ - = (0e,0)(a, D).
j=1
Now, take A = 37 1 5<m, o3(z)D*7? and B = by g (x)D¥ 77", Decompose A = a,, (x, D, 7) +
amy—1(x, D, 7) + r(x, D, 7) With @, (z, D,7) homogeneous of degree my, apm,—1(x, D,7) homogeneous of
degree m; — 1 and r(z, D, 7) of order at most m; — 2.
The previous calculation shows

AoB = am,(x,D,7)0o B+ am,—1(x,D,7)o B+r(z,D,7)0o B

= (am,b)(z,D,T) %Z [(8¢;am, ) (0x,b)] (z, D, 7) + (am,-1b)(z, D, 7) + (2, D,7) 0 B

(ab)(z,D,T) + EZ [(8¢;am, ) (0x,b)] (z, D, 7) — (rb)(z, D, 7) + r(2,D,7) 0 B

Jj=1

.

where a and b are the full symbol of A and B (actually the coefficients greater than m; — 1 and m; — 1
are enough). So, we can write the formula in this case

AoB = (ab)(z,D,T) —|—1 E (O¢,am,)(04,0)] (z, D, 7) + C(x, D, ) (B.1)
i
Jj=1

where C'is of order at most mq + mo — 2.

Let us now finally get to the general case, take B = by, (x, D, 7) + by,—1(x, D, 7) + s(z, D, ) with
bm, (z, D, T) homogeneous of degree ms, by,,—1(x, D, 7) homogeneous of degree ms — 1 and s(z, D, 7) of
order at most mg — 2. Applying Formula (B.1) to B equal to by, (z, D, 7) and by,,—1(x, D, T), we get

n

AoB = (abp,)(z,D,7)+ % Z [(8¢;am, ) (0, bmy)] (x,D,7) + Ci(z, D, T) (B.2)

+(abm,—1)(z, D, 7) + % Z [(8§jaml)(ax_7’bm2*1)] (z,D,7)+ Ca(z, D, 7) (B.3)

j=1

where C7 is of order at most mo — 2 and Cy ma — 3.

In particular, since (aby,,)(x,D,7) + (abmy,—1)(z, D, 7) = (ab)(z, D, 7) + Cs5(x, D, 7) where C3 is of
order at most mj +meo —2 and (8@. aml)(awj bm,—1) is of order at most m; +mgq — 2, we have the equivalent
of Formula (B.1) in the general case. This also proves Proposition 1.3.6.

Note that it means that

e the symbol of order my + mg iS @y, by, -

e the symbol of order m; +mo — 1 is

1 n
Ay Omy—1 + Qmy —1bmy—1 + i z; [(8€j am1)(a'vj bWufl)}
J:
This directly gives that [A, B] is of order at most mj +ms — 1 with principal symbol of order m; +mg — 1

n

- Z a@ a’ml)(8£3 bmg)] - % Z [(axj aml)(agj bmg)] = % {aml s bmg} .

Jj=1

.| =
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