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Chapter 1

Introduction and generalities

The focus is put here on second order operators and applications arising from physics, namely through the
operators ∆ (Laplace operator), ∂2

t − ∆ (wave operator, or d’Alembert operator), i∂t − ∆ (Schrödinger
operator), ∂t −∆ (heat operator)...

There are many references on Carleman estimates and unique continuation. We mention here a nonex-
haustive list:

• this course was influenced by the course of Nicolas Lerner, that can be found on his website
http://webusers.imj-prg.fr/˜ nicolas.lerner/m2carl.pdf,

• as well as the survey article by Jérôme Le Rousseau and Gilles Lebeau [LRL12];

• The most classical reference on unique continuation for partial differential operators is the Chapter
XXVIII of Lars Hörmander’s treatise [Hör94]. The latter gives a more general framework for what
is described in Chapter 2.

• the book of Claude Zuily [Zui83] is another classical reference;

• We also refer to the complete notes of Daniel Tataru available at
https://math.berkeley.edu/˜ tataru/papers/ucpnotes.ps.

• finally, the presentation of Chapter 3, concerning the wave operator, is inspired by the article [Hör97].

1.1 Motivation and applications
We start with presenting different applications to motivate the more technical parts of these notes. All
these applications are discussed in detail later on in the notes.

1.1.1 Tunneling estimates for eigenfunctions
Given a compact Riemannian manifoldM with or without boundary ∂M, we consider the eigenfunction
problem

−∆gψλ = λψλ, ψλ|∂M = 0. (1.1)

It is known that the equation (−∆g + 1)u = f, u|∂M = 0 has for any fixed f ∈ L2(M) a unique
solution u ∈ H1

0 (M) (consequence of the Riesz representation theorem in H1
0 ). The map (−∆g + 1)−1 :

L2(M) → H1
0 (M) is hence compact L2 → L2, and this implies that the eigenfunction equation (1.1) has

solutions for only a discrete number of values of λ. The latter are real, nonnegative, since −
∫
M(∆gu)vdx =∫

M∇gu · ∇gvdx for u, v ∈ H2(M) with u|∂M = v|∂M = 0.
This allows to introduce the eigenvalues λj ∈ R+, for j ∈ N. Compactness of (−∆g + 1)−1 also

implies that λj → +∞ as j → +∞. These eigenvalues are delivered with associated eigenfunctions, i.e.
ψj ∈ H2(M) ∩ H1

0 (M) such that −∆gψj = λjψj , which, once L2-normalized, form a Hilbert basis of
L2(M), and in particular satisfy (ψi, ψj)L2(M) =

∫
M ψi(x)ψj(x)dx = δij . Note that in dimension 1, these
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eigenvalues/eigenfunctions are particularly simple. For instance, on the intervalM = [0, L], for L > 0, we
have for j ∈ N∗

λj =

(
jπ

L

)2

, ψj(x) =

√
2

L
sin

((jπ
L

)
x

)
,

∫ L

0

|ψj(x)|2dx = 1.

(one could also consider the even simpler boundaryless situation M = T1 = R/2πZ, for which we have
ψ±k (x) = (2π)−1/2e±ikx, and associated eigenvalues λ±k = k2).

These eigenfunctions describe the resonant states of the domain (drum)M. They are also particularly
useful to describe solutions to evolution equations involving ∆g. We have solutions of the heat equation:{

(∂t −∆g)u = 0, on R+
∗ × Int(M)

u = 0, on R+
∗ × ∂M

⇐⇒ u(t, x) =
∑
j∈N

uje
−λjtψj(x).

Similarly, solutions to the wave equation write{
(∂2
t −∆g)u = 0, on R× Int(M)

u = 0, on R× ∂M ⇐⇒ u(t, x) =
∑
j∈N

u+
j e

i
√
λjtψj(x) + u−j e

−i
√
λjtψj(x).

From these above considerations, it appears that an important question concerning eigenfunctions is
the following: where are the eigenfunctions ψj localized? A preliminary question can be formulated as
follows:

Can eigenfunctions ψj identically vanish on a nonempty open set ω ⊂M?

As a consequence of a unique continuation result for the Laplace operator, we shall see that this does never
happen. The next natural question is then

Can eigenfunctions ψj asymptotically vanish on the (nonempty) open set ω as j → +∞?

and if so, at which rate? In the abovementioned one dimensional situationM = [0, L], with ω = (a, b) ⊂
[0, L], we have ∫

ω

|ψj |2(x)dx→ |ω|
L
, as j → +∞.

Indeed, we have∫ b

a

|ψj |2(x)dx =
2

L

∫ b

a

∣∣∣∣sin((jπL )x
)∣∣∣∣2 dx =

2

L

∫ b

a

[
1

2
− 1

2
cos

((2jπ

L

)
x

)]
dx

=
b− a
L
− 1

2jπ

[
sin

((2jπ

L

)
x

)]b
a

=
b− a
L

+O

(
1

j

)
, as j → +∞.

That is to say that, in this particular situation, the eigenfunctions ψj equidistribute in [0, L] asymptotically.
Of course, this very strong property does not hold in general; one may however want to quantify the
property ‖ψj‖L2(ω) > 0. We shall actually prove that eigenfunctions never decay exponentially: namely,
for all nonempty open set ω ⊂M, there is C, κ > 0 such that

‖ψλ‖L2(ω) ≥ Ce
−κ
√
λ,

for all (λ, ψλ) solutions to (1.1) with ‖ψλ‖L2(M) = 1. This is a manifestation of what is called “tunneling
effect” in quantum mechanics. One can prove that this is optimal in general (in the sense that there exist
(M, g, ω) for which there are indeed eigenfunctions with ‖ψj‖L2(ω) ≤ Ce−κ

√
λj , see Section 2.4.4). Of

course, this can be much improved in different situations, as in the 1D case discussed above, for which we
have a uniform lower bound ‖ψλ‖L2(ω) ≥ C.
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1.1.2 Penetration of waves into the shadow region
In this section, we consider the wave equation outside a convex obstacle in Rn. Namely, let O ⊂ Rn be a
bounded smooth open subset, and considerM = Rn \O. We consider the Laplace operator ∆ and u(t, x)
the solution to the wave equation ∂2

t u−∆u = 0, on R× Int(M),
u = 0, on R× ∂M,

(u, ∂tu)|t=0 = (u0, u1), onM.
(1.2)

The quantity u(t, x) might for instance model

• the displacement of a membrane;

• the intensity of a light;

• the pressure of a sound...

measured at point x ∈M and at time t.
Now, we consider a compact set K ⊂M, and assume that the initial data (u0, u1) are supported in K.

If the set K is not too large, there is a whole region ofM which does not intersect any ray of geometric
optics inM (i.e. straight line in Int(M), which reflects according to Snell-Descartes laws at the boundary
∂M) passing through K. Taking an open set ω in this shadow region, the question under consideration is
the following:

Can one recover (u0, u1) from the observation of u on the set (−T, T )× ω?

And if so, what is the time T required? By linearity of (1.2), this can be reformulated under the following
unique continuation question:(

u solution to (1.2), u|(−T,T )×ω = 0
)

=⇒ (u0, u1) = 0?

(and hence u ≡ 0).
We shall prove that this is false if T is too small, but that this is actually the case if T is large enough.

The limit time will be expressed as a natural geometric quantity.

1.1.3 Approximate controllability for the wave equation
In this section, we consider a wave equation in a compact manifoldM (or the closure of a bounded open
setM⊂ Rn), controlled from a subdomain. Namely, given ω ⊂M a nonempty open set, the equation ∂2

t u−∆gu = 1ωf, on (0, T )× Int(M),
u = 0, on (0, T )× ∂M,

(u, ∂tu)|t=0 = (u0, u1), onM.
(1.3)

The term f in this equation plays the role of a forcing term. Controllability problems concern the ability
of driving the solution u to (1.3) from the initial state (u0, u1) to a final target state (v0, v1) at time T ,
using only the action of f on ω. This property depends a priori on the data/target, and is too complicated.
More tractable questions, arising from applications in engineering are the following

Definition 1.1.1. We say that (1.3) is exactly controllable from (ω, T ) if for all data (u0, u1) ∈ H1
0 (M)×

L2(M) and all target state (v0, v1) ∈ H1
0 (M) × L2(M), there is a function f ∈ L2((0, T ) × ω) such that

the solution to (1.3) satisfies (u, ∂tu)|t=T = (v0, v1).
We say that (1.3) is approximately controllable from (ω, T ) if for all data (u0, u1) ∈ H1

0 (M)×L2(M), all
target state (v0, v1) ∈ H1

0 (M)×L2(M), and all precision ε > 0, there is a function f = fε ∈ L2((0, T )×ω)
such that the solution to (1.3) satisfies ‖(u, ∂tu)|t=T − (v0, v1)‖H1

0 (M)×L2(M) ≤ ε.

Due to finite speed of propagation for waves, if ω 6= M, a minimal time will be required for control-
lability to hold. Here, we will mostly be interested in the (weaker) approximate controllability question.
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Linearity of the equation shows it is enough to consider zero initial conditions (u0, u1) = (0, 0). Introducing
the linear map

F : L2((0, T )× ω) → H1
0 (M)× L2(M)

f 7→ (u, ∂tu)|t=T ,

where u denotes the solution of (1.3) associated to (u0, u1) = (0, 0), approximate controllability is equiva-
lent to range(F ) being dense in H1

0 (M)× L2(M). This can be reformulated as ker(F ∗) = {0}, where F ∗
is an appropriate adjoint (or dual) to F . After some work, one can identify F ∗ to be the map

F ∗ : L2(M)×H−1(M) → L2((0, T )× ω)
(w0, w1) 7→ w|(0,T )×ω,

where w is the unique solution to ∂2
tw −∆gw = 0, on (0, T )× Int(M),

w = 0, on (0, T )× ∂M,
(w, ∂tw)|t=0 = (w0, w1), onM.

(1.4)

Again, ker(F ∗) = {0} is the unique-continuation property(
w solution to (1.4), w|(0,T )×ω = 0

)
=⇒ (w0, w1) = 0,

which now appears to characterize the approximate controllability of (1.3).

1.1.4 Trend to equilibrium for the damped wave equation
♣ Prove energy goes to zero for all solutions?

1.1.5 Controllability of the heat equation
In this section, we discuss similar controllability issues as in Section 1.1.3, but for the heat equation ∂tu−∆gu = 1ωf, on (0, T )× Int(M),

u = 0, on (0, T )× ∂M,
u|t=0 = u0, onM.

(1.5)

The term f again acts as a localized control on the state u (temperature). Because of the smoothing
properties of the heat equation (e.g., if u0 ∈ L2(M) and f ∈ L2((0, T )×ω) the solution of (1.5) will satisfy
for all t ∈ (0, T ) u(t, ·) ∈ C∞ (Int(M) \ ω̄)), it is hopeless to control exactly to any target uT in the state
space L2(M). Two alternatives are in order: approximate controllability and controllability to trajectories
(i.e. to target states v that are solutions at time T to the free heat equation (1.5) with f = 0).

Definition 1.1.2. We say that (1.5) is controllable to trajectories from (ω, T ) if for all u0, v0 ∈ L2(M),
there is a function f ∈ L2((0, T ) × ω) such that the solution to (1.5) satisfies u|t=T = eT∆gv0 (where
eT∆gv0 denotes the solution at time T to the free heat equation (1.5) with f = 0 and initial datum v0).

We say that (1.5) is null-controllable from (ω, T ) if for all data u0 ∈ L2(M), there is a function
f ∈ L2((0, T )× ω) such that the solution to (1.5) satisfies u|t=T = 0.

We say that (1.5) is approximately controllable from (ω, T ) if for all data u0 ∈ L2(M), all target state
v1 ∈ L2(M), and all precision ε > 0, there is a function f = fε ∈ L2((0, T ) × ω) such that the solution
to (1.5) satisfies ‖u|t=T − v1‖L2(M) ≤ ε.

Linearity of the equation (1.5) implies that controllability to trajectories is equivalent to null-controllability.
Similar arguments as for the wave equation reduce these controllability questions to unique continua-
tion/observability issues for the free heat equation ∂tw −∆gw = 0, on (0, T )× Int(M),

w = 0, on (0, T )× ∂M,
w|t=0 = w0, onM,

(1.6)

observed from (0, T )× ω.
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More precisely, the observation map is given by

F ∗ : L2(M) → L2((0, T )× ω)
w0 7→ w|(0,T )×ω,

where w is the solution to (1.4). As for the wave equation, a duality argument (functional anaysis) proves
that

• approximate controllability from (ω, T ) is equivalent to F ∗ being injective, i.e. to the unique contin-
uation property (

w solution to (1.6), w|(0,T )×ω = 0
)

=⇒ w0 = 0;

• null-controllability from (ω, T ) is equivalent to the observability estimate: there is C > 0 such that

‖w(T )‖2L2(M) ≤ C
∫ T

0

‖w(t, ·)‖2L2(ω) dt, for all w0 ∈ L2(M) and associated w solution to (1.6).

Note that this last inequality observes the norm at time T , which is much weaker than observing the
solution at time 0 (which, in turn, would be equivalent to exact controllability, and thus never holds if
ω̄ 6= M). This is in strong contrast with the wave equation, for which energy is conserved. These two
properties again take the form of (global) qualitative/quantitative unique continuation properties for the
heat operator.

As for the wave equation, the above two properties will reflect the way of propagation of the energy
for solutions to the heat equation, namely instantaneously (with infinite propagation speed), and in all
directions.

1.2 Generalities about unique continuation

1.2.1 The unique continuation problem
All above described problems amount to a unique continuation property (or a quantitative unique contin-
uation property) for a differential operator P = −∆g−λ (eigenfunctions), P = ∂t−∆g (heat), P = ∂2

t −∆
(waves).

The general problem of unique continuation can be set into the following form: given a differential
operator P =

∑
|α|≤m aα(x)∂αx on an open set Ω ⊂ Rn, and given a small subset U of Ω, do we have (for

u regular enough): {
Pu = 0 in Ω,
u = 0 in U =⇒ u = 0 on Ω. (1.7)

In cases where (1.7) is known to hold, it is often interesting to prove a quantitative version of{
Pu small in Ω,
u small in U

=⇒ u small in Ω.

A more tractable problem than (1.7) is the so called local unique continuation across an hypersurface
problem: given an oriented local hypersurface S = {Ψ = 0} at a point x0 (that is Ψ(x0) = 0 and dΨ(x0) 6=
0), do we have the following implication:

There is a neighborhood Ω of x0 so that{
Pu = 0 in Ω,
u = 0 in Ω ∩ S+ =⇒ u = 0 in a neighborhood of x0. (1.8)

where S+ = {Ψ > 0} is one side of S.
It turns out that proving (1.8) for a suitable class of hypersurfaces S (with regards to the operator P )

is in general a key step in the proof of properties of the type (1.7).
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Note that under a certain geometric condition on the surface (namely, assuming S is non-characteristic
for P at x0, see ♣ below), the local unique continuation question (1.8) is equivalent to the so called
uniqueness in the Cauchy problem, namely the question whether there is a neighborhood Ω of x0 such that{

Pu = 0 in Ω,
u|S = ∂νu|S = · · · = ∂m−1

ν u|S = 0 on S =⇒ u = 0 in a neighborhood of x0, (1.9)

where ∂ν denotes a normal vector field to S, and m is the order of the differential operator P .

Here, we collect some simple and very informative situations in which the local unique continuation
property (1.8) is well-understoood: ♣ draw pictures for vector-fields

1. (dimension one) If n = 1, a differential operator writes P =
∑m
k=0 ak(x) dk

dxk
where we assume ak

are defined in a neighborhood Ω of 0 and are smooth enough. The problem Pu = 0 in Ω is only an
ordinary differential equation. Here the surface S = {0} is a point. If u is a regular enough solution
to the equation Pu = 0 in Ω such that u = 0 in S+ = {x > 0}, then we have dk

dxk
u(0) = 0 for all

k ∈ N and, assuming P is non-degenerate at zero (am(0) 6= 0) the Cauchy-Lipschitz theorem gives
directly the (local) uniqueness since u = 0 in a neighborhood of 0.

2. (∂ operator) If n = 2, P = ∂ = 1
2 (∂x + i∂y) is the so-called Cauchy-Riemann operator. That Pu = 0

in an open set Ω ⊂ R2 ' C implies that u is an analytic function in Ω. In particular, if u = 0 on any
nonempty open subset of Ω (or more generally on any set containing an accumulation point) then
u = 0 identically on Ω.

3. (Linear vector fields and flat hypersurface) Consider the operator P = ∂
∂x1

in Rn in a neighborhood
of 0 and a hyperplane S = {x ∈ Rn, 〈b, x〉 = 0}, where b = (b1, · · · , bn) ∈ Rn \ {0}. Then Pu = 0 if
and only if u does not depend on x1, i.e. u(x1, x2, · · · , xn) = u0(x2, · · · , xn) for all x1 ∈ R. Assume
further b1 6= 0 and that u = 0 in S+ = {x ∈ Rn, 〈b, x〉 > 0} in a neighborhood of zero. Then, taking
(x2, · · · , xn) in a neighborhood of 0, and x1 with b1x1 large enough, we have (x1, x2, · · · , xn) ∈ S+

so that u(x1, · · · , xn) = 0 = u0(x2, · · · , xn) = 0. Hence u0 = 0 and u = 0. Local unique continuation
across S thus holds if b1 6= 0. The converse is also true. Indeed, if b1 = 0, choose u(x) = χ(〈b, x〉)
where s 7→ χ(s) is any function 6= 0 on s > 0 and = 0 on s ≤ 0. Then, u is x1-invariant hence Pu = 0,
and satisfies supp(u) = S+. In conclusion, in this simple setting, a necessary and sufficient condition
for local unique continuation across S is that the vectorfield ∂

∂x1
is not tangent to the hyperplane S.

4. (Real non-degenerate vector-fields) We give here (without proof) a more general context for this last
result. We assume that P is a general vectorfield (or, equivalently, first order (m = 1) homogeneous
differential operator) near 0, that is P =

∑n
k=0 ak(x)∂xk . Assume further that it is nondegenerate at

0, that is a(0) = (a1(0), · · · , an(0)) 6= 0. Take S = {Ψ = 0} where Ψ(0) = 0 and dΨ(0) 6= 0. Then, a
sufficient condition for having local unique continuation (1.8) is that 〈dΨ(0), a(0)〉 6= 0, that is that
the vector-field P is transversal to S at 0. This condition is a “non-characteristicity assumption”,
see Definition 1.2.3 below. The local straightened model in this case is that of the former example.
Note that the condition 〈dΨ(0), a(0)〉 6= 0 is not necessary for unique continuation to hold, see the
discussion in Example 5 below.

5. (Linear vector fields and curved hypersurface) Here (as opposed to previous examples), we shall see
that the orientation of the surface may play a role. Consider the operator P = ∂

∂x1
(as in Item 3) in

R2 in a neighborhood of 0, but the curved hypersurface S = {x = (x1, x2) ∈ R2,Ψ(x) = 0}, where
Ψ(x1, x2) = x2 − x2

1. Notice first that S is tangent to P at 0 since 〈dΨ(0), P 〉 = 0. We shall see that
unique continuation holds from S+ = {Ψ > 0} (outside the parabola) to S− = {Ψ > 0} (inside the
parabola), but not from S− to S+.

Indeed solutions u to Pu = 0 write u(x1, x2) = u0(x2) for all x1 ∈ R. The first statement then follows
from the fact that any line x2 = cst > 0 intersects S+ in a neighborhood of zero, thus showing that
if u0(x2) = 0 for all x1 in a neighborhood of zero, then u0 = 0. Choosing u0 ∈ C∞c (R) such that
u0(x2) 6= 0 on 0 > x2 > −1 and u0(x2) = 0 on x2 ≥ 0 yields the second statement.
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6. (One dimensional wave operator) Consider the wave operator P = ∂2
t − ∂2

x on Rt × Rx. Then P
factorizes as P = (∂t + ∂x)(∂t − ∂x) and all solutions to Pu = 0 write u(t, x) = f(x + t) + g(x −
t) + C0t + C1x + C2, where f, g are functions and Cj constants. Take for instance g = 0, Cj = 0
and f ∈ C∞(R) with supp(f) = [0, 1]. Then u(t, x) = f(x + t) and the surface S = {x+ t = 0}
thus does not satisfy the unique continuation property (at any point). More precisely, up to linear
changes of variables, this problem reduces to that of linear vectorfields discussed above, and one
sees that the only hyperplanes S not satisfying the unique continuation property (at any point) are
Sα± = {x± t = α}, for α ∈ R.

The above examples 3-4-5-6 concerning first order partial differential operators (namely, vector fields)
and the wave operator show that geometrical conditions linking the operator P and the surface S are
often needed for unique continuation to hold. Note that the example 2 also “suggests” that no geometric
condition is needed for elliptic operators.

As stressed in Section 1.1, many important differential operators arising from physics are linked to the
Laplace operator. In Rn, it is simply defined by

∆ =

n∑
j=1

∂2

∂x2
j

.

One of the main focuses of these notes is the wave operator, which has a strong geometric and physical
content. Let us now discuss some features of this operator in more detail.

1.2.2 Remarks on the wave operator
In this section, we collect known facts for the wave equation in the flat space Rn, that are related to unique
continuation questions. We start with local energy estimates and a proof of finite speed of propagation in
this context.

Theorem 1.2.1 (Finite speed of propagation for the wave equation). Let u be a C2(R1+n) (real-valued)
solution of

(∂2
t −∆)u = 0 on R× Rn, (1.10)

and define the local energy in the ball of radius r at time t by:

Er(t) =
1

2

∫
|x|≤r

(
(∂tu(t, x))2 + |∇xu(t, x)|2

)
dx.

Then, for any r0 > 0 and any t ∈ [0, r0], we have

Er0−t(t) ≤ Er0(0). (1.11)

In particular, if u|t=0(x) = ∂tu|t=0(x) = 0 for |x| ≤ r0, then u = 0 in the cone

Cr0 =
{

(t, x) ∈ R1+n s.t. t ∈ [0, r0] and |x| ≤ r0 − t
}
.

Denoting by

e(t, x) =
1

2

(
(∂tu(t, x))2 + |∇xu(t, x)|2

)
(1.12)

the density of energy, the proof also yields the estimate∫
Cr0

e(t, x)dtdx ≤ r0

∫
|x|≤r0

e(0, x)dx.

Proof. Multiply the equation by ∂tu to obtain ∂2
t u∂tu−∆u∂tu = 0. First, we notice ∂2

t u∂tu = 1
2∂t(∂tu(t, x))2.

Moreover, by the Leibnitz formula divx(fX) = f div(X) +∇f ·X valid for f a C1 function and X a C1

vector field, we have

−∆u∂tu = −divx(∇u)∂tu = − divx(∇xu∂tu) +∇xu · ∇x∂tu = −divx(∇u∂tu) + ∂t
|∇xu|2

2
.
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Therefore, recalling the definition of e in (1.12), we have obtained the local energy balance:

∂te− div(∇u∂tu) = 0 on R× Rn. (1.13)

The main tool will be the Stokes theorem ♣ reference ?.

Lemma 1.2.2 (Stokes formula). Let d ∈ N∗ and X =
∑d
k=0 ak(x)∂xk be a C1 vector field on a bounded

domain Ω ⊂ Rd with boundary ∂Ω being piecewise C1 and graph-Lipschitz. Denote by N(x) the outward
pointing normal vector on ∂Ω (being piecewise C1 as well). Then, we have the formula∫

Ω

div(X)(x)dx =

∫
∂Ω

X(x) ·N(x)dσ(x),

where dσ is the surface measure on ∂Ω and div(X)(x) =
∑d
k=0 ∂xkak(x).

We now integrate the energy balance (1.13) in time-space on the truncated cone, defined for t0 ≤ r0,
by

Cr0,t0 =
{

(t, x) ∈ R1+n s.t. t ∈ [0, t0] and |x| ≤ r0 − t
}
.

♣ picture
Note that it is piecewise C1 and graph-Lipschitz, and that its boundary ∂Cr0,t0 is the union of three

pieces with the following normal vector field:

• in the bottom part S0 =
{

(0, x) ∈ R1+n s.t. |x| ≤ r0

}
= {0} × Br0 , the outward normal is N(x) =

(−1t, 0x);

• in the top part St0 =
{

(t0, x) ∈ R1+n s.t. |x| ≤ r0 − t0
}

= {t0} × Br0−t0 , the outward normal is
N(x) = (1t, 0x);

• in the lateral boundary M t0
0 =

{
(t, x) ∈ R1+n s.t. t ∈ [0, t0] and |x| = r0 − t

}
, the outward normal

is N(t, x) = (1, x/|x|)/|(1, x/|x|)| = (1, x/|x|)/
√

2.

We now apply the integration by part of Lemma 1.2.2 to the set Ω = Cr0,t0 and the vector fieldX = X1+X2

where:

• X1 = e(t, x)(1t, 0x) = e(t, x)∂t so that divt,xX1 = ∂te;

• X2 = (0t,−∂tu∇xu) so that divt,xX2 = −divx(∂tu∇xu).

Equation (1.13) expresses divt,xX = 0 and hence

0 =

∫
Cr0,t0

divt,xX1 + divt,xX2

=

∫
S0

X · (−1t, 0x) +

∫
St0

X · (1t, 0x) +
1√
2

∫
M
t0
0

X · (1, x/|x|) dσ

= −
∫
S0

e(0, x)dx+

∫
St0

e(t0, x)dx+
1√
2

∫
M
t0
0

(
e(t, x)− ∂tu∇xu ·

x

|x|

)
dσ.

Now, we remark that the integral on the lateral boundary is nonnegative since∣∣∣∣∂tu∇xu · x|x|
∣∣∣∣ ≤ |∂tu||∇xu| ≤ 1

2

(
|∂tu|2 + |∇xu|2

)
= e. (1.14)

We have thus obtained

−
∫
S0

e(0, x)dx+

∫
St0

e(t0, x)dx ≤ 0,

which is precisely the inequality (1.11) at time t0.
Finally, let us prove the unique continuation property. The assumption implies that Er0(0) = 0. So,

the inequality implies Er0−t(t) = 0 for t ∈ [0, r0] and in particular ∂tu = 0 and ∇xu = 0 in the cone
Cr0 . By connexity, this implies that u = cste in Cr0 . This constant needs to be zero since u(0, x) = 0 for
|x| ≤ r0, which concludes the proof of the theorem.
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Note that in the proof, the angle of the cone is the limiting one so that the Cauchy Schwarz in (1.14)
holds.

Theorem 1.2.1 leads to the following definitions:

• The cone of dependence of a point (t0, x0) ∈ R+ × Rn is the cone

D(t0,x0) =
{

(t, x) ∈ R1+n s.t. t ∈ [0, t0] and |x− x0| ≤ t0 − t
}
.

The value u(t0, x0) of the solution u to the wave equation (1.10) at the point (t0, x0) only depends
on the values of u in D(t0,x0).

• The cone of influence of a point (t0, x0) ∈ R+ × Rn is the cone

I(t0,x0) =
{

(t, x) ∈ R1+n s.t. t ≥ t0 and |x− x0| ≤ t− t0
}
.

The value u(t, x) of the solution u to the wave equation (1.10) at a point (t, x) depends on the value
of u at the point (t0, x0) if and only if (t, x) ∈ I(t0,x0).

We can infer an interesting consequence of Theorem 1.2.1 concerning the unique continuation property
for the wave operator: unique continuation holds across the hypersurface {t = 0} and actually, we have
some nice local linear quantification of the unique continuation. This situation is actually a particular case
of a more general situation in which the differential operator P (here ∂2

t −∆) is said to be hyperbolic with
respect to the surface S (here e.g. {t = 0}). We refer to ♣ for more precisions.

As we have seen in above Example 6, the one dimensional wave equation is considerably simpler to
analyse, since the d’Alembert operator factorizes as :

∂2
t − ∂2

x = (∂t − ∂x)(∂t + ∂x), (t, x) ∈ R× R. (1.15)

Hence, solutions to the wave equation reduce to solutions to two transport equations. The situation is
radically different in higher dimensions. This is linked with the fact that the polynomial τ2−

∑n
j=1 ξ

2
j does

not factorize in a product of polynomials of degree 1. This translates the fact that the values of solutions
to (1.10) are not “transported”. To see this, we can actually solve the wave equation (1.10). For instance,
in R3, the Kirchhoff formula

u(t, x) =
1

4πt

∫
|y−x|=t

u1(y)dSt(y) =
t

4π

∫
S2

uh1 (x− tσ)dS1(σ), u(−t) = −u(t), t > 0 (1.16)

gives the unique solution to (1.10) with (u, ∂tu)|t=0 = (0, u1), u1 ∈ C0(R3). In the first formula, the
integration set is the (2 dimensional) sphere centered at x and of radius t; in the second it is the unit
sphere. The integration measure dS is the surface measure on the sphere of radius t (induced by the
Euclidean measure dx on R3). ♣ See Exercice... for a proof of this formula, together with
a similar formula in dimension 2.

As a consequence of this explicit solution, we see that if we choose u1(x) = χ(x) with χ ∈ C∞c (R3),
χ ≥ 0 and χ > 0 on B(0, r), r > 0 the associated solution u is smooth and satisfies u ≥ 0 on R1+3.
Moreover, notice that u1(x− tσ) = 0 iff x− tσ /∈ B(0, r), we have u(t, x) = 0 as soon as tS2 ∩B(x, r) = ∅.
As a consequence, we have

supp(u) ∩ {t ≥ 0} = {(t, x) ∈ R+ × R3, t− r ≤ |x| ≤ t+ r}. (1.17)

Several remarks are in order. The fact that the solution u at time t vanishes in the ball |x| ≤ t − r
corresponds to the strong Huygens principle; this is strongly related to the fact that the dimension 3 of
R3 is odd, the metric is flat, and the wave operator has no lower order term. A contrario, the fact that
the support of the solution at time t is contained in the ball |x| ≤ t + r translates the finite speed of
propagation. This piece of information is already contained in Theorem 1.2.1. Finally, (1.17) also tells us
that any point in the annulus t − r ≤ |x| ≤ t + r is actually in the support of u(t, ·). This new piece of
information is very important for what follows. It implies that unique continuation cannot hold across an
hypersurface tangent to the cone |x| = t+ r.
♣ Discuss finite propagation speed in a general riemannian setting, with lower order terms
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1.2.3 A general local unique continuation result in the analytic Category
The first general unique continuation result of the form (1.8) is the Holmgren Theorem, stating that, for
operators with analytic coefficients, unique continuation holds across any noncharacteristic hypersurface
S. Proper definitions of a differential operator of order m and its principal symbol pm(x, ξ) are given in
Definition 1.2.6 below.

Definition 1.2.3. Let P be a differential operator of order m on Ω, x0 ∈ Ω and S a local hypersurface
passing through x0, that is S = {Ψ = 0}, Ψ(x0) = 0 and dΨ(x0) 6= 0 with Ψ ∈ C1(Ω). We say that S is
characteristic (resp. non-characteristic) for P at x0 if pm(x0, dΨ(x0)) = 0 (resp. pm(x0, dΨ(x0)) 6= 0).

Also, given a local hypersurface S = {Ψ = 0}, it has locally two sides which we write

S± = {x ∈ Ω;±Ψ(x) > 0} .

Theorem 1.2.4 (Holmgren Theorem). Let P be a differential operator of order m on Ω, having all
coefficients real analytic in a neighborhood of x0 ∈ Ω and S 3 x0 being a local hypersurface. Assume that
S is non characteristic for P at x0. Then, there exists a neighborhood V of x0 so that every u ∈ D′(Ω)
satisfying Pu = 0 on Ω and u = 0 in the set S+ vanishes identically in V .

Another way of writing the conclusion is to say that x0 /∈ supp(u). We refer e.g. to [Hör63, Theo-
rem 5.3.1] for a proof of Theorem 1.2.4. Note that this unique continuation property does not take into
account the orientation of the surface S, i.e. it holds from S+ to S− as well as from S− to S+.

The non-characteristicity condition is very weak, and in some sense optimal. Indeed, we saw in Exam-
ples 3 and 4 in Section 1.2.1 for linear vector-fields that unique continuation holds for non-characteristic
surfaces, and does not hold for some characteristic surfaces. We also saw in Section 1.2.2 for the wave
operator that local uniqueness does not hold across hypersurfaces that are tangent to the cone |x| = t+ r.
These are precisely characteristic surfaces: the principal symbol of the wave operator ∂2

t −∆ is given by
p2(t, x, ξt, ξx) = −ξ2

t + |ξx|2, and a surface {Ψ(t, x) = 0} tangent to {|x| = t + r} at the point (t0, x0)
has |∂tΨ(t0, x0)| = |dxΨ(t0, x0)|. Remark however that the non-characteristicity condition is a “first order
condition”: it only cares about the tangent space of the surface. We saw in Example 5 in Section 1.2.1 in
the case of first order differential operators a more subtle “second order condition” (curvature condition)
on the surface may yield unique continuation across a characteristic surface. This is linked to the so-called
pseudoconvexity condition (see e.g. Definition 2.3.1 below).

We recall that a function f : Ω ⊂ Rn → C is real analytic if for every y ∈ Ω, there is a convergence
radius R > 0 and coefficients aα ∈ Cn, α ∈ Nn such that

f(x) =
∑
α∈Nn

aα(x− y)α =
∑

α1,··· ,αn∈N
aα(x1 − y1)α1 · · · (xn − yn)αn , for all x ∈ B(y,R) ⊂ Ω,

where the series is convergent. For every compact set K ⊂ Ω ⊂ Rn, such a function f can be extended
to a complex neighborhood of K in Cn as a complex analytic function. Analyticity is a very demanding
regularity assumption. In Theorem 1.2.4, we stress that all the coefficients of P should have this regularity.
In most situations, however, this requirement is much too strong. As an example, even for the wave
equation on a flat (and hence analytic) metric, this theorem does not allow for the addition of a C∞ time
independent potential V (x). This is a very strong drawback to the result. Therefore, we would like to
avoid the analyticity assumption on the coefficients. This will require sometimes some stronger assumption
say of pseudoconvexity condition (see e.g. Definition 2.3.1 below) and will be the object of Chapter 2. The
following chapter 3 will deal with some intermediate case where the analyticity is with respect to only one
variable (we will actually treat the simpler case where it is independent on one variable).

1.2.4 Notation
We consider complex valued functions defined on Rn.

We will denote the duality in L2(Rn), denoted L2 when there is not ambiguity, by

(f, g)L2 =

∫
Rn
f(x)g(x)dx.
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For any multiindex α = (α1, · · · , αn) ∈ Nn, we define its length |α| = α1+· · ·+αn. If ζ = (ζ1, · · · , ζn) ∈
Cn, ζα is defined by ζα1

1 · · · ζαnn .
For 1 ≤ j ≤ n, write ∂j = ∂xj = ∂

∂xj
and we denote Dj =

∂j
i .

For α = (α1, · · · , αn) ∈ Nn, we denote

∂α = ∂α1
1 · · · ∂αnn

Dα =
∂α

i|α|
= Dα1

1 · · ·Dαn
n .

With this multiindex notation, the Leibnitz formula (derivatives of a product) writes

∂α(fg) =
∑

β+γ=α

(
α

β

)
(∂βf)(∂γg),

where
(
α
β

)
=
(
α1

β1

)
· · ·
(
αd
βd

)
with

(
n
k

)
= Ckn = n!

k!(n−k)! .
We recall The Schwartz space S(Rn) is defined as the vector space of C∞(Rn;C) functions u such that

pα,β(u) := sup
x∈Rn

∣∣xα∂βu(x)
∣∣ < +∞, for all multiindices α, β ∈ Nn.

The quantity (pα,β)α,β∈Nn define a countable family of seminorms, which equip S(Rn) with a Fréchet space
structure. We shall also sometimes use the dual space S ′(Rn) of temperate distributions, that is, linear
functionals T : S(Rn)→ C with the continuity property

for all α, β ∈ Nn, there is Cα,β > 0 such that∣∣〈T, ϕ〉S′(Rn),S(Rn)

∣∣ ≤ Cα,βpα,β(ϕ), for all ϕ ∈ S(Rn).

This defines a proper subset of the set of distributions D′(Rn). For T ∈ S ′(Rn), the Fourier transform is
well-defined by the formula

〈T̂ , ϕ〉S′(Rn),S(Rn) = 〈T, ϕ̂〉S′(Rn),S(Rn), for all ϕ ∈ S(Rn).

The interest of using D instead of ∂ comes from the Fourier transform. Namely, taking the following
normalization for the Fourier transform

û(ξ) =

∫
Rn
e−ix·ξu(x)dx, u ∈ S(Rn),

we have

D̂αu(ξ) = ξαû(ξ). (1.18)

With this convention, the Fourier inversion formula is

u(x) = F−1û =
1

(2π)n

∫
Rn
eix·ξû(ξ)dξ,

while Plancherel formula reads

(u, v)L2 =
1

(2π)n
(û, v̂)L2 , (1.19)

‖u‖L2 =
1

(2π)n/2
‖û‖L2 . (1.20)

Another interest of using D instead of ∂ is that the former is (formally) selfadjoint whereas the latter is
skewadjoint: on the Fourier side, using the Plancherel formula (1.19), we have

(Dαu, v)L2 =

∫
Rn
Dαuv =

1

(2π)n

∫
Rn
ξαûv̂ =

1

(2π)n

∫
Rn
ûξαv̂ =

∫
Rn
uDαv = (u,Dαv)L2 . (1.21)
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We also have for f, g ∈ S(Rn),

f̂ ∗ g = f̂ ĝ, (1.22)

f̂g =
1

(2π)n
f̂ ∗ ĝ, (1.23)

where

f ∗ g(x) =

∫
Rn
f(x− y)g(y)dy.

When applied to a = f̂ and b = ĝ and taking the inverse Fourier transform F−1, this also yields:

F−1(ab) = F−1(a) ∗ F−1(b), (1.24)
F−1(a ∗ b) = (2π)nF−1(a)F−1(b). (1.25)

Definition 1.2.5. For s ∈ R and u ∈ S(Rn), we set

‖u‖Hs(Rn) =
∥∥(|D|2 + 1)

s
2u
∥∥
L2(Rn)

= (2π)−n/2
∥∥(|ξ|2 + 1)

s
2 û
∥∥
L2(Rn)

.

We define the space Hs(Rn) as the completion of S(Rn) for this norm.

Note that for s1 ≥ s0, we have ‖u‖Hs0 (Rn) ≤ ‖u‖Hs1 (Rn) and thus Hs1(Rn) ↪→ Hs0(Rn). In particular,
for s ≥ 0, we have Hs(Rn) ↪→ L2(Rn) ↪→ H−s(Rn).

For s = k ∈ N, the Hs(Rn) norm is equivalent to the norm

‖u‖2Hk(Rn) =
∑
|α|≤k

‖∂αu‖2L2(Rn) .

and we do not introduce another notation (the constants involved in the equivalence only depend on k and
the dimension n).

Given an open set Ω ⊂ Rn, we will sometimes use the notation ‖·‖H1(Ω) for

‖f‖2H1(Ω) =

∫
Ω

|∇f(x)|2dx+

∫
Ω

|f(x)|2dx, f ∈ C∞c (Rn).

The completion of C∞c (Rn) for this norm leads to a Hilbert space H1(Ω) ⊂ L2(Ω) (which we shall not use
in the following).

We finally define properly differential operators. Recall first that a function f on Rn is said homogeneous
of degree m > 0 if

f(λξ) = λmf(ξ), for all λ > 0 and ξ ∈ Rn.

Definition 1.2.6 (Classical differential operators). Let Ω ⊂ Rn be an open set and m ∈ N.

• We say that P is a (linear) differential operator of order m on Ω if there are coefficients aα ∈
C∞(Ω) having all derivatives bounded uniformly on Ω, such that P =

∑
|α|≤m aα(x)Dα with m =

max{|α|, aα 6= 0}.

• We denote Diffm(Ω) the set of differential operators of order m on Ω

• We say that the function p(x, ξ) =
∑
|α|≤m aα(x)ξα, (x, ξ) ∈ T ∗Ω = Ω× Rn is the full symbol of P .

It is a polynomial of degree m in the variable ξ.

• We say that the function pm(x, ξ) =
∑
|α|=m aα(x)ξα is the principal symbol of P . It is a homogeneous

polynomial of degree m in the variable ξ.

• We denote by Σm(Ω× Rn) the set of functions p(x, ξ) on Ω× Rn that are polynomials of degree m
in the variable ξ with coefficients being smooth functions of x ∈ Ω.
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• If P ∈ Diffm(Ω), then p and pm belong to Σm(Ω× Rn).

Its full symbol will be denoted p(x, ξ) =
∑
|α|≤m pα(x)ξα. It belongs to the set of polynomials of

degree m of the variable ξ. Respectively, if p ∈ Σm, we will denote by p(x,D) the operator with
symbol p.

We denote pm(x, ξ) =
∑
|α|=m pα(x)ξα its principal symbol. It is homogeneous of degree m in ξ.

Example 1.2.7. We have a(x)Dj ∈ Diff1(Rn) with (full) symbol a(x)ξj , and −∆ ∈ Diff2(Rn) with (full)
symbol |ξ|2.

Note that from (1.18), we have that

(aα(x)Dα)u(x) = aα(x)(Dαu)(x) = aα(x)F−1
ξ→x (ξαF(u)(ξ)) = F−1

ξ→x (aα(x)ξαF(u)(ξ)) ,

so that by linearity

p(x,D)u(x) = F−1
ξ→x (p(x, ξ)F(u)(ξ)) =

1

(2π)n

∫
Rn
eix·ξp(x, ξ)û(ξ)dξ. (1.26)

The augmented set Ω × Rn, in which the symbols p, pm live, may be seen as a “phase space” containing
both the position variable x and the Fourier/frequency/momentum variable ξ ∈ Rn. The latter is to be
understood as a cotangent variable ξ ∈ T ∗xΩ, as we shall see below.

Finally, another class of interesting operators is the class of Fourier multiplier.

1.2.5 The general strategy of Carleman
We consider here Ω a bounded open subset of Rn, P a differential operator on Ω, x0 ∈ Ω a point, and a
surface S = {Ψ = 0} containing x0. We aim at proving local unique continuation for an operator P across
the surface S = {Ψ = 0} (say, a statement like (1.8)). In particular, we want to prevent the situation
in which a smooth function w both solves Pw = 0 and vanishes (possibly “flately”, in the sense that all
its derivatives vanish) on S. We thus need to “emphasize” the local behavior of functions close to the
hypersurface S.

The general idea of Carleman to do so, and thus prove unique continuation, is to consider weighted
estimates of the form ∥∥eτΦw

∥∥
L2(Ω)

≤ C
∥∥eτΦPw

∥∥
L2(Ω)

, (1.27)

which hold:

• for some well-chosen weight function Φ : Ω→ R (related to Ψ as discussed below);

• for all w ∈ C∞c (Ω) (related to u as discussed below);

• and uniformly for τ sufficiently large, i.e. τ ≥ τ0.

To prove the relevance/efficiency of this approach, two different things need to be explained:

1. what is the link between Carleman estimates like (1.27) and unique continuation properties like (1.7)?

2. how to prove such Carleman estimates?

Let us first discuss point 1. Note first that (1.27) says directly that if w ∈ C∞c (Ω) is solution of Pw = 0
on {Φ ≥ 0}, then the right hand side will tend to zero as τ tends to infinity. Therefore, the left hand side
will converge to zero, which implies that w is supported in {Φ ≤ 0}.

However, statements like (1.8) that are useful in applications are not concerned with functions w
having compact support. Moreover, in general, as we shall see, usual differential operators P do not admit
solutions w to Pw = 0 having compact support!

The heart of the Carleman method to pass from the estimate (1.27) to the unique continuation state-
ment (1.8) resides in applying (1.27) to w = χu, where u is the function for which unique continuation has
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to be proved (hence solving Pu = 0 in Ω and u = 0 on Ψ ≥ 0), and χ ∈ C∞c (Ω) is a cut-off function (to
be chosen) allowing to apply (1.27).

Using that Pχu = χPu+ [P, χ]u = [P, χ]u (where [P, χ] denotes the commutator of P and the multi-
plication operator by χ), this then yields∥∥eτΦχu

∥∥
L2(Ω)

≤ C
∥∥eτΦ[P, χ]u

∥∥
L2(Ω)

.

We then notice that supp[P, χ] ⊂ supp∇χ. If we now assume (this can be achieved if Φ is a slight
convexification of Ψ, see Figure ♣ ) that the functions Ψ,Φ, χ are chosen such that supp(∇χ)∩{Ψ ≤ 0} ⊂
{Φ ≤ −η}, for some η > 0 (small!), then the support property of u (namely u = 0 on Ψ ≥ 0) implies that
supp([P, χ]u) ⊂ {Φ ≤ −η}, and we thus obtain∥∥eτΦχu

∥∥
L2(Ω)

≤ Cue−ητ , for all τ ≥ τ0.

The following lemma then implies that χu vanishes identically in {Φ ≥ −η} which contains a neighborhood
of the point x0.

Lemma 1.2.8. Assume w ∈ L2(Ω) satisfies
∥∥eτΦw

∥∥
L2(Ω)

≤ Ce−ητ for all τ ≥ τ0. Then we have w = 0

on {Φ ≥ −η}.

The proof of the lemma reduces first to the case η = 0 by changing Φ in Φ + η. Then, it suffices to
notice that if w does not vanish a.e. on {Φ > 0}, there are ε > 0 and a compact set E ⊂ {Φ > 0} of
positive measure such that |w| ≥ ε > 0 a.e. on E. This yields

C2 ≥
∥∥eτΦw

∥∥2

L2(Ω)
≥
∫
E

e2τΦ|w|2 ≥ ε2

∫
E

e2τ minE Φ = ε2|E|e2τ minE Φ →τ→+∞ +∞,

and hence a contradiction.
To conclude, this brief discussion of point 1 suggests that unique continuation (1.8) will hold (across

{Ψ = 0}) provided the Carleman estimate (1.27) is true for some weight function Φ satisfying an appro-
priate geometric convexity condition as in Figure ♣ .

As stated in point 2, the other issue is how to prove Carleman estimates, and, in particular, understand
the conditions on Φ for which 2 can hold. As far as this analysis is concerned, the exponential weight is
not convenient to work with. One might thus want to eliminate it by setting v = eτΦw. Then (1.27) is
equivalent to ‖v‖L2(Ω) ≤ C ‖PΦv‖L2(Ω), with PΦ = eτΦPe−τΦ is the so-called conjugated operator. Note
that again here, we slightly abuse notation and make the confusion between the function eτΦ and the
operator of multiplication by eτΦ. We are thus left to prove a lower bound for the operator PΦ.

Writing ∂j(e−τΦu) = e−τΦ(∂ju− τu∂jΦ) implies that

eτΦDje
−τΦ = Dj + iτ∂jΦ. (1.28)

The first effect of conjugation is that there is no exponential factor in the right-handside, which is much
more convenient. Second, the conjugation changes Dj into an operator having one derivative and one
exponent of τ . We thus expect (and we will check) that for general differential operators P =

∑
α aα(x)Dα,

the associated conjugated operator PΦ will have as many derivatives as exponents of τ . Since we want
to obtain estimates that are uniform for large τ , we have to think of τ as having the same weight as a
derivative. We describe this calculus in the next section.

1.3 Operators depending on a large parameter τ
In this section, we describe the setting in which Carleman estimates like (1.27) shall be proved (see
Chapters 2 and 3 below). The main new feature is the presence of a large parameter τ > 0, and the
calculus makes things uniform for τ large. One may think to τ as having the same weight as a derivative,
i.e. as the Fourier variable ξ. Since τ is aimed at being large, we will always assume τ ≥ 1 when dealing
with estimates uniform in τ .
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1.3.1 Sobolev spaces
Definition 1.3.1. We define the Hs

τ norm of a function u ∈ S(Rn) as

‖u‖Hsτ =
∥∥(|D|2 + τ2)

s
2u
∥∥
L2(Rn)

= (2π)−n/2
∥∥(|ξ|2 + τ2)

s
2 û
∥∥
L2(Rn)

.

Note that for fixed τ , this norm is equivalent to the usual Hs norm (Definition 1.2.5), since, for τ ≥ 1,
we have

|ξ|2 + 1 ≤ |ξ|2 + τ2 ≤ τ2(|ξ|2 + 1).

That is to say that ‖u‖Hs(Rn) ≤ ‖u‖Hsτ ≤ τ
s ‖u‖Hs(Rn) for all τ ≥ 1.

Note also that, as for usual Sobolev spaces, the definition of the Hs
τ norm has a uniformly equivalent

definition in case s = k ∈ N.

Lemma 1.3.2. Let k ∈ N. Then, there is C > 1 such that for all τ ≥ 1 and all u ∈ Hk(Rn), we have

C−1 ‖u‖2Hkτ (Rn) ≤
∑

|α|+β≤k

τ2β ‖∂αu‖2L2(Rn) ≤ C ‖u‖
2
Hkτ (Rn) .

In particular, we often use the case k = 1,

‖u‖H1
τ
≈ ‖u‖H1 + τ ‖u‖L2 ,

uniformly for τ ≥ 1.

Proof of Lemma 1.3.2. The Plancherel formula yields

‖u‖2Hkτ =
1

(2π)n

∫
Rn

(|ξ|2 + τ2)k|û(ξ)|2dξ,

together with∑
|α|+β≤k

τ2β ‖∂αu‖2L2(Rn) =
1

(2π)n

∑
|α|+β≤k

τ2β ‖ξαû‖2L2(Rn) =
1

(2π)n

∫
Rn

∑
|α|+β≤k

τ2β |ξα|2|û(ξ)|2dξ.

Now, for |α|+ β ≤ k, each term in the sum is bounded as

τ2β |ξα|2 = τ2βξ2α ≤ τ2β |ξ|2|α| ≤ (τ2 + |ξ|2)β+|α| ≤ (τ2 + |ξ|2)k,

implying the second inequailty of the lemma.
Concerning the first inequality, notice that the sum contains in particular the instance α = 0, β = k,

the instance α1 = k, αj = 0 for j = 2, · · · , n and β = 0, etc..., yielding∑
|α|+β≤k

τ2β |ξα|2 ≥ τ2k + |ξ2k
1 |+ · · ·+ |ξ2k

n | ≥ c(|ξ|2 + τ2)k

for some c > 0 uniformly for (τ, ξ) ∈ Rn ×R+ (these are two homogeneous functions of degree k which do
not vanish on the sphere). This proves the first inequality, and concludes the proof of the lemma.

We finally give a duality statement between the spaces/norms Hs
τ and H−sτ .

Lemma 1.3.3. For all s ∈ R and all u, v ∈ S(Rn), τ > 0, we have

|(u, v)L2(Rn)| ≤ ‖u‖H−sτ ‖v‖Hsτ .

Moreover, for all u ∈ S(Rn) and τ > 0, we have

‖u‖H−sτ = sup
v∈S(Rn),‖v‖Hsτ≤1

|(u, v)L2(Rn)|.
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Proof. The first statement comes from the Plancherel theorem and the Cauchy Schwarz inequality as
follows:

|(u, v)L2(Rn)| =
1

(2π)n

∣∣∣∣∫
Rn
û(ξ)v̂(ξ)dξ

∣∣∣∣ =
1

(2π)n

∣∣∣∣∫
Rn

(|ξ|2 + τ2)−
s
2 û(ξ)(|ξ|2 + τ2)

s
2 v̂(ξ)dξ

∣∣∣∣
≤ 1

(2π)n
‖(|ξ|2 + τ2)−

s
2 û(ξ)‖L2‖(|ξ|2 + τ2)

s
2 v̂(ξ)‖L2 = ‖u‖H−sτ ‖v‖Hsτ .

The second statement comes from the first one together with the fact that for

v := ‖u‖−1

H−sτ
(|D|2 + τ2)−su ∈ S(Rn),

we have

‖v‖Hsτ =

∥∥(|D|2 + τ2)−su
∥∥
Hsτ

‖u‖H−sτ
= 1,

and

(u, v)L2(Rn) =
1

‖u‖H−sτ
(u, (|D|2 + τ2)−su)L2(Rn) =

1

‖u‖H−sτ
‖(|D|2 + τ2)−

s
2u‖2L2(Rn) = ‖u‖H−sτ .

In the next section, we describe some important properties of operators depending on a large parame-
ter τ .

1.3.2 Differential operators
Definition 1.3.4 (Differential operators depending on τ). Let m ∈ N and Ω ⊂ Rn an open set. We denote
Diffmτ (Ω) the set of differential operators of the form P =

∑
|α|+β≤m pα,β(x)τβDα with pα,β ∈ C∞(Ω)

such that all derivatives of pα,β are bounded uniformly on Ω.
For P ∈ Diffmτ (Ω), we define its full symbol by p(x, ξ, τ) =

∑
|α|+β≤m pα,β(x)τβξα. It belongs to the

set of polynomials of degree m of the variable (ξ, τ), with coefficients smooth functions of x ∈ Ω, that we
denote Σm(Ω × Rn × R+).

Respectively, if p ∈ Σm(Ω × Rn × R+), we will denote p(x,D, τ) the operator with symbol p.
We finally define pm(x, ξ, τ) =

∑
|α|+β=m pα,β(x)τβξα its principal symbol. It is homogeneous of degree

m in (ξ, τ), in the sense that

pm(x, λξ, λτ) = λmpm(x, ξ, τ), for all x ∈ Ω, ξ ∈ Rn, τ ≥ 0 and λ > 0.

Recall that, the order m being fixed, the set of smooth homogeneous functions of degree m in this sense
identify (through the restriction map) to smooth functions on the half-sphere bundle over Ω, namely

{(x, ξ, τ) ∈ Ω× Rn × R+, |ξ|2 + τ2 = 1}.

Remark that this Definition 1.3.4 is almost the same definition as Definition 1.2.6, except for the depen-
dance on τ which changes the definition of the principal symbol. Note also that if p ∈ Σm(Rn ×Rn×R+),
the inversion Fourier formula gives, as in (1.26), for u ∈ S(Rn)

p(x,D, τ)u(x) = F−1
ξ→x (p(x, ξ, τ)F(u)(ξ)) =

1

(2π)n

∫
Rn
eix·ξp(x, ξ, τ)û(ξ)dξ. (1.29)

Let us finally remark that for P = p(x,D, τ) ∈ Diffmτ (Ω), with principal symbol pm, we have

P − pm(x,D, τ) ∈ Diffm−1
τ (Ω),

that is to say that these two differential operators of order m only differ by a differential operator of order
m− 1.
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Now, we want to describe the calculus of differential operators with a large parameter. This consists in
explaining the properties of such operators with respect to usual operations (composition, commutators,
taking the adjoint), their mapping properties (in τ dependent Sobolev spaces) and positivity properties.
Moreover, we want to link such properties with those of the symbol of the operators. The philosophy is
that we want to recover properties of the operators only from their principal symbols (which are simpler
objects to manipulate, namely functions on the augmented space Ωx × Rnξ × R+

τ ). The general Heuristic
is that a these differential operators act as if they were multiplication by pm(x, ξ, τ), modulo lower order
terms.

If P , A, B of respective order m, m1 and m2, with respective principal symbol p, a, b, a rough summary
of the calculus properties proved below is the following:

1. (action on Sobolev spaces) P maps continuously Hs
τ into Hs−m

τ ;

2. (composition) AB = A ◦B is of order m1 +m2 with principal symbol ab;

3. (commutators) [A,B] = AB −BA is of order m1 +m2 − 1 with principal symbol 1
i {a, b}, where

{a, b} = ∂ξa · ∂xb− ∂xa · ∂ξb =

n∑
j=1

(
∂ξja∂xj b− ∂xja∂ξj b

)
is the Poisson bracket.

4. (adjoint) P ∗, the formal adjoint in L2 is of order m with principal symbol p;

5. (Gårding estimate) p ≥ C(ξ2 + τ2)m/2 implies Re(Pu, u)L2 ≥ C ′ ‖u‖2
H
m/2
τ

for large τ (we consider
only the case m = 2 here but need a slightly more general class of operators than Diff2

τ ).

1.3.3 The calculus of differential operators with a large parameter
Proposition 1.3.5 (Action on Sobolev spaces). Let P ∈ Diffmτ (Rn) and fix s ∈ R. Then, there exists a
constant C > 0 (depending on s and the coefficients of P ) such that

‖Pu‖Hs−mτ
≤ C ‖u‖Hsτ , for all u ∈ S(Rn) and all τ ≥ 1.

In particular, P extends uniquely as a bounded operator from Hs
τ to Hs−m

τ , uniformly for τ ≥ 1.

Although the result is stated for all s ∈ R, we prove it only for s = k ∈ Z, which simplifies considerably
the proof. The general case can be deduced by interpolation ♣ ref. A direct proof is also possible (but
requires more work).

Proof. By the triangle inequality, it is enough to prove that any term pα,β(x)τβDα with |α| + β ≤ m is
bounded from Hk

τ to Hk−m
τ . Then, we want to decompose∥∥pα,β(x)τβDα

∥∥
Hkτ→H

k−m
τ
≤ ‖pα,β‖Hk−mτ →Hk−mτ

∥∥τβDα
∥∥
Hkτ→H

k−m
τ

(1.30)

and it suffices to prove that each term on the right handside is finite. Firstly we have,∥∥τβDαu
∥∥2

Hk−mτ
=

1

(2π)n

∫
Rn

(τ2 + |ξ|2)k−m|τβξαû(ξ)|2dξ

≤ 1

(2π)n

∫
Rn

(|ξ|2 + τ2)k−m
(
|ξ|2 + τ2

)|α|+β |û(ξ)|2dξ

≤ 1

(2π)n

∫
Rn

(|ξ|2 + τ2)k|û(ξ)|2dξ = ‖u‖2Hkτ (1.31)

where we used |α|+ β ≤ m in the last inequality. This proves that Dατβ applies Hk
τ into Hk−m

τ . It only
remains to prove that the multiplication by a smooth function f bounded as well as its derivatives (here
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pα,β) is bounded from Hk
τ to Hk

τ for any k ∈ Z. For k ∈ N, we use the characterization of ‖·‖Hkτ given by
Lemma 1.3.2 together with the Leibnitz formula. This yields

‖fu‖2Hkτ ≤ C
∑

|α|+β≤k

τ2β ‖∂α(fu)‖2L2(Rn) ≤ C
∑

|α|+β≤k

τ2β
∑

δ+γ=α

∥∥(∂δf)(∂γu)
∥∥2

L2(Rn)

≤ C
∑

|α|+β≤k

τ2β
∑

δ+γ=α

∥∥∂δf∥∥2

L∞(Rn)
‖∂γu‖2L2(Rn)

≤ C ‖f‖2Wk,∞(Rn)

∑
|γ|+β≤k

τ2β ‖∂γu‖2L2(Rn) ≤ C(f)2 ‖u‖2Hkτ . (1.32)

Now, still for k ∈ N, we prove that the multiplication by f is bounded on H−kτ . We proceed by duality
and use the characterization of H−kτ in Lemma 1.3.3. Indeed, first remark that∣∣(fu, v)L2(Rn)

∣∣ =
∣∣(u, fv)L2(Rn)

∣∣ ≤ ‖u‖H−kτ ∥∥fv∥∥
Hkτ
≤ ‖u‖H−kτ C(f) ‖v‖Hkτ ,

where we used Lemma 1.3.3 together with (1.32). The characterization of ‖fu‖H−kτ = sup‖v‖
Hkτ

=1(fu, v)L2(Rn)

in Lemma 1.3.3 yields

‖fu‖H−kτ ≤ C(f) ‖u‖H−kτ .

This, together with (1.32) proves that multiplication by f is bounded on Hk
τ for all k ∈ Z. Finally

recalling (1.30) and (1.31) concludes the proof of the proposition.

Proposition 1.3.6 (Composition). Let A ∈ Diffm1
τ (Ω) and B ∈ Diffm2

τ (Ω) with principal symbols am1
(x, ξ, τ)

and bm2(x, ξ, τ). Then, the operator AB = A ◦B is in Diffm1+m2
τ (Ω) Moreover, it can be written as

A ◦B = (am1
bm2

)(x,D, τ) + r(x,D, τ)

with r(x,D, τ) ∈ Diffm1+m2−1
τ (Ω). In particular, the principal symbol of A ◦B is am1bm2 .

A direct proof with the Leibnitz formula is given in Appendix B.1.1.

Proof. We prove it by induction on m = m1 +m2.

• Case m = 0: A = f(x) and B = g(x) and the result is clear.

• Induction m − 1 → m: By linearity with respect to A and B, it is enough to prove the result for
A = f(x)τβDα and B = g(x)τβ

′
Dα′ . Since m1 + m2 = m + 1, at least one of the β, |α|, β′, |α′| is

bigger than 1. If it is either β ≥ 1, β′ ≥ 1 or |α′| ≥ 1, the result is a consequence of the induction
assumption at rank m− 1. If |α| ≥ 1, take k such that αk ≥ 1. Then A = ÃDk with Ã ∈ Diffm1−1

τ

and we have

ABu = ÃDk[g(x)τβ
′
Dα′ ]u = Ã(Dkg(x))τβ

′
Dα′ + Ãg(x)τβ

′
Dα′Dku.

The induction assumption at rank m−1 implies that the first term is in Diffm−1
τ and Ãg(x)τβ

′
Dα′ ∈

Diffm−1
τ with principal symbol ãg(x)τβ

′
ξα
′
. We deduce that Ãg(x)τβ

′
Dα′Dk ∈ Diffmτ with principal

symbol ãg(x)τβ
′
ξα
′
ξk = ab.

Notice then that both AB and BA belong to Diffm1+m2
τ (Ω) and have the same principal symbol am1bm2 .

This in particular implies
[A,B] = AB −BA ∈ Diffm1+m2−1

τ (Ω),

for the commutator. It is natural when comparing these two operators to study the principal symbol of
[A,B]. Notice that basic algebra shows

[A,B] = −[B,A], (1.33)
[A,BC] = [A,B]C +B[A,C]. (1.34)

We need the following notation and definition.
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Definition 1.3.7 (Poisson bracket). Given a, b ∈ C∞(Ω×Rn;C), we define the Poisson bracket of a and
b by

{a, b} := ∂ξa · ∂xb− ∂xa · ∂ξb =

n∑
j=1

(
∂ξja∂xj b− ∂xja∂ξj b

)
.

Notice that we have the properties:

{a, b} = −{b, a} , (1.35)
{a, bc} = {a, b} c+ b {a, c} . (1.36)

The second formula is a Leibnitz formula, yielding that the map b 7→ {a, b} is a derivation on C∞(Ω×Rn;C).
When comparing these to (1.33)-(1.34), it seems natural to obtain the following result.

Proposition 1.3.8 (Commutation). Let A ∈ Diffm1
τ (Ω) and B ∈ Diffm2

τ (Ω) with principal symbols
am1(x, ξ, τ) and bm2(x, ξ, τ). Then, the operator [A,B] is in Diffm1+m2−1

τ (Ω). Moreover, it can be written
as

[A,B] =
1

i
{am1

, bm2
} (x,D, τ) + r(x,D, τ),

with r(x,D, τ) ∈ Diffm1+m2−2
τ (Ω).

Note that since am1
is homogeneous of degree m1 in (ξ, τ), then ∂xam1

has the same homogeneity
whereas ∂ξam1

is homogeneous of degree m1 − 1 in (ξ, τ) (and similarly for bm2
). Therefore {am1

, bm2
} is

homogeneous of degree m1 +m2 − 1, which is consistent with the formula.
We could give a direct proof with the Leibnitz formula (given in Appendix B.1.1). The latter would

however be technical and not very informative, so we prefer to give a simple inductive proof based on (1.33)-
(1.34)-(1.35)-(1.36).

Proof. We first treat the case where one of the operators is of order 1. This amounts to prove, by induction
on m, the following property: for any A = f(x)Dk and B ∈ Diffmτ , [A,B] ∈ Diffmτ with principal symbol
1
i {fξk, bm}.

• Case m = 0: B = g(x) and we have

[A,B]u = [f(x)Dk, g(x)]u = f(x)Dk(g(x)u)− g(x)f(x)Dku = f(x)Dk(g(x))u =
1

i
f(x)∂k(g(x))u.

This operator is in Diff0
τ with principal (and full) symbol 1

i f(x)∂xk(g(x)). And for the principal
symbols a1 = f(x)ξk and b0 = g(x), we have {a1, b0} = {a1, b} = f∂xkg.

• Case m = 1 (this is only needed as a partial result): By linearity (and the case m = 0), it is enough
to have the result for B = τg(x) or B = g(x)Dl. The first case reduces to the case m = 0 (since τ
commutes), so we only need to treat the second. We have

[A,B]u = [f(x)Dk, g(x)Dl]u = f(x)Dk [g(x)Dlu]− g(x)Dl [f(x)Dku]

= f(x)Dk(g(x))Dlu− g(x)Dl(f(x))Dku.

This operator belongs to Diff1
τ and has principal (and full) symbol 1

i

(
f(x)∂xk(g(x))ξl−g(x)∂xl(f(x))ξk

)
which turns out to be equal to 1

i {f(x)ξk, g(x)ξl}.

• Inductionm→ m+1: the main idea is to use (1.33)-(1.34). More precisely, by linearity (B ∈ Diffm+1
τ

writes B = B0τ +
∑m
j=1BjDj + B̌ where Bj , B̌ ∈ Diffmτ ), it is enough to consider B = τB̃ or

B = B̃Dl with B̃ ∈ Diffmτ , with principal symbol b̃m. In the first case, we have [A,B] = τ [A, B̃], and
the induction assumption at step m gives the result. In the second case, we have

[A,B] = [A, B̃Dl] = [A, B̃]Dl + B̃[A,Dl].
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The case m = 1 and the induction assumption then yield (after using Proposition 1.3.6) that [A,B] ∈
Diffmτ with principal symbol

1

i

({
a, b̃m

}
ξl + b̃m {a, ξl}

)
=

1

i

{
a, b̃mξl

}
=

1

i
{a, b} ,

where we have used (1.36).

The result is now proved for any A = f(x)Dk and B ∈ Diffmτ (or A ∈ Diffmτ and B = g(x)Dl by
antisymmetry). The final result can then be proved similarly by induction on m = m1 + m2 using the
same strategy.

• Case m = 0: the result is clear since then A = f(x) and B = g(x).

• Induction m → m + 1 By linearity with respect to both variable, it is enough to get the result for
A = f(x)τβDα and B = g(x)τβ

′
Dα′ . Since m1 + m2 = m + 1, at least one of the β, |α|, β′, |α′|

is bigger than 1. By symmetry, we can assume that either β ≥ 1 or |α| ≥ 1. In the first case, we
apply directly the induction assumption at rank m. In the second case, |α| ≥ 1, we take k such that
αk ≥ 1. Then A = ÃDk where Ã is of order m1 − 1. We have again

[A,B] = [ÃDk, B] = Ã[Dk, B] + [Ã, B]Dk,

and we conclude similarly by the induction assumption at rank m for the second term and for the
first term by the previous result proved in the specific case A = Dk.

Given an operator P , we now would like to discuss its formal adjoint P ∗ (if it exists) in the sense that

(Pu, v)L2 = (u, P ∗v)L2 , for all u, v ∈ C∞c (Ω). (1.37)

We only talk about “formal adjoint” because the test functions in (1.37) are in C∞c (Ω). This is linked
with the fact that we did not define differential operators as closed operators on the Hilbert space L2(Ω)
(such a definition would require to define their domains, which we do not do/need), but rather as acting
on C∞c (Ω)→ C∞c (Ω).

Proposition 1.3.9 (Formal adjoint). Let P ∈ Diffmτ (Ω) with principal symbol pm. There exists a unique
operator P ∗ ∈ Diffmτ (Ω) satisfying (1.37). Moreover, the principal symbol of P ∗ is pm, that is P ∗ −
pm(x,D, τ) ∈ Diffm−1

τ (Ω).

Note in particular that an operator P ∈ Diffmτ (Ω) with real-valued principal symbol is formally selfad-
joint modulo Diffm−1

τ (Ω), in the sense that P − P ∗ ∈ Diffm−1
τ (Ω). This fact will be used several times in

the proof of Carleman estimates.

Proof. By linarity, it is enough to prove the result for P = a(x)τβDα. We recall from (1.21) that Dα is
formally selfadjoint, so that(

a(x)τβDαu, v
)
L2 =

(
τβDαu, a(x)v

)
L2

=
(
u, τβDαa(x)v

)
L2
.

As a consequence, P ∗ = τβDαa(x) and we know from Proposition 1.3.6 that P ∗ ∈ Diffmτ with principal
symbol a(x)τβξα = pm.

1.3.4 The conjugated operator
As described in Section 1.2.5, the introduction of the calculus with the large parameter τ is motivated by
the conjugated operator PΦ := eτΦPe−τΦ. We here prove that it belongs to the class Diffmτ , and compute
its principal symbol.
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Lemma 1.3.10 (The conjugated operator). Let P =
∑
|α|≤m pα(x)Dα ∈ Diffm(Ω) be a (classical) differ-

ential operator with principal symbol pm and let Φ ∈ C∞(Ω) be real-valued and bounded as well as all its
derivatives.

Then, the operator PΦ defined by PΦv = eτΦP (e−τΦv) satisfies PΦ ∈ Diffmτ (Ω), and its principal
symbol, denoted by pΦ = pΦ,m (with a slight abuse of notation), is given by

pΦ(x, ξ, τ) = pm(x, ξ + iτdΦ(x)) =
∑
|α|=m

pα(x)(ξ + iτdΦ(x))α.

Roughly speaking, the previous Lemma says that pΦ is obtained by replacing ξ by ξ + iτdΦ(x) in
pm. Note that it implies in particular that pΦ has a complex-valued symbol if pm is real-valued: The
conjugation turns selfadjoint operators into non-selfadjoint ones.

Proof. As already checked in (1.28), we have eτΦDj(e
−τΦu) = Dju + iτ(∂jΦ)u. In particular, the conju-

gated operator eτΦDje
−τΦ lies in the class Diff1

τ with principal symbol ξj + iτ∂jΦ. We now write

eτΦD
αj
j e−τΦ = eτΦDje

−τΦeτΦDj · · · eτΦDje
−τΦ (αj times)

= (eτΦDje
−τΦ)(eτΦDje

−τΦ) · · · (eτΦDje
−τΦ).

Therefore, using Proposition 1.3.6 αj − 1 times, we obtain that this is a differential operator depending
on τ of order αj with principal symbol (ξj + iτ∂jΦ)αj (note that the full symbol is more complicated).

So, since Dα = Dα1
1 · · ·D

αj
j · · ·Dαn

n , we obtain similarly that eτΦDαe−τΦ ∈ Diff |α|τ , with principal
symbol

n∏
j=1

(ξj + iτ∂jΦ)αj = (ξ + iτdΦ)α,

using the notation of Section 1.2.4. Since pα commutes with eτΦ and P =
∑
α pα(x)Dα, this provides the

result by summing up.

Example 1.3.11 (the Laplace operator). Here, we take P = −∆ ∈ Diff2(Rn), having (full and principal)
symbol |ξ|2, and make a direct computation of the full and the principal symbol of PΦ. We have

eτΦ(−∆)e−τΦu = −eτΦ
[
∆(e−τΦ)u+ e−τΦ∆u+ 2∇u · ∇(e−τΦ)

]
= −eτΦ

[
−τ(∆Φ)e−τΦ + τ2|∇Φ|2e−τΦu+ e−τΦ∆u− 2τ∇u · ∇Φe−τΦ

]
= τ(∆Φ)u− τ2|∇Φ|2u−∆u+ 2τ∇u · ∇Φ,

where we have used

∇(e−τΦ) = −τ∇Φe−τΦ

∆(e−τΦ) = div(∇(e−τΦ)) = −τ div(∇Φe−τΦ) = −τ(∆Φ)e−τΦ − τ∇Φ · ∇(e−τΦ)

= −τ(∆Φ)e−τΦ + τ2|∇Φ|2e−τΦ.

τ2|∇Φ|2u, ∆u and τ∇u ·∇Φ are of order 2 with respective symbol τ2|∇Φ|2, −|ξ|2 and iτξ ·∇Φ (remember
that ∇u = (∂1u, · · · , ∂nu) = i(D1u, · · · , Dnu) has complex symbol denoted for short iD).

So, denoting pΦ,full the full symbol of P and pΦ its principal symbol, we have

pΦ,full(x, ξ, τ) = |ξ|2 − τ2|∇Φ(x)|2 + 2iτξ · ∇Φ(x) + τ∆Φ(x)

pΦ(x, ξ, τ) = |ξ|2 − τ2|∇Φ(x)|2 + 2iτξ · ∇Φ(x)

Note that we have pΦ,2(x, ξ, τ) = (ξ + iτ∇Φ(x)) · (ξ + iτ∇Φ(x)) = p2(x, ξ + iτ∇Φ(x)), (beware that here,
· denotes the real inner product in Rn) in accordance with Lemma 1.3.10.
♣ Fix: dΦ or ∇Φ
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Example 1.3.12 (second order operators with real-valued principal symbol). Below, we will be particu-
larly interested in second order differential operators with real-valued principal symbol, namely P ∈ Diff2(Ω)
with p2 real-valued. The principal symbol of such operators write p2(x, ξ) =

∑n
i,j=1 a

ij(x)ξiξj with real
coefficients aij . This encompasses of course the case of the Laplace operator discussed in Example 1.3.11.

Notice first that ξ 7→ p2(x, ξ) =
∑n
i,j=1 a

ij(x)ξiξj is a real quadratic form for all x ∈ Ω. In particular,
we have the canonical polar form:

p2(x, ξ) =

n∑
i,j=1

aij(x)ξiξj =

n∑
i,j=1

1

2

(
aij(x) + aji(x)

)
ξiξj ,

and we can thus assume that

the matrix (aij(x))i,j is symmetric, i.e. aij(x) = aji(x) for all 1 ≤ i, j ≤ n. (1.38)

Concerning the operator P , we then have

P − p2(x,D) ∈ Diff1(Ω), p2(x,D) =

n∑
i,j=1

aij(x)DiDj =

n∑
i,j=1

Dia
ij(x)Dj +R1,

where R1 = −
∑n
i,j=1Di(a

ij)Dj ∈ Diff1(Ω). The operator
∑n
i,j=1Dia

ij(x)Dj is formally selfadjoint
(equivalently, one can say that it is of divergence form with respect to the measure dx). This last form
thus states in a clearer way that the operator is formally self-adjoint modulo Diff1(Ω). Also, ξ 7→ p2(x, ξ) =∑n
i,j=1 a

ij(x)ξiξj is a real quadratic form with (1.38), and thus Lemma 1.3.10 states that the principal
symbol of the associated conjugated operator PΦ is given by

pΦ(x, ξ, τ) = p2(x, ξ + iτdΦ(x)) = p2(x, ξ)− τ2p2(x, dΦ(x)) + 2iτ p̃2(x, ξ, dΦ(x)),

where p̃2(x, ξ, η) =
∑n
i,j=1 a

ij(x)ξiηj is the polar bilinear form of the quadratic form p2(x, ξ).

1.3.5 A Gårding inequality for a class of operators with a large parameter
In this section, we prove that operators having a real positive principal symbol are positive (referred to as
a Gårding inequality).

However, for the need of Carleman estimates, the class of differential operators is not quite sufficient.
We need to consider a slightly larger class, that also includes the operator

(−∆ + τ2)−1 = (|D|2 + τ2)−1, τ ≥ 1,

defined as a Fourier multiplier:

F((−∆ + τ2)−1u)(ξ) = (|ξ|2 + τ2)−1û(ξ), u ∈ S(Rn).

Note that, as opposed to differential operators, the operator (−∆ + τ2)−1 is non-local (in the sense that
it does not satisfy supp(Pu) ⊂ supp(u) for all u ∈ C∞c (Rn)).

We write in this section a weak form of Gårding estimates for (almost-)differential operators of order
2, which is at the core of the Carleman method. A general Gårding inequality (that we shall not need
for Carleman estimates) will be stated in the next section (about pseudodifferential operators with large
parameters).

Let us first state an elementary Gårding-type lemma for Fourier multipliers.

Lemma 1.3.13. Let q = q(ξ, τ) ∈ C∞(Rn × R+) ∩ S ′(Rn × R+) real-valued and satisfying

q(ξ, τ) ≥ C0(|ξ|2 + τ2), for all (ξ, τ) ∈ Rn × R+.

Then we have

Re (q(D, τ)u, u)L2 = (q(D, τ)u, u)L2 ≥ C0 ‖u‖2H1
τ
, for all u ∈ S(Rn), τ ≥ 0.
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Proof of Lemma 1.3.13. We have F (q(D, τ)u) (ξ) = q(ξ, τ)û(ξ), so that using the Plancherel formula, we
obtain

(q(D, τ)u, u)L2 =
1

(2π)n

∫
Rn
q(ξ, τ)û(ξ)û(ξ)dξ ≥ C0

1

(2π)n

∫
Rn

(|ξ|2 + τ2)|û(ξ)|2dξ = C0 ‖u‖2H1
τ
,

which proves the lemma (in particular the first identity implies that (q(D, τ)u, u)L2 is real).

We now state a local Gårding inequality for a family of operators including Diff2
τ . The main additional

difficulty when compared to Lemma 1.3.13 is the dependence of these operators on the x-variable.

Proposition 1.3.14 (A local Gårding inequality for particular operators). Assume Ω is an open set with
0 ∈ Ω and let P be an operator of the form

P = A+

k∑
i=1

Bi ◦ (−∆ + τ2)−1 ◦Bi (1.39)

with A,Bi ∈ Diff2
τ (Ω) with real principal symbols a2(x, ξ, τ) and b2,i(x, ξ, τ). Define

p2(x, ξ, τ) = a2(x, ξ, τ) +

k∑
i=1

b22,i(x, ξ, τ)

|ξ|2 + τ2
, (1.40)

and assume that there is C0 > 0 such that

p2(0, ξ, τ) ≥ C0(|ξ|2 + τ2), for all ξ ∈ Rn, τ ≥ 0. (1.41)

Then, there exist r > 0 and C1, C2 > 0, so that we have

Re (Pu, u)L2 ≥ C1 ‖u‖2H1
τ
− C2 ‖u‖2L2 , for all u ∈ C∞c (B(0, r)), τ ≥ 0. (1.42)

In particular, there exist C, τ0 > 0 such that

Re (Pu, u)L2 ≥ C ‖u‖2H1
τ
, for all u ∈ C∞c (B(0, r)), τ ≥ τ0.

Note that formally, such operators P are “of order 2”. The “principal symbol”, defined in (1.40) is
indeed a homogeneous function of degree 2. Inequality (1.41) is thus a homogeneous inequality, and it is
sufficient to assume it on the half-sphere Sn+ := {(ξ, τ) ∈ Rn × R+, |ξ|2 + τ2 = 1}.

The idea of the proof is to “freeze” the coefficients at 0 in order to reduce to the case of a Fourier
multiplier, and then use Lemma 1.3.13. For this, we need to estimate the error made by “freezing” the
coefficients. This is the aim of Lemma 1.3.15 and Corollary 1.3.16 below. Proposition 1.3.14 is then a
consequence of Corollary 1.3.16 together with Lemma 1.3.13.

Lemma 1.3.15. If A ∈ Diff2
τ (Ω) with principal symbol a2(x, ξ, τ), then, there exits C > 0 such that for

all r > 0 such that B(0, r) ⊂ Ω, we have

|(Au, v)L2 − (a2(0, D, τ)u, v)L2 | ≤ C
(
r ‖u‖H1

τ
+ ‖u‖L2

)
‖v‖H1

τ
,

for any u ∈ C∞c (B(0, r)), v ∈ S(Rn), τ ≥ 1.

Corollary 1.3.16. Let P and p2 be as in (1.39)-(1.40). Then, for any ε > 0, there exits C > 0 and r > 0
so that

|(Pu, u)L2 − (p2(0, D, τ)u, u)L2 | ≤ ε ‖u‖2H1
τ

+ C ‖u‖2L2

for any u ∈ C∞c (B(0, r)), τ ≥ 1.

Let us now give the proof of the Gårding inequality of Proposition 1.3.14.
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Proof of Proposition 1.3.14. First, assumption (1.41) together with Lemma 1.3.13 implies that

Re (p2(0, D, τ)u, u)L2 = (p2(0, D, τ)u, u)L2 ≥ C0 ‖u‖2H1
τ
, for all u ∈ S(Rn), τ ≥ 0.

Now, Corollary 1.3.16 yields for any ε > 0, the existence of C > 0 and r > 0 so that

|Re (Pu, u)L2 − (p2(0, D, τ)u, u)L2 | ≤ ε ‖u‖2H1
τ

+ C ‖u‖2L2

for any u ∈ C∞c (B(0, r)), τ ≥ 1. Taking ε = C0

2 implies the existence of C > 0 and r > 0 so that

Re (Pu, u)L2 ≥
C0

2
‖u‖2H1

τ
− C ‖u‖2L2 , for all u ∈ C∞c (B(0, r)), τ ≥ 1.

which is the first statement. The second statement comes from the fact that ‖u‖L2 ≤ 1
τ ‖u‖H1

τ
and taking

τ large enough in this inequality.

Before proving the lemma and its corollary, we state (see Exercise 1 in Section 1.4 for a proof) a converse
of Proposition 1.3.14, showing that the positivity of the principal symbol is also a necessary condition for
the positivity of the operator.

Proposition 1.3.17 (Converse of the Gårding inequality). Let P and p2 be as in (1.39)-(1.40). Assume
that there exist r, τ0, C1, C2 > 0, so that we have

Re (Pu, u)L2 ≥ C1 ‖u‖2H1
τ
− C2 ‖u‖2L2 , for all u ∈ C∞c (B(0, r)), τ ≥ τ0.

Then we have

p2(0, ξ, τ) ≥ C1(|ξ|2 + τ2), for all ξ ∈ Rn, τ ≥ 0.

Proof of Lemma 1.3.15. We first write A ∈ Diff2
τ under the form

A =

n∑
i,j=1

aij2 (x)DiDj +

n∑
i=1

ai1(x)τDi + a0(x)τ2 +R, R ∈ Diff1
τ

= A′ +R′, (1.43)

where

A′ =

n∑
i,j=1

Dia
ij
2 (x)Dj +

n∑
i=1

ai1(x)τDi + a0(x)τ2 ∈ Diff2
τ , R′ = R−

n∑
i,j=1

(Dia
ij
2 )Dj ∈ Diff1

τ

We estimate the lower order term involving R′ using Propositions 1.3.9 and 1.3.5 as

|(R′u, v)L2 | = |(u, (R′)∗v)L2 | ≤ C ‖u‖L2 ‖v‖H1
τ
. (1.44)

Thus, it only remains to estimate the quantity |((A′ − a2(0, D, τ))u, v)L2 |. By linearity, it is enough to
do it term-by-term. Let us consider the most difficult terms, namely Dia

ij
2 (x)Dj (terms under the form

ai1(x)τDi and a0(x)τ2 are simpler to treat). Using aij2 (0)DiDj = Dia
ij
2 (0)Dj and an integration by parts,

we obtain (
(Dia

ij
2 (x)Dj − aij2 (0)DiDj)u, v

)
L2

=
(

(aij2 (x)− aij2 (0))Dju,Div
)
L2
.

For u ∈ C∞c (B(0, r)) this can thus be estimated as∣∣∣((Dia
ij
2 (x)Dj − aij2 (0)DiDj)u, v

)
L2

∣∣∣ ≤ ∥∥∥aij2 (x)− aij2 (0)
∥∥∥
L∞(B(0,r))

‖u‖H1
τ
‖v‖H1

τ
,

where, using the mean value theorem, we have∥∥∥aij2 (·)− aij2 (0)
∥∥∥
L∞(B(0,r))

≤ r
∥∥∥daij2 ∥∥∥

L∞(B(0,r))
≤ Cr.

26



We have thus obtained∣∣∣((Dia
ij
2 (x)Dj − aij2 (0)DiDj)u, v

)
L2

∣∣∣ ≤ Cr ‖u‖H1
τ
‖v‖H1

τ
, for all u ∈ C∞c (B(0, r)), v ∈ S(Rn).

A similar computation holds for all terms under the form ai1(x)τDi and a0(x)τ2, which eventually yields
to

|(A′u, v)L2 − (a2(0, D, τ)u, v)L2 | ≤ Cr ‖u‖H1
τ
‖v‖H1

τ
,

for all r, τ > 0 and all u ∈ C∞c (B(0, r)), v ∈ S(Rn). Combined with (1.43)-(1.44), this concludes the proof
of the lemma.

Proof of Corollary 1.3.16. We have

(Pu, u)L2 = (Au, u)L2 +

k∑
i=1

(
Bi ◦ (−∆ + τ2)−1 ◦Biu, u

)
L2 . (1.45)

According to Lemma 1.3.15, applied to v = u ∈ C∞c (B(0, r)), and using ‖u‖H1
τ
‖u‖L2 ≤ ε ‖u‖2H1

τ
+ 1

4ε ‖u‖
2
L2

for all ε > 0, we obtain the sought result for the difference

| ((A− a2(0, D, τ))u, u)L2 | ≤ ε ‖u‖2H1
τ

+ Cε ‖u‖2L2 , u ∈ C∞c (B(0, rε)).

It thus only remains to prove a similar statement for each of the terms in the sum of (1.45), which we
shall for simplicity denote

(
B ◦ (−∆ + τ2)−1 ◦Bu, u

)
L2 here (removing the subscript i). We shall denote

b2 (instead of b2,i) for the symbol of B (instead of Bi) accordingly. We write(
B ◦ (−∆ + τ2)−1 ◦Bu, u

)
L2 =

(
(−∆ + τ2)−1 ◦Bu,B∗u

)
L2

=
(
(−∆ + τ2)−1 ◦Bu, b2(0, D, τ)u

)
L2 +R1,

where
R1 =

(
(−∆ + τ2)−1 ◦Bu, (B∗ − b2(0, D, τ)u

)
L2 .

We first estimate R1, and come back to the main term afterwards. We have

|R1| ≤
∥∥(−∆ + τ2)−1 ◦Bu

∥∥
H1
τ
‖(B∗ − b2(0, D, τ))u‖H−1

τ

and, using that B sends H1
τ into H−1

τ , we get∥∥(−∆ + τ2)−1 ◦Bu
∥∥
H1
τ
≤ ‖Bu‖H−1

τ
≤ C ‖u‖H1

τ
.

We are thus left to estimate ‖(B∗ − b2(0, D, τ))u‖H−1
τ

. For this, we use Lemma 1.3.15 for the differential
operator B∗, with principal symbol b2(0, ξ, τ) since b2 is assumed real-valued. This yields

|((B∗ − b2(0, D, τ))u, v)L2 | ≤ C
(
r ‖u‖H1

τ
+ ‖u‖L2

)
‖v‖H1

τ
,

for any u ∈ C∞c (B(0, r)), v ∈ S(Rn), τ ≥ 1. According to the characterization of the H−1
τ norm by duality

(see Lemma 1.3.3 above), this implies

‖(B∗ − b2(0, D, τ))u‖H−1
τ
≤ C

(
r ‖u‖H1

τ
+ ‖u‖L2

)
.

Combining the above estimates, we have now proved that

|R1| ≤ C
(
r ‖u‖H1

τ
+ ‖u‖L2

)
‖u‖H1

τ
, for all u ∈ C∞c (B(0, r)),

which is an admissible remainder term (by taking r small enough and using again ab ≤ εa2 + b2/4ε).
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To conclude the proof, it only remains to replace
(
(−∆ + τ2)−1 ◦Bu, b2(0, D, τ)u

)
L2 by the same

expression with B replaced by b2(0, D, τ). That means to estimate∣∣((−∆ + τ2)−1 ◦ (B − b2(0, D, τ))u, b2(0, D, τ)u
)
L2

∣∣
≤
∥∥(−∆ + τ2)−1(B − b2(0, D, τ))u

∥∥
H1
τ
‖b2(0, D, τ)u‖H−1

τ

≤ ‖(B − b2(0, D, τ))u‖H−1
τ
‖u‖H1

τ
.

This last term has already been estimated with B∗ instead of B, but this works the same (since p2 is
real-valued).

We also have a semiglobal Gårding inequality when replacing the local assumption (1.41) of Proposi-
tion 1.3.14 by a semiglobal one.

Proposition 1.3.18 (Semiglobal Gårding inequality). Let Ω ⊂ Rn be a bounded open set, and P be as
in (1.39), with A,Bi ∈ Diff2

τ (Ω) with real principal symbol a2(x, ξ, τ) and b2,i(x, ξ, τ), and p2(x, ξ, τ) as
in (1.40). Assume there is C > 0 such that

p2(x, ξ, τ) ≥ C(|ξ|2 + τ2) for all (x, ξ, τ) ∈ Ω× Rn × R+ (1.46)

Then, there exist and C1, C2 > 0, so that we have

Re (Pu, u)L2 ≥ C1 ‖u‖2H1
τ
− C2 ‖u‖2L2 , for all u ∈ C∞c (Ω), τ ≥ 1.

In particular, there exist C, τ0 > 0,such that

Re (Pu, u)L2 ≥ C ‖u‖2H1
τ
, for all u ∈ C∞c (Ω), τ ≥ τ0.

Note that Assumption (1.46) indeed makes sense up to the boundary of Ω: since all coefficients of the
operator have all derivatives uniformly continuous, they can be extended uniquely to Ω.

Proof. Wemay apply Proposition 1.3.14 at any x0 ∈ Ω♣ beware: In the statement of this Proposition,
x0 ∈ Ω (not in the boundary of the open set). This yields for any x ∈ Ω the existence of rx > 0
and Cx1 , Cx2 > 0, so that the inequality (1.42) holds for all functions u ∈ C∞c (B(x, rx)). Since Ω is compact,
we can extract from the cover Ω ⊂

⋃
x∈ΩB(x, rx) a finite cover denoted by Ω ⊂

⋃
i∈I B(xi, ri). Define a

subordinated smooth partition of unity χi ∈ C∞(B(xi, ri)) so that∑
i

χ2
i = 1 on Ω.

See e.g. [Hör90, ♣ ] for the construction of such functions. We thus have u =
∑
i χ

2
iu and decompose

(Pu, u)L2 =
∑
i

(
χ2
iPu, u

)
L2 =

∑
i

(χiPu, χiu)L2

=
∑
i

(Pχiu, χiu)L2 +
∑
i

([χi, P ]u, χiu)L2 .

Now, the bound furnished by Proposition 1.3.14 yields∑
i

(Pχiu, χiu)L2 ≥
(

min
i∈I

Cxi1

)∑
i∈I
‖χiu‖2H1

τ
−
(

max
i∈I

Cxi2

)∑
i∈I
‖χiu‖2L2 .

We notice that, for τ ≥ 1,

‖u‖2H1
τ

=

∥∥∥∥∥∑
i

χ2
iu

∥∥∥∥∥
2

H1
τ

≤ C
∑
i

∥∥χ2
iu
∥∥2

H1
τ
≤ C

∑
i

‖χiu‖2H1
τ
,
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where we used Proposition 1.3.5 and the fact that the sum is finite. Hence, the above three lines imply
the existence of C1, C2 > 0 such that we have for all u ∈ C∞c (Ω),

(Pu, u)L2 +
∑
i

|([χi, P ]u, χiu)L2 | ≥ C1 ‖u‖2H1
τ
− C2 ‖u‖2L2 . (1.47)

It only remains to estimate |([χi, P ]u, χiu)L2 |. Recalling the form of the operator P = A +
∑k
j=1Bj ◦

(−∆ + τ2)−1 ◦Bj in (1.39), we have [χi, A] ∈ Diff1
τ , and hence

|([χi, A]u, χiu)L2 | ≤ C ‖u‖H1
τ
‖u‖L2 ,

which is an admissible remainder. We thus only need to examinate each [χi, Bj ◦ (−∆ + τ2)−1 ◦Bj ]. We
remove the indices and write S = (−∆ + τ2) for readability. We have

[χ,BS−1B] = BS−1[χ,B] +B[χ, S−1]B + [χ,B]S−1B.

We remark that [χ,B] ∈ Diff1
τ and obtain∣∣(BS−1[χ,B]u, χu
)
L2

∣∣ =
∣∣([χ,B]u, S−1B∗χu

)
L2

∣∣ ≤ ‖[χ,B]u‖H−1
τ

∥∥S−1B∗χu
∥∥
H1
τ

≤ C ‖u‖L2 ‖B∗χu‖H−1
τ
≤ C ‖u‖L2 ‖u‖H1

τ
,∣∣([χ,B]S−1Bu, χu

)
L2

∣∣ ≤ C ‖u‖L2 ‖u‖H1
τ
,

where the second estimate is obtained as the first one. We now rewrite B[χ, S−1]B using the general fact
[T, S−1] = TS−1 − S−1T = S−1[S, T ]S−1, and obtain∣∣(B[χ, S−1]Bu, χu

)
L2

∣∣ =
∣∣(BS−1[S, χ]S−1Bu, χu

)
L2

∣∣ ≤ ∥∥BS−1[S, χ]S−1Bu
∥∥
L2 ‖u‖L2

≤ C
∥∥S−1[S, χ]S−1Bu

∥∥
H2
τ
‖u‖L2 ≤ C

∥∥[S, χ]S−1Bu
∥∥
L2 ‖u‖L2 ≤ C ‖u‖H1

τ
‖u‖L2 .

This together with (1.47) concludes the proof of the proposition.

Remark that the proof shows and uses that [P, χ] is “of order 1”. However, as P , this operator is not
a differential operator. We briefly discuss a more general class of operators containing P , and associated
calculus in the next section.

1.3.6 Pseudodifferential operators
♣ not taught in class

This section is provided here as a remark: the class of differential operators Diffmτ described above
can be embedded in the more general class of so-called pseudodifferential operators (depending on a large
parameter τ). The latter class has the advantages of being an algebra, and containing both differential
operators, nice Fourier multipliers, together with operators of the form (1.39) having symbols like (1.40).

The calculus for differential operators described in the previous section generalizes nicely to this class,
with some technicalities. The reader is referred to [Hör85, Hör94] for a description of this theory. We
only state here counterparts of the results described in the previous section for such operators. We do not
provide proofs of these results, which are beyond the scope of the present introductory book.

Note that introducing these classes of symbols and operators is not needed for the purposes of this book,
namely for proving usual Carleman estimates for operators of order 2 with real principal symbols. This
section can thus be skipped at first reading. In the proofs in the next chapters, we shall mostly consider
differential operators. Yet, we believe that it is good to know that the above operators and results can be
embedded in a nice class of operators enjoying nice calculus properties.

A starting point is the remark that Formula (1.29), which to a symbol associates an operator, does
not require the symbol p(x, ξ, τ) to be polynomial. For instance, the operator (−∆ + τ2)−1 is well defined
for τ > 0 and equal to Formula (1.29) with p(x, ξ, τ) = p(ξ, τ) = 1

|ξ|2+τ2 . We would like to use a class
of operators containing also (−∆ + τ2)−1, as an operator of “order −2” with symbol 1

|ξ|2+τ2 (which is
homogeneous of degree −2 in (ξ, τ)). Before introducing the class of pseudodifferential operators which
achieve these properties, we need to introduce the class of symbols for which Formula (1.29) will provide
with a nice operator, called here the Smτ class.
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Definition 1.3.19. Given an open set Ω ⊂ Rn and m ∈ R, we say that p(x, ξ, τ) belongs to Smτ (Ω×Rn),
if it is smooth in (x, ξ) and, for any α, β ∈ Nn, there exists Cα,β so that∣∣∣∂αx ∂βξ p(x, ξ, τ)

∣∣∣ ≤ Cα,β (√|ξ|2 + τ2
)m−|β|

for all (x, ξ) ∈ Ω× Rn, τ ≥ 1. (1.48)

Note that if m ∈ N and p ∈ Σm, then p ∈ Smτ (Rn×Rn). Note also that
(√
|ξ|2 + τ2

)m
∈ Smτ (Rn×Rn)

for any m ∈ R. Note finally that the symbols useful for later applications to Carleman estimates, given
by (1.40), belong to S2

τ (Rn × Rn).
Note that in these two examples, the symbol p is either homogeneous of degree m, or a sum of terms

which are homogeneous of degree ≤ m (more precisely, of the form p = pm + pm−1 + · · · , where pm−j is
homogeneous of degree m− j). This is no longer the case for general symbols in Smτ (Rn × Rn).

For this reason, it is less obvious to define the principal symbol or the principal part of the symbol.

Definition 1.3.20. For m ∈ R and a ∈ Smτ (Ω × Rn), we define the principal symbol am of a (or the
principal part am of the symbol a) to be the equivalence class of a in Smτ (Ω × Rn)/Sm−1

τ (Ω × Rn).
We identify am with any of its representatives. In case there is a homogeneous representative of a in
Smτ (Ω× Rn)/Sm−1

τ (Ω× Rn) (of degree m), then we choose this representative for the principal symbol.

Now, from p(x, ξ, τ) ∈ Smτ (Rn×Rn), we may define the associated pseudodifferential operator p(x,D, τ)
by mimicking Formula (1.29).

Definition 1.3.21. Given p ∈ Smτ (Rn × Rn), we set

(p(x,D, τ)u) (x) :=
1

(2π)n

∫
Rn
eix·ξp(x, ξ, τ)û(ξ)dξ, for u ∈ S(Rn).

We denote by Ψm
τ (Rn) the set of all such operators for p ∈ Smτ (Rn × Rn).

In quantum mechanics, the formula of this definition is called a quantization formula, for it associates
to a “classical observable” (i.e. a function on the classical phase space Rn×Rn, i.e. a symbol) a “quantum
observable” (i.e. an operator on the quantum Hilbert space L2(Rn)). Conversely, we say that p(x, ξ, τ) is
the (full) symbol of the operator p(x,D, τ).

Note that we have Diffmτ (Rn) ⊂ Ψm
τ (Rn) for m ∈ N and (−∆ + τ2)m/2 ∈ Ψm

τ (Rn) for all m ∈ R. Note
also that p(x,D, τ)u is well defined and belongs to S(Rn) if u ∈ S(Rn). But such an operator has actually
better mapping properties, similar to those enjoyed by differential operators.

Theorem 1.3.22 (Action on Sobolev spaces). Let P ∈ Ψm
τ (Rn). Then, for any s ∈ R, there exits C > 0

such that
‖Pu‖Hs−mτ

≤ C ‖u‖Hsτ , for all u ∈ S(Rn) and τ ≥ 1.

As a consequence, an operator P ∈ Ψm
τ (Rn) can be uniquely extended as a bounded operator from Hs

τ to
Hs−m
τ uniformly in τ .

Note that the latter part of the proposition follows from the density of S(Rn) into Hs
τ for all s ∈ R.

This is the analogue in the more general class Ψm
τ (Rn) of Proposition 1.3.5 in Diffmτ (Rn).

Theorem 1.3.23 (Composition). Let m1,m2 ∈ R and A ∈ Ψm1
τ (Rn), B ∈ Ψm2

τ (Rn) having (full) symbols
a(x, ξ, τ) and b(x, ξ, τ). Then, the composition AB ∈ Ψm1+m2

τ (Rn) and we have AB = c(x,D, τ) where,
for all N ∈ N,

c(x, ξ, τ) =
∑
α≤N

1

i|α|α!
∂αξ a(x, ξ, τ)∂αx b(x, ξ, τ) + rN (x, ξ, τ), with rN ∈ Sm1+m2−N−1

τ . (1.49)

In particular, the principal symbol of AB is the product a(x, ξ, τ)b(x, ξ, τ) (modulo Sm1+m2−1
τ ).

Equivalently, if am1 and bm2 denote the principal symbols of A and B respectively, the principal symbol
of AB is the product am1(x, ξ, τ)bm2(x, ξ, τ) (modulo Sm1+m2−1

τ ).
Note that this theorem implies that operators under the form (1.39) (useful for Carleman estimates)

belong actually to Ψ2
τ (Rn) and have principal symbol given by (1.40).

As for differential operators, the defect of commutation between A and B is not seen at principal order
(both have ab as principal symbol). However, looking carefully at the subprincipal term in the asymptotic
expansion (1.50) (i.e. that with |α| = 1), one obtains the symbol of the commutator.
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Corollary 1.3.24 (Commutator). Let m1,m2 ∈ R and A ∈ Ψm1
τ (Rn), B ∈ Ψm2

τ (Rn) having (full) symbols
a(x, ξ, τ) and b(x, ξ, τ). Then, the commutator [A,B] ∈ Ψm1+m2−1

τ has principal symbol 1
i {a, b} (x, ξ, τ) ∈

Sm1+m2−1
τ (modulo Sm1+m2−2

τ ), where the Poisson bracket is defined in Definition 1.3.7.

The last calculus rule concerns the adjoint operator with respect to the usual L2(Rn, dx) inner product,
and we have the following generalization of Proposition 1.3.9.

Theorem 1.3.25 (Adjoint). Let m ∈ R and P ∈ Ψm
τ (Rn) having (full) symbol p(x, ξ, τ). Then, there is

a unique operator P ∗ satisfying (1.37). Moreover, we have P ∗ ∈ Ψm
τ (Rn) and P ∗ = q(x,D, τ) where, for

all N ∈ N,

q(x, ξ, τ) =
∑
α≤N

1

i|α|α!
∂αx ∂

α
ξ p(x, ξ, τ) + rN (x, ξ, τ), with rN ∈ Sm−N−1

τ . (1.50)

In particular, the principal symbol of P ∗ is equal to the complex conjugate p(x, ξ, τ) (modulo Sm−1
τ ).

One may also say that P ∗ − p(x,D, τ) ∈ Ψm−1
τ (Rn), if p is the (full) symbol of P , or equivalently that

P ∗ − pm(x,D, τ) ∈ Ψm−1
τ (Rn) if pm denotes the principal symbol of P .

We finally give a Gårding inequality which generalizes that of Proposition (1.3.14), i.e. for operators
of the form (1.39), with principal symbol (1.40).

Theorem 1.3.26 (Local Gårding inequality). Let x0 ∈ Rn, m ∈ R and P ∈ Ψm
τ (Rn) has real principal

symbol pm(x, ξ, τ) (that is, there is a real-valued representative in the class Smτ (Rn×Rn)/Sm−1
τ (Rn×Rn)).

Assume that there exist C0, R > 0 such that

Re p(x0, ξ, τ) ≥ C0(ξ2 + τ2)m/2, for all (ξ, τ) ∈ Rn × R+, |(ξ, τ)| ≥ R.

Then, there are C, r, τ0 > 0 such that

Re (Pu, u)L2 ≥ C ‖u‖2Hm/2τ
, for all u ∈ C∞c (B(x0, r)), τ ≥ τ0.
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1.4 Exercises on Chapter 1
Exercise 1 (Converse of the Gårding inequality, part of the Exam of May, 2018). The goal of this exercise
is to prove the converse of Proposition 1.3.14, namely the statement of Proposition 1.3.17.

We prove in the first place a converse of the Gårding inequality for differential operators. We let ξ ∈ Rn
be fixed, and χ ∈ C∞c (Rn;R) be such that χ(0) = 1, and consider the functions

uτ (x) = N(τ)χ(
√
τx)eiτx·ξ, τ > 0.

1. Determine N(τ) so that ‖uτ‖L2(Rn) = 1 for all τ > 0.

2. Give an asymptotic expansion as τ → +∞ under the form α(τ)+O(β(τ)) (with α, β to be determined,
β = o(α)) of both quantities: 1

τ (Djuτ , uτ )L2(Rn) and (auτ , uτ )L2(Rn), where a ∈ C∞(Rn).

3. We take P ∈ Diffmτ (Rn), with principal symbol pm. Give an asymptotic expansion as τ → +∞ of
the quantity

1

τm
(Puτ , uτ )L2(Rn).

Hint: one can consider at first the case P = a(x)τβDα.

4. Compute ûτ (η) in terms of χ̂.

5. Given s ∈ R, compute an asymptotic equivalent as τ → +∞ of the quantity 1
τ2s ‖uτ‖2Hsτ .

6. Assume there exists a neighborhood U of 0 in Rn and C0, τ0 > 0, such that

Re (Pu, u)L2 ≥ C0 ‖u‖2Hm/2τ
, for all u ∈ C∞c (U), τ ≥ τ0. (1.51)

Prove that Re(pm(0, ξ, 1)) ≥ C0(|ξ|2 + 1)m/2 for all ξ ∈ Rn.

7. Deduce that Re(pm(0, ξ, τ)) ≥ C0(|ξ|2 + τ2)m/2 for all (ξ, τ) ∈ Rn × R+
∗ . Conclude.

We now wish to prove a converse of the Gårding inequality for operators of the form (1.39).

8. Give an equivalent as τ → +∞ of the quantity
(
(−∆ + τ2)−1uτ , uτ

)
L2 .

9. Let a, b ∈ C∞(Rn). Give an equivalent as τ → +∞ of the quantity(
(−∆ + τ2)−1a(x)Dαuτ , b(x)Dβuτ

)
L2 .

Hint: one may consider at first the case a = b = 1, then the case α = β = 0, before turning to the
general case.

10. Prove Proposition 1.3.17, that is, the converse of the Gårding inequality for operators of the form:

P = A+

k∑
i=1

Bi ◦ (−∆ + τ2)−1 ◦Bi, A,Bi ∈ Diff2
τ (Rn).

Correction 1. 1. We have ‖uτ‖2L2(Rn) = N(τ)2
∫
Rn |χ(

√
τx)|2dx = N(τ)2τ−n/2 ‖χ‖2L2 = 1 for N(τ) =

τn/4 ‖χ‖−1
L2 .

2. We have Djuτ = N(τ) 1
i (
√
τ∂jχ(

√
τx) + iτξjχ(

√
τx)) eiτx·ξ. As a consequence, we have

(Djuτ , uτ )L2(Rn) =
√
τN(τ)2 1

i

∫
Rn
∂jχ(
√
τx)χ(

√
τx)dx+ τξjN(τ)2

∫
Rn
|χ(
√
τx)|2dx,
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and hence, recalling the choice of N(τ),

1

τ
(Djuτ , uτ )L2(Rn) = ξj +O

(
1√
τ

)
.

Next, we have

(auτ , uτ )L2(Rn) = N(τ)2

∫
Rn
a(x)|χ(

√
τx)|2dx = N(τ)2τ−n/2

∫
Rn
a(y/
√
τ)|χ(y)|2dy.

Moreover, we have a(y/
√
τ) = a(0) +O(1/

√
τ) uniformly for y ∈ supp(χ), so that

(auτ , uτ )L2(Rn) = N(τ)2

∫
Rn
a(x)|χ(

√
τx)|2dx = N(τ)2τ−n/2

∫
Rn

(
a(0) +O

(
1√
τ

))
|χ(y)|2dy

= a(0) +O
(

1√
τ

)
.

3. We first remark that the Leibnitz formula yields

Dα
(
χ(
√
τx)eiτx·ξ

)
= χ(

√
τx)Dα

(
eiτx·ξ

)
+ rτ (x) = χ(

√
τx)τ |α|ξαeiτx·ξ + rτ (x),

where all terms in the sum rτ (x) contain at least one derivative on χ(
√
τx) and at most |α| − 1

derivative on eiτx·ξ. Hence this term can be written rτ (x) = fτ (
√
τx)eiτx·ξ and estimated roughly

as |fτ (y)| ≤ τ1/2+|α|−1 = τ |α|−1/2 uniformly on Rn since we have supp(fτ ) ⊂ supp(χ). As a
consequence, we have

(a(x)Dαuτ , uτ )L2(Rn) = N(τ)2

∫
Rn
a(x)

(
χ(
√
τx)τ |α|ξαeiτx·ξ + rτ (x)

)
χ(
√
τx)e−iτx·ξdx

= τ |α|ξαN(τ)2

∫
Rn
a(x)|χ(

√
τx)|2dx+N(τ)2

∫
Rn
a(x)fτ (

√
τx)χ(

√
τx)dx

= τ |α|ξα
(
a(0) +O

(
1√
τ

))
+ ‖χ‖−2

L2

∫
Rn
a(y/
√
τ)fτ (y)χ(y)dy

Using that |fτ (y)| ≤ τ |α|−1/2 uniformly on Rn, this implies(
a(x)τβDαuτ , uτ

)
L2(Rn)

= τβ+|α|ξαa(0) +O(τβ+|α|−1/2).

Note then that if P = a(x)τβDα, then m = β + |α|, pm(x, ξ, τ) = a(x)τβξα and this formula reads
(Puτ , uτ )L2(Rn) = τmpm(0, ξ, 1)+O(τm−1/2). By linearity, we thus obtain that for all P ∈ Diffmτ (Rn)
with principal symbol pm = pm(x, ξ, τ),

1

τm
(Puτ , uτ )L2(Rn) = pm(0, ξ, 1) +O(τ−1/2).

4. We have

ûτ (η) =

∫
Rn
uτ (x)e−ix·ηdx = N(τ)

∫
Rn
χ(
√
τx)e−ix·(η−τξ)dx

=
N(τ)

τn/2

∫
Rn
χ(y)e

−i y√
τ
·(η−τξ)

dy =
N(τ)

τn/2
χ̂

(
1√
τ

(η − τξ)
)
.

5. As a consequence, we have

(2π)n ‖uτ‖2Hsτ =

∫
Rn

(|η|2 + τ2)s|ûτ (η)|2dη =
N(τ)2

τn

∫
Rn

(|η|2 + τ2)s
∣∣∣∣χ̂( 1√

τ
(η − τξ)

)∣∣∣∣2 dη.
We now set ζ = 1√

τ
(η − τξ) and remark that (|η|2 + τ2)s = τ2s

(∣∣∣ξ + ζ√
τ

∣∣∣2 + 1

)s
to obtain

(2π)n ‖uτ‖2Hsτ =
N(τ)2

τn/2
τ2s

∫
Rn

(∣∣∣∣ξ +
ζ√
τ

∣∣∣∣2 + 1

)s
|χ̂(ζ)|2dζ.
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Recalling the value of N(τ) = τn/4 ‖χ‖−1
L2 and using the dominated convergence theorem (note that

χ̂ ∈ S(Rn)), we finally deduce

1

τ2s
‖uτ‖2Hsτ =

1

‖χ‖2L2

1

(2π)n

∫
Rn

(∣∣∣∣ξ +
ζ√
τ

∣∣∣∣2 + 1

)s
|χ̂(ζ)|2dζ

→τ→+∞
1

‖χ‖2L2

(|ξ|2 + 1)s
1

(2π)n

∫
Rn
|χ̂(ζ)|2dζ = (|ξ|2 + 1)s,

after having used the Plancherel theorem. That is to say, ‖uτ‖Hsτ ∼ τ
s(|ξ|2 + 1)s/2.

6. We now assume (1.51), and apply this inequality to u = uτ (which also depends on ξ), which
satisfies supp(uτ ) ⊂ U for τ sufficiently large (we can alternatively assume that supp(χ) ⊂ U).
Question 2 with s = m

2 implies 1
τm Re(Puτ , uτ )L2(Rn) → Re(pm(0, ξ, 1)) and Question 5 implies

1
τm ‖uτ‖

2

H
m/2
τ
→ (|ξ|2 + 1)m/2. As a consequence, dividing (1.51) by τm and letting τ go to infinity

implies Re(pm(0, ξ, 1)) ≥ C0(|ξ|2 + 1)m/2. Since we can choose any ξ ∈ Rn in the definition of uτ ,
this yields the sought result.

7. We have Re(pm(0, ξ, 1)) ≥ C0(|ξ|2 + 1)m/2 for all ξ ∈ Rn. Applying this inequality to ξ/τ for τ > 0
instead of ξ, we obtain Re(pm(0, ξ/τ, 1)) ≥ C0(|ξ/τ |2 + 1)m/2. Multiplying this inequality by τm and
using homogeneity of degree m of both sides, we finally obtain

Re(pm(0, ξ, τ)) = τm Re(pm(0, ξ/τ, 1)) ≥ τmC0(|ξ/τ |2 + 1)m/2 = C0(|ξ|2 + τ2)m/2,

for all (ξ, τ) ∈ Rn × R+
∗ .

We have proved a converse of the Gårding inequality for differential operators: if the operator is
positive, then its principal symbol has to be positive (in the proper sense). Note that the constant
C0 is the same in the operator inequality and in the symbolic estimate.

8. We have already computed in Question 5 (the computation was valid for all m ∈ R)(
(−∆ + τ2)−1uτ , uτ

)
L2 = ‖uτ‖2H−1

τ
∼τ→+∞ τ−2(|ξ|2 + 1)−1.

9. We first consider the case α = β = 0. Notice that we have

‖auτ − a(0)uτ‖2L2(Rn) = N(τ)2

∫
Rn
|a(x)− a(0)|2|χ(

√
τx)|2dx

= N(τ)2τ−n/2
∫
Rn
|a(y/

√
τ)− a(0)|2|χ(y)|2dy.

Next recalling that |a(y/
√
τ)− a(0)| ≤ C/

√
τ uniformly for y ∈ supp(χ), we obtain

‖auτ − a(0)uτ‖2L2(Rn) ≤ N(τ)2τ−n/2
∫
Rn

C2

τ
|χ(y)|2dy =

C2

τ
. (1.52)

As a consequence, we have∣∣((−∆ + τ2)−1a(x)uτ , b(x)uτ
)
L2 − a(0)b(0)

(
(−∆ + τ2)−1uτ , uτ

)
L2

∣∣
≤
∣∣((−∆ + τ2)−1a(x)uτ , (b(x)− b(0))uτ

)
L2

∣∣+
∣∣((−∆ + τ2)−1(a(x)− a(0))uτ , b(0)uτ

)
L2

∣∣
≤ ‖a(x)uτ‖H−2

τ
‖(b(x)− b(0))uτ‖L2 +

∣∣b(0)
(
(a(x)− a(0))uτ , (−∆ + τ2)−1uτ

)
L2

∣∣
≤ C ‖uτ‖H−2

τ
‖(b(x)− b(0))uτ‖L2 + |b(0)| ‖((a(x)− a(0))uτ‖L2 ‖uτ‖H−2

τ
.

Using (1.52) together with Question 5 (yielding ‖uτ‖H−2
τ
∼ Cτ−2), we obtain that this quantity is

O(τ−2−1/2). Together with the previous question, we have obtained(
(−∆ + τ2)−1a(x)uτ , b(x)uτ

)
L2 ∼ a(0)b(0)τ−2(|ξ|2 + 1)−1.

34



To turn to the general case, we recall that we proved in Question 2 that Dα
(
χ(
√
τx)eiτx·ξ

)
=

χ(
√
τx)τ |α|ξαeiτx·ξ + rτ (x) with rτ (x) = fτ (

√
τx)eiτx·ξ with |fτ (y)| ≤ τ |α|−1/2 uniformly on Rn.

Proceeding as in the case α = β = 0 to estimate all error terms, we deduce(
(−∆ + τ2)−1a(x)Dαuτ , b(x)Dβuτ

)
L2 ∼

(
a(0)τ |α|ξα

)(
b(0)τ |β|ξβ

)
τ−2(|ξ|2 + 1)−1.

10. In particular, if |α| = |β| = 2, this reads

1

τ2

(
(−∆ + τ2)−1a(x)Dαuτ , b(x)Dβuτ

)
L2 → (a(0)ξα)

(
b(0)ξβ

)
(|ξ|2 + 1)−1.

If we take B,C ∈ Diff2
τ , with principal symbols b2(x, ξ, τ) and c2(x, τ, ξ), this formula (together with

similar formulae for mononomials of the type τa(x)Dj , τ2a(x) and lower order terms) implies

1

τ2

(
(−∆ + τ2)−1Buτ , Cuτ

)
L2 → b2(0, ξ, 1)c2(0, ξ, 1)(|ξ|2 + 1)−1.

We may now deduce from this asymptotic formula that if B ∈ Diff2
τ with principal symbol b2(x, ξ, τ),

we have

1

τ2

(
B ◦ (−∆ + τ2)−1 ◦Buτ , uτ

)
L2 =

1

τ2

(
(−∆ + τ2)−1Buτ , B

∗uτ
)
L2

→
(
b2(0, ξ, 1)

)2
(|ξ|2 + 1)−1

As a consequence, for operators of the form 1.39 with principal symbol of the form (1.40):

p2(x, ξ, τ) = a2(x, ξ, τ) +

k∑
i=1

b22,i(x, ξ, τ)

|ξ|2 + τ2
,

we have as for differential operators

1

τ2
(Pu, u)L2 → p2(0, ξ, 1).

To prove a converse of the Gårding inequality for such operators, we may now proceed exactly as in
Question 7. Assume there exists a neighborhood U of 0 in Rn and C0, τ0 > 0, such that

Re (Pu, u)L2 ≥ C0 ‖u‖2H1
τ
, for all u ∈ C∞c (U), τ ≥ τ0.

Applying it to u = uτ and letting τ → +∞ implies Re(p2(0, ξ, 1)) ≥ C0(|ξ|2 + 1). This holds for all
ξ ∈ Rn. Homogeneity of both sides of degree two in (ξ, τ) implies Re(p2(0, ξ, τ)) ≥ C0(|ξ|2 + τ) for
all ξ ∈ Rn and τ > 0. This concludes the proof of the converse of the for operators of the form 1.39,
that is, of Proposition 1.3.17.

Note: One proves similarly a converse of the local Gårding inequality of Theorem 1.3.26. The only
point to check is that for all p ∈ Smτ (Rn × Rn), we have 1

τm (p(x,D, τ)u, u)L2 → p(0, ξ, 1), which follows
from the stationary phase lemma. ♣ ref ?

Exercise 2 (Gårding inequality with limited regularity coefficients). Let Ω ⊂ Rn be an open set containing
0. We consider in this exercise operators of the form

A =

n∑
i,j=1

aij2 (x)DiDj +

n∑
i=1

ai1(x)τDi + a0(x)τ2 +

n∑
i=1

bi1(x)Di + b0(x)τ + c(x),

with aij2 , a
i
1, a0 ∈W 1,∞(Ω) and bi1, b0, c ∈ L∞(Ω). We shall say that A ∈ Diff2

W 1,∞ , and write a2(x,D, τ) =∑n
i,j=1 a

ij
2 (x)DiDj+

∑n
i=1 a

i
1(x)τDi+a0(x)τ2 and a2(x, ξ, τ) =

∑n
i,j=1 a

ij
2 (x)ξiξj+

∑n
i=1 a

i
1(x)τξi+a0(x)τ2

(note however that A /∈ Diff2
τ , which would require C∞ regularity of the coefficients).
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1. Prove that for A ∈ Diff2
W 1,∞ , there exits C > 0 such that for all r > 0 such that B(0, r) ⊂ Ω, we

have

|(Au, v)L2 − (a2(0, D, τ)u, v)L2 | ≤ C
(
r ‖u‖H1

τ
+ τ−1 ‖u‖H1

τ

)
‖v‖H1

τ
,

for any u ∈ C∞c (B(0, r)), v ∈ S(Rn), τ ≥ 1.

2. Prove that if f ∈ W 1,∞(Ω), there is Cf > 0 such that for all u ∈ C∞c (Ω), ‖fu‖H1
τ
≤ Cf ‖u‖H1

τ
and

‖fu‖H−1
τ
≤ Cf ‖u‖H−1

τ
. Deduce that for A ∈ Diff2

W 1,∞ having all coefficients in W 1,∞(Ω) (including
lower order terms), there is CA > 0 such that ‖Au‖H−1

τ
≤ CA ‖u‖H1

τ
for all u ∈ C∞c (Ω).

3. We now consider an operator P of the form

P = A+

k∑
i=1

B∗i ◦ (−∆ + τ2)−1 ◦Bi (1.53)

(note the slight difference with (1.39) in which there is no B∗i ), with A,Bi ∈ Diff2
W 1,∞ , with real “prin-

cipal symbols” a2(x, ξ, τ) and b2,i(x, ξ, τ). Assume further that Bi have all coefficients in W 1,∞(Ω).
Define p2(x, ξ, τ) as in (1.40) and and assume that there is C0 > 0 such that (1.41) holds (positive
symbol). Prove that there exist r > 0 and C, τ0 > 0 so that we have

Re (Pu, u)L2 ≥ C ‖u‖2H1
τ
, for all u ∈ C∞c (B(0, r)), τ ≥ τ0.

Correction 2. ♣ To be written (one day...)

Exercise 3 (warm up, part of the Exam of May, 2019). Let Ω ⊂ Rn be a bounded open set. Given
P ∈ Diffmτ (Ω), we write PR = P+P∗

2 and PI = P−P∗
2i . We denote by pR, resp. pI , the principal symbol of

PR, resp. PI .

1. Prove that

‖Pu‖2L2(Ω) = ‖PRu‖2L2(Ω) + ‖PIu‖2L2(Ω) + (Mu, u)L2(Ω), for all u ∈ C∞c (Ω),

where M is to be expressed in terms of PR and PI . Give the order of M , and its principal symbol
in terms of pR, pI .

2. Prove that
‖Pu‖2L2(Ω) = (Lu, u)L2(Ω), for all u ∈ C∞c (Ω),

where L is to be expressed in terms of PR and PI . Give the order of L, and its principal symbol in
terms of pR, pI .

Correction 3 (Correction of Exercise 3). 1. We have P = PR + iPI , where both PR and PI are for-
mally selfadjoint. As a consequence, for u ∈ C∞c (Ω) we have

‖Pu‖2L2(Ω) = ((PR + iPI)u, (PR + iPI)u)L2

= ‖PRu‖2L2(Ω) + ‖PIu‖2L2(Ω) + (iPIu, PRu)L2 + (PRu, iPIu)L2(Ω)

= ‖PRu‖2L2(Ω) + ‖PIu‖2L2(Ω) + (iPRPIu, u)L2 + (−iPIPRu, u)L2(Ω)

= ‖PRu‖2L2(Ω) + ‖PIu‖2L2(Ω) + (i[PR, PI ]u, u)L2(Ω) ,

which is the sought formula with M = i[PR, PI ] ∈ Diffm+m−1
τ (Ω) = Diff2m−1

τ (Ω), with principal
symbol {pR, pI}.
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2. Using again selfadjointness of PR and PI , we obtain

‖Pu‖2L2(Ω) =
(
(P 2
R + P 2

I + i[PR, PI ])u, u
)
L2(Ω)

,

that is to say, L = P 2
R + P 2

I + i[PR, PI ]. We have PR ∈ Diffmτ (Ω), PI ∈ Diffmτ (Ω), hence P 2
R ∈

Diff2m
τ (Ω), P 2

I ∈ Diff2m
τ (Ω). From preceding question, we know [PR, PI ] ∈ Diff2m−1

τ (Ω) so this term
is lower order. The principal symbol of L in Diff2m

τ (Ω) is thus p2
R + p2

I .

Exercise 4 (Elliptic and subelliptic estimates, part of the Exam of May, 2019). This exercice is not
independent from Exercise 3. In this exercise, we consider on (−1, 1) ⊂ R the operator

P = Dx + iτV (x) +W (x), V ∈ C∞([−1, 1]), real-valued, W ∈ C∞([−1, 1]),

with V,W bounded as well as all of their derivatives.

1. To which class does P belong? Compute the principal symbol p of P. Compute Re(p), Im(p), {p̄, p},
and {Re(p), Im(p)}.

2. Assume V (0) 6= 0. Prove that there are C, r, τ0 > 0 such that ‖Pu‖2L2(−1,1) ≥ C ‖u‖2H1
τ
for all

u ∈ C∞c (−r, r) and τ ≥ τ0.

3. Assume now that V (0) = 0 but V ′(0) > 0. Prove that there are C, r, τ0 > 0 such that ‖Pu‖2L2(−1,1) ≥
Cτ ‖u‖2L2 for all u ∈ C∞c (−r, r) and τ ≥ τ0.

4. Assume again that V (0) = 0. Let χ ∈ C∞c (−1, 1) such that χ = 1 in a neighborhood of zero. With
vτ (x) = χ(

√
τx), give an equivalent of ‖vτ‖2L2(−1,1) and ‖Pvτ‖2L2(−1,1) as τ → +∞. Compare with

Question 3.

5. We consider the case W = 0, V (0) = 0 and V ′(0) < 0.

(a) We set F (x) =
∫ x

0
V (s)ds and wτ (x) = χ(x)eτF (x) for χ ∈ C∞c (−1, 1). Compute Pwτ , and

prove that one can choose χ not identically vanishing so that ‖Pwτ‖L2(−1,1) ≤ Ce−τδ for some
C, δ > 0 and all τ ≥ 1.

(b) Prove a polynomial (in terms of τ) lower bound for ‖wτ‖L2(−1,1).

(c) Discuss the possibility of having subelliptic estimates in this case, that is to say, for α, s ∈ R,
r, τ0, C > 0, having ‖Pu‖2L2(−1,1) ≥ Cτα ‖u‖

2
Hsτ

for all u ∈ C∞c (−r, r) and τ ≥ τ0.

6. We now consider the case W = 0, V (0) = 0 and V ′(0) = 0. What is the best subelliptic estimate to
expect in this situation? One may consider the functions vτ (x) = χ(τγx), for γ to be determined.

7. Explain/discuss, in the case of the operator P, the link between subelliptic estimates and the prop-
erties of Re(p), Im(p), and {Re(p), Im(p)}.

Correction 4 (Correction of Exercise 4). 1. We have P ∈ Diff1
τ ((−1, 1)) with principal symbol p(x, ξ) =

ξ + iτV (x). As a consequence, we have Re(p)(x, ξ) = ξ, Im(p)(x, ξ) = τV (x) and

{Re(p), Im(p)}(x, ξ) = ∂ξ Re(p)∂x Im(p)(x, ξ)− ∂ξ Re(p)∂x Im(p)(x, ξ) = τV ′(x),

{p̄, p} = {Re(p)− i Im(p),Re(p) + i Im(p)} = i{Re(p), Im(p)} − i{Im(p),Re(p)}
= 2i{Re(p), Im(p)} = 2iτV ′.

Note that this symbol is homogeneous of degree 1 with respect to (ξ, τ), which is consistent with the
result of Exercice 3.
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2. According to Exercice 3, we have ‖Pu‖2L2(−1,1) = (Lu, u)L2(−1,1) with L having for principal symbol

`(x, ξ) = Re(p)2(x, ξ) + Im(p)2(x, ξ) = ξ2 + τ2V 2(x).

The assumption V (0) 6= 0 implies that `(0, ξ) = ξ2 + τ2V 2(0) ≥ min{1, V 2(0)}(ξ2 + τ2). The
Gårding inequality (for differential operators) implies the existence of r ∈ (0, 1), C, τ0 > 0 such that
‖Pu‖2L2(−1,1) ≥ C ‖u‖

2
H1
τ
for all u ∈ C∞c (−r, r) and τ ≥ τ0.

3. According to Exercice 3, we have, for all u ∈ C∞c (−1, 1),

‖Pu‖2L2(−1,1) = ‖PRu‖2L2(−1,1) + ‖PIu‖2L2(−1,1) + (Mu, u)L2(−1,1) ≥ (Mu, u)L2(−1,1),

whereM has principal symbol {Re(p), Im(p)}(x, ξ) = τV ′(x). Since we assume here V ′(0) > 0, there
are r ∈ (−1, 1) and C > 0 such that ‖Pu‖2L2(−1,1) ≥ Cτ ‖u‖2L2 for all u ∈ C∞c (−r, r) and τ ≥ 1

(which is stronger than the sought statement).

4. Note first that the function vτ “concentrates towards the frequency ξ = 0 and the point x = 0” in
the limit τ → +∞ (when considering operators in Diffmτ ). That is, precisely at the point (x, ξ) =

(0, 0) where we assume p(x, ξ) = 0. On the one hand, a change of variables yields ‖vτ‖2L2(−1,1) =
1√
τ
‖χ‖2L2(−1,1). On the other hand, we have

(Pvτ )(x) = (Dx + iτV (x) +W (x))χ(
√
τx) = −i

√
τχ′(
√
τx) + iτV (x)χ(

√
τx) +W (x)χ(

√
τx).

This implies

‖Pvτ‖2L2(−1,1) =

∫
R

∣∣−i√τχ′(√τx) + iτV (x)χ(
√
τx) +W (x)χ(

√
τx)
∣∣2 dx

=
1√
τ

∫
R

∣∣∣∣−i√τχ′(y) + iτV (
y√
τ

)χ(y) +W (
y√
τ

)χ(y)

∣∣∣∣2 dy.
Recalling the assumption V (0) = 0, we write V (s) = sV ′(0) + O(s2) uniformly on supp(χ). This
yields

‖Pvτ‖2L2(−1,1) =
1√
τ

∫
R

∣∣−i√τχ′(y) + i
√
τyV ′(0)χ(y) +O(1)χ(y)

∣∣2 dy
=

1√
τ

∫
R
τ |χ′(y)− yV ′(0)χ(y)|2 dy +O

(
1√
τ

)
.

Hence, assuming χ is such that c0 :=
∫
R |χ

′(y)− yV ′(0)χ(y)|2 dy > 0 we have ‖Pvτ‖2L2(−1,1) ∼
1√
τ
c0τ .

In any case, there are constants C, τ0 > 0 such that we have ‖Pvτ‖2L2(−1,1) ≤ C
1√
τ
τ for τ ≥ τ0.

Recalling the norm of vτ , we have obtained that ‖Pvτ‖2L2(−1,1) ∼ c1τ ‖vτ‖2L2(−1,1) with c1 =

c0 ‖χ‖−2
L2(−1,1) in the first case and ‖Pvτ‖2L2(−1,1) ≤ Cτ ‖vτ‖

2
L2(−1,1) in any case. This proves that as

soon as V (0) = 0, one cannot hope to obtain a greater power of τ than that obtained in Question 3.

5. (a) Since W = 0, we have

Pwτ (x) = (−iχ′(x)− iτF ′(x)χ(x) + iτV (x)χ(x)) eτF (x) = −iχ′(x)eτF (x),

where we have used F ′ = V . Writing again the Taylor expansion of V at zero and using
V (0) = 0, we obtain F (x) =

∫ x
0
V (s)ds =

∫ x
0
sV ′(0) + O(s2)ds = V ′(0)x

2

2 + O(x3), uniformly
on [−1, 1]. We now set d0 := −V ′(0) > 0 by assumption. There exists r ∈ (0, 1) such that
F (x) ≤ −d0x

2

4 for all x ∈ (−r, r). We write

‖Pwτ‖2L2(−1,1) =
∥∥χ′eτF∥∥2

L2(−1,1)
=

∫ 1

−1

|χ′(x)|2e2τF (x)dx.
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Assuming that supp(χ) ⊂ (−r, r), we thus deduce

‖Pwτ‖2L2(−1,1) ≤
∫ 1

−1

|χ′(x)|2e−τ
d0x

2

2 dx.

Now, if we choose further that χ = 1 on (−r/2, r/2), we have supp(χ′) ⊂ (−r, r) \ (−r/2, r/2)

and hence x2d0

2 ≥ d0r
2

4 on supp(χ′). This finally implies ‖Pwτ‖2L2(−1,1) ≤ ‖χ′‖L2(−1,1) e
−τ d0r

2

4 ,
with d0 = −V ′(0) > 0, which is the sought result.

(b) Since F (x) =
∫ x

0
V (s)ds =

∫ x
0
sV ′(0) + O(s2)ds = −d0

x2

2 + O(x3), we can also assume (up to
reducing r) that F (x) ≥ −d0

x2

4 on (−r, r). We then have

‖wτ‖2L2(−1,1) ≥
∫ 1

−1

|χ(x)|2e−τ
d0x

2

2 dx ≥
∫ r/2

−r/2
e−τ

d0x
2

2 dx =

∫
R
e−τ

d0x
2

2 dx−
∫
|x|≥r/2

e−τ
d0x

2

2 dx.

Now, recalling that
∫
R e
−τ d0x

2

2 dx =
√

2π
d0τ

and

∫ r/2

−r/2
e−τ

d0x
2

2 dx = 2

∫ ∞
r/2

e−τ
d0x

2

2 dx ≤ 2

∫ ∞
r/2

e−τ
d0(r/2)2

4 e−τ
d0x

2

4 dx

≤ e−τ
d0r

2

16

∫
R
e−τ

d0x
2

2 dx =

√
2π

d0τ
e−τ

d0r
2

16 .

Combining the above three identities, we have obtained ‖wτ‖2L2(−1,1) ≥
1
2

√
2π
d0τ

for τ sufficiently
large.

(c) In the present setting, we have constructed for all r > 0 a τ−depending family of functions
wτ ∈ C∞c (−r, r) with the following properties: there are C, δ, τ0 > 0 (depending on r) such that
for all τ ≥ τ0

‖Pwτ‖2L2(−1,1) ≤ Ce
−δτ , ‖wτ‖2L2(−1,1) ≥

C√
τ
.

In particular, this prevents the possibility of any subelliptic estimate to be true: applied to wτ ,
it would yield C√

τ
τα ≤ Ce−δτ for all τ sufficiently large.

6. We proceed as in Question 4, except that the appropriate scale of concentration is to be determined.
On the one hand, we have ‖vτ‖2L2(−1,1) = 1

τγ ‖χ‖
2
L2(−1,1). On the other hand, we have

(Pvτ )(x) = (Dx + iτV (x))χ(τγx) = −iτγχ′(τγx) + iτV (x)χ(τγx).

This implies

‖Pvτ‖2L2(−1,1) =

∫
R
|τγχ′(τγx)− τV (x)χ(τγx)|2 dx =

1

τγ

∫
R

∣∣∣τγχ′(y)− τV (
y

τγ
)χ(y)

∣∣∣2 dy.
Recalling the assumption V (0) = V ′(0) = 0, we write V (s) = O(s2) uniformly on supp(χ). This
implies the rough estimate

‖Pvτ‖2L2(−1,1) ≤
1

τγ

∫
R

2τ2γ |χ′(y)|2 + 2

(
τC
∣∣∣ y
τγ

∣∣∣2 χ(y)

)2

dy

≤ C

τγ
(
τ2γ + τ2−4γ

)
≤ C

(
τ2γ + τ2−4γ

)
‖vτ‖2L2(−1,1) .

The growth of τ2γ + τ2−4γ is minimal when 2γ = 2− 4γ, that is γ = 1/3.

Hence, in this case, one cannot hope to have a better estimate than ‖Pu‖2L2(−1,1) ≥ Cτ2/3 ‖u‖2L2(−1,1)

if V (0) = V ′(0) = 0.
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7. Here, we interpret the results of the above questions in a more intrinsic way. The operator P is in
Diff1

τ (−1, 1), with nontrivial real and imaginary parts (in particular, its principal symbol p(x, ξ) =
ξ + iτV (x) has nontrivial real and imaginary parts). We have proved:

• If Im(p)(0, 0) 6= 0 (but Re(p)(0, 0) = 0), then ‖Pu‖L2(−1,1) ≥ C ‖u‖H1
τ
≥ τ ‖u‖L2 . This is an

elliptic estimate: an operator of order one dominates an H1
τ norm.

• If Re(p)(0, 0) = Im(p)(0, 0) = 0 but {Re(p), Im(p)}(0, 0) > 0, then ‖Pu‖L2(−1,1) ≥ C
√
τ ‖u‖L2

(this is Question 3). This is a subelliptic estimate with loss of half a derivative: an operator of
order one dominates essentially the H1/2

τ norm. Moreover, this estimate is optimal, as shown
by Question 4.

• If Re(p)(0, 0) = Im(p)(0, 0) = 0 and {Re(p), Im(p)}(0, 0) < 0, then there is no hope of obtaining
any subelliptic estimate (this is Question 5).

• In the (very degenerate) case: Re(p)(0, 0) = Im(p)(0, 0) = 0 and {Re(p), Im(p)}(0, 0) = 0, the
best subelliptic estimate one can expect is ‖Pu‖L2(−1,1) ≥ Cτ1/3 ‖u‖L2 (this is Question 6).
Such an estimate would be called a subelliptic estimate with loss of 2/3 derivatives: an operator
of order one dominates essentially the H1/3

τ norm.
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Chapter 2

Classical estimates and applications

This chapter is devoted to classical unique continuation results under a pseudoconvexity condition. These
results are stated here in the particular situation of second order operators with real principal symbol (in
which case the statement has a simpler geometric interpretation).

Quantitative estimates are derived in the case of elliptic operators, and applications are given to
eigenfunctions of Laplace-Beltrami operators, and observability properties for the heat equation.

As already mentioned, these results rely on a Carleman estimate, which we now state.

2.1 The Carleman estimate
Here, we recall that, P ∈ Diff2(Ω) (with principal symbol p2(x, ξ)) and Φ ∈ C∞(Ω;R) being given, the
conjugated operator is PΦ = eτΦPe−τΦ ∈ Diff2

τ (Ω) and its principal symbol is pΦ(x, ξ, τ) = p2(x, ξ+idΦ(x))
(computed in Lemma 1.3.10 and Example 1.3.12). We write pΦ = Re(pΦ) + i Im(pΦ).

2.1.1 Carleman estimate under subellipticity condition
As we have seen in the Introduction in Section 1.2.5, our goal is to obtain estimates of the type of (1.27).
In this section, we prove a Carleman estimate (Theorem 2.1.1) under a symbolic condition usually called
“Hörmander subellipticity condition” (namely (2.3)). Yet, this assumptions might seem not so natural at
first sight. The next sections link this condition to the geometry of the operator.

Theorem 2.1.1 (Local Carleman estimate). Let Ω be an open subset of Rn and x0 ∈ Ω. Let P ∈ Diff2(Ω)
be a (classical) differential operator with real-valued principal symbol p2 and Φ ∈ C∞(Ω;R).

Then, the following statements are equivalent:

1. There exist C, r, τ0 > 0 so that we have the following estimate

τ3
∥∥eτΦu

∥∥2

L2 + τ
∥∥eτΦ∇u

∥∥2

L2 ≤ C
∥∥eτΦPu

∥∥2

L2 , for all u ∈ C∞c (B(x0, r)), τ ≥ τ0; (2.1)

2. There exist C, r, τ0 > 0 so that we have the following estimate

τ ‖v‖2H1
τ
≤ C ‖PΦv‖2L2 , for all v ∈ C∞c (B(x0, r)), τ ≥ τ0; (2.2)

3. There exist C1, C2 > 0 such that for all (ξ, τ) ∈ Rn × R∗+,

C1

|ξ|2 + τ2

[
(Re pΦ)2 + (Im pΦ)2

]
+

1

τ
{Re pΦ, Im pΦ} ≥ C2

(
|ξ|2 + τ2

)
, (2.3)

where the symbols are taken at the point (x0, ξ, τ).

Notice that Im pΦ

τ = 2p̃2(x, ξ, dΦ(x)) (see Example 1.3.12) is smooth, so this is not a problem to divide
by τ in (2.3), even when τ → 0.
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Before proceeding to the proof of this result, several comments are in order. First, the statement (2.1)
is that useful for applications (to unique continuation in particular). The statement (2.2) is only a re-
formulation in terms of the conjugated operator, which belongs to Diff2

τ , and is thus analyzable with the
tools developed in Section 1.3. The statement (2.3), as opposed to the previous ones, is concerned with a
“symbolic estimate”, concerning only the principal symbol of the conjugated operator. The interest of this
result is that it reduces the problem of proving a Carleman estimate to a checkable property on the princi-
pal symbol of the conjugated operator. The question of rephrasing the condition (2.3) in geometric terms
is addressed in Sections 2.1.2 and 2.2 below. The useful information in this theorem is (2.3) =⇒ (2.1).
However, that the converse is true indicates the limit of this classical Carleman approach. This point is
slightly more technical and we omit the proof and refer the reader to [Hör94, Section 28.2].

Exercise 3 in Section 1.4 presents the key computation in the proof of Carleman estimates.

Proof. The equivalence between (2.1) and (2.2) comes from the change of unknown v = eτΦu. This yields
PΦv = eτΦPe−τΦv = eτΦPu. Moreover, we have ∇u = ∇(e−τΦv) = e−τΦ(∇v − τv∇Φ) so that

τ2
∥∥eτΦu

∥∥2

L2 +
∥∥eτΦ∇u

∥∥2

L2 ≤ τ2 ‖v‖2L2 + 2 ‖∇v‖2L2 + 2 ‖τv∇Φ‖2L2 ≤ C ‖v‖2H1
τ
,

and thus (2.2) implies (2.1). Conversely, we have ∇v = ∇(eτΦu) = eτΦ(∇u+ τu∇Φ) so that

‖v‖2H1
τ

= ‖∇v‖2L2 + τ2 ‖v‖2L2 ≤ 2
∥∥eτΦ∇u

∥∥2

L2 + 2
∥∥eτΦτu∇Φ

∥∥2

L2 + τ2
∥∥eτΦu

∥∥2

L2

≤ C
(
τ2
∥∥eτΦu

∥∥2

L2 +
∥∥eτΦ∇u

∥∥2

L2

)
,

and (2.1) implies (2.2).

We now want to prove that (2.3) implies (2.2). Before going further, let us notice that Lemma 1.3.10
only depends on the leading order of the operator P . More precisely, if P̃ ∈ Diff2(Ω) has the same principal
symbol as P , then P − P̃ ∈ Diff1(Ω) and PΦ − P̃Φ ∈ Diff1

τ (Ω), i.e.

PΦ = P̃Φ +R, with R ∈ Diff1
τ .

Henceforth, assuming the Carleman inequality (2.2) for P̃Φ,

τ ‖v‖2H1
τ
≤ C

∥∥∥P̃Φv
∥∥∥2

L2
(2.4)

yields
τ ‖v‖2H1

τ
≤ C ‖(PΦ −R)v‖2L2 ≤ C ‖PΦv‖2L2 + C ‖Rv‖2L2 ≤ C ‖PΦv‖2L2 +D ‖v‖2H1

τ

with Proposition 1.3.5. Then, for τ large enough, we have τ − D ≥ τ/2, and the last term can then
be absorbed in the left hand-side, yielding the sought Carleman inequality (2.2) for PΦ, with different
constants C and τ0.

Since the operator P has real principal symbol p2, we shall choose P̃ = P+P∗

2 , which is selfadjoint
and has the same principal symbol p2. Note that if P =

∑n
i,j=1 a

ij(x)DiDj with aij = aji real-valued
(which is, modulo Diff1(Ω), the general expression for P ∈ Diff2(Ω) with real-valued principal symbol, see
Example 1.38), then we have P̃ =

∑n
i,j=1Dia

ij(x)Dj modulo a (selfadjoint) first order operator.
We may thus focus on P̃Φ = eτΦP̃ e−τΦ and prove (2.4). To this aim, we decompose the operator P̃Φ

as

P̃Φ = QR + iQI , (2.5)

with

QR =
P̃Φ + P̃ ∗Φ

2
; QI =

P̃Φ − P̃ ∗Φ
2i

.

Note that both QR and QI are formally selfadjoint (Q∗R = QR and Q∗I = QI), and, according to Proposi-
tion 1.3.9, we have QR, QI ∈ Diff2

τ with principal symbols (see Example 1.3.12)

qR(x, ξ, τ) =
pΦ + pΦ

2
(x, ξ, τ) = Re pΦ(x, ξ, τ) = p2(x, ξ)− τ2p2(x, dΦ(x)),

qI(x, ξ, τ) =
pΦ − pΦ

2i
(x, ξ, τ) = Im pΦ(x, ξ, τ) = 2τ p̃2(x, ξ, dΦ(x)).

42



Moreover (this is a key point), the operator P̃Φ is a second order polynomial in (D, τ), such that P̃Φ = P̃
when τ = 0. If P̃ =

∑n
i,j=1Dia

ij(x)Dj , then P̃Φ =
∑n
i,j=1(Di + iτ∂iΦ)aij(x)(Dj + iτ∂jΦ). This implies

that P̃Φ = P̃ + τM for some M ∈ Diff1
τ (Ω), and, since P̃ is chosen to be selfadjoint, this implies that

QI =
P̃Φ − P̃ ∗Φ

2i
=
τM − τM∗

2i
= τQ̃I , with Q̃I =

M −M∗

2i
∈ Diff1

τ (Ω), (2.6)

i.e. τ may be factorized in the skewadjoint part of the operator.
Using (2.5), the central computation is now as follows, for v ∈ C∞c (Ω),∥∥∥P̃Φv

∥∥∥2

L2
=
(
P̃Φv, P̃Φv

)
L2

= ((QR + iQI)v, (QR + iQI)v)

= (QRv,QRv) + (iQIv, iQIv) + (QRv, iQIv) + (iQIv,QRv)

= ‖QRv‖2L2 + ‖QIv‖2L2 − i (QI ◦QRv, v) + i (QR ◦QIv, v)

= ‖QRv‖2L2 + ‖QIv‖2L2 + (i[QR, QI ]v, v) . (2.7)

Now, we have 2 kinds of terms

• the one with ‖QRv‖2L2 (and resp. ‖QIv‖2L2) that corresponds to
(
Q2
Rv, v

)
where Q2

R is of order 4
with principal symbol (Re pΦ)2 (resp. (Im pΦ)2);

• the one with i[QR, QI ] which is of order 2 + 2 − 1 = 3 and principal symbol {Re pΦ, Im pΦ} by
Proposition 1.3.8.

The first two operators have stronger order (4) but they can cancel and are therefore not sufficient to
obtain the “coercivity” estimate. The idea is thus to use the commutator where both qR and qI cancel.
However, to compare these terms, we need to bring them to the same order and “sacrifice” this main order
4. More precisely, let C1 > 0 be as in Assumption (2.3) (that this is the right constant will appear in (2.9)
below). For τ ≥ C1, we have

1

τ1/2
≥ C

1/2
1

τ
≥ C

1/2
1

(|ξ|2 + τ2)1/2
for all ξ ∈ Rn.

This implies (using again the Plancherel Theorem)

1

τ
‖QRv‖2L2 =

∥∥∥∥QRvτ1/2

∥∥∥∥2

L2

≥
∥∥∥C1/2

1 (−∆ + τ2)−1/2QRv
∥∥∥2

L2

≥ C1

(
(−∆ + τ2)−1/2QRv, (−∆ + τ2)−1/2QRv

)
≥ C1

(
QR(−∆ + τ2)−1QRv, v

)
. (2.8)

The same estimate applies to QI . Combining (2.7) with (2.8), we have now proved

1

τ

∥∥∥P̃Φv
∥∥∥2

L2
≥ (Lv, v)L2 , (2.9)

with
L = C1

(
QR(−∆ + τ2)−1QR +QI(−∆ + τ2)−1QI

)
+ i

[
QR,

QI
τ

]
.

But we have proved in (2.6) that QI = τQ̃I with Q̃I ∈ Diff1
τ (Ω). This implies that

[
QR,

QI
τ

]
∈ Diff2

τ as
well. The operator L is thus precisely of the form of that in Proposition 1.3.14, is moreover selfadjoint,
and has principal symbol (in the sense of Proposition 1.3.14)

C1

|ξ|2 + τ2

(
(Re pΦ)2 + (Im pΦ)2

)
+

{
Re pΦ,

Im pΦ

τ

}
,
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which satisfies (2.3). Hence, the Gårding inequality of Proposition 1.3.14 applies and yields the existence
of C, τ0, r > 0 such that

(Lv, v)L2 ≥ C ‖v‖2H1
τ
, for all v ∈ C∞c (B(x0, r)), τ ≥ τ0,

which, in view of (2.9), yields (2.4) and concludes the proof of the Carleman estimate (2.2).

Note that in (2.8), since QR is only defined on Ω, and since (−∆ + τ2)−1QRv /∈ C∞c (Ω), the expression
QR(−∆ + τ2)−1QRv is not well-defined. However, its pairing with the function v ∈ C∞c (B(x0, r)) is well
defined (e.g. as

(
χQRχ̃(−∆ + τ2)−1QRv, v

)
with χ ∈ C∞(Ω) such that χ = 1 on a neighborhood of

B(x0, r), and χ̃ ∈ C∞(Ω) with χ̃ = 1 on a neighborhood of supp(χ)).

Remark 2.1.2 (Lower order terms). As seen in the proof, an important feature of the Carleman esti-
mates (2.1) is its insensitivity with respect to lower order terms. More precisely, if (2.1) is satisfied for
an operator P , then it also holds for P ′ := P +

∑n
k=1 bk(x)Dk + c(x) as soon as bk, c ∈ L∞(Ω). Indeed,

applying (2.1) for P yields

τ3
∥∥eτΦu

∥∥2

L2 + τ
∥∥eτΦ∇u

∥∥2

L2 ≤ C
∥∥∥eτΦ

(
P ′ −

n∑
k=1

bk(x)Dk + c(x)
)
u
∥∥∥2

L2

≤ C
∥∥eτΦP ′

∥∥2

L2 + C
∥∥eτΦ∇u

∥∥2

L2 + C
∥∥eτΦu

∥∥2

L2 ,

and the last two terms can be absorbed in the left handside for τ large enough. Note in particular that
no regularity is required on the lower order terms when proceeding that way.

Remark 2.1.3. The quantitative subelliptic condition (2.3) can actually be replaced by the qualitative
assumption (writing K = {(ξ, τ) ∈ Rn × R+, |ξ|2 + τ2 = 1})

pΦ(x0, ξ, τ) = 0, =⇒
{

Re pΦ,
Im pΦ

τ

}
(x0, ξ, τ) > 0 for all (ξ, τ) ∈ K.

This is proved using Lemma 2.1.8 below, as in the proof of Proposition 2.1.7. This will however not be
used here.

Remark 2.1.4 (Estimate with loss of half a derivative). Estimates like the Carleman estimate (2.2) are
often called subelliptic estimates. Indeed, if the operator PΦ were elliptic in the (ξ, τ) variables, we would
have an estimate from below with the norm H2

τ instead of H1
τ . But here the principal symbol of PΦ,

namely p2(x, ξ + iτdΦ) may vanish (with (ξ, τ) 6= 0), even if p2 is elliptic.
Take for instance the Laplace operator described in Example 1.3.11. The principal symbol of pΦ is

|ξ|2 − τ2|∇Φ|2 + 2iτξ · ∇Φ. It cancels if we take ξ ⊥ ∇Φ and τ2 = |ξ|2/|∇Φ|2, which is always possible if
n ≥ 2. This actually happens on a conic set.

Note that it can seem surprising since for fixed τ , the operator PΦ is elliptic in the ξ variable. We
could expect an inequality of the form

‖u‖H2
τ
≤ Cτ ‖PΦu‖L2 .

It is indeed possible if P is elliptic, but the constant Cτ will then blow-up as τ1/2. This expresses a loss of
“half a derivative” w.r.t. elliptic estimates. It has the same homogeneity as the H1

τ estimate in the general
case.

2.1.2 Carleman estimate for pseudoconvex functions
We now reduce the quantitative symbolic Assumption (2.3) of the Carleman estimate to a qualitative
convexity condition on the weight function Φ (with respect to the symbol p2).

Definition 2.1.5 (Pseudoconvexity for functions). Let Ω 3 x0 be an open set, P ∈ Diff2(Ω) be a (classical)
differential operator with real-valued principal symbol p2 and Φ ∈ C∞(Ω) real-valued.
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We say that the function Φ is pseudoconvex with respect to P at x0 if it satisfies

{p2, {p2,Φ}} (x0, ξ) > 0, if p2(x0, ξ) = 0 and ξ 6= 0; (2.10)
1

iτ
{pΦ, pΦ}(x0, ξ, τ) > 0, if pΦ(x0, ξ, τ) = 0 and τ > 0, (2.11)

where pΦ(x, ξ, τ) = p2(x, ξ + iτdΦ(x)).

Note that in some sense, we could say that for real operators, the first line is the limit of the second
line as τ tends to 0, as shows Lemma 2.1.6:

Lemma 2.1.6. Let p be a real-valued smooth function on Ω×Rn. Then, we have lim
τ→0

1
iτ {pΦ, pΦ}(x, ξ, τ) =

2 {p {p,Φ}} (x, ξ) for all (x, ξ) ∈ Ω× Rn.

We now state the equivalence between Definition 2.1.5 and the Hörmander subellipticity condition (2.3)
(itself equivalent to the Carleman estimate (2.1)).

Proposition 2.1.7. Let Ω 3 x0 be an open set, P ∈ Diff2(Ω) with real-valued principal symbol p2 and
Φ ∈ C∞ real-valued. If Φ is pseudoconvex with respect to P at x0, then the subellipticity condition (2.3)
is satisfied at x0.

And hence, if Φ is a pseudoconvex function in the sense of Definition 2.1.5, the Carleman estimate of
Theorem 2.1.1 holds with weight Φ.

The proof uses the following (elementary but very useful) lemma (in the simpler case h = 0; the general
case will be used later on).

Lemma 2.1.8. Let K be a compact topological space and f, g, h three continuous real-valued functions on
K. Assume that f ≥ 0 on K, and g > 0 on {f = 0}. Then, there exists A0, C > 0 such that for all
A ≥ A0, we have g +Af − 1

Ah ≥ C on K.

We prove the proposition from the two lemmata and then prove the lemmata.

Proof of Proposition 2.1.7. Note first that since {f, f} = 0 and {f, g} = −{g, f} for any f and g, we have

1

iτ
{pΦ, pΦ} =

1

iτ
{Re pΦ − i Im pΦ,Re pΦ + i Im pΦ}

=
1

τ
{Re pΦ, Im pΦ} −

1

τ
{Im pΦ,Re pΦ}

=
2

τ
{Re pΦ, Im pΦ}.

Moreover, we recall that Im pΦ

τ = 2p̃2(x0, ξ, dΦ(x0)) is smooth (note that this could also be seen as a
consequence of the fact that p is real and pΦ = p on the set {τ = 0}, so we can factorize Im pΦ by Taylor
expansion).

We notice that all terms in (2.3) are homogeneous in (ξ, τ) of order 2 and continuous thanks to the
previous remark. Therefore, it is enough to prove (2.3) on the set K =

{
(ξ, τ), |ξ|2 + τ2 = 1; τ ≥ 0

}
.

On this compact set, the result is a consequence of Lemma 2.1.8 with f = (Re pΦ)2 + (Im pΦ)2, g =
2{Re pΦ,

Im pΦ

τ } and h = 0 (the function h will be useful for another application in the next chapter).
Lemma 2.1.6 then proves that the first assumption in Definition 2.1.5 is the limit of the second one on

the set {τ = 0}. Hence, we have g > 0 on {f = 0} on the whole K, up to the set {τ = 0}∩{|ξ|2 + τ2 = 1}.
Lemma 2.1.8 then concludes the proof of the subellipticity condition (2.3).

Proof of Lemma 2.1.6. We first notice that for τ = 0, {pΦ, pΦ} = {p, p} so since p is real, {pΦ, pΦ} = 0 for
τ = 0. The definition of the derivative in τ = 0 then yields

lim
τ→0

1

τ
{pΦ, pΦ} =

∂

∂τ
{pΦ, pΦ}

∣∣∣∣
τ=0

. (2.12)

Also, we have ∂τ ({pΦ, pΦ}) = {∂τpΦ, pΦ}+ {pΦ, ∂τpΦ}.
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But since p is real, pΦ = p(x, ξ − iτdΦ(x)), so that

∂τpΦ(x, ξ, τ) = idΦ · ∂ξp(x, ξ + iτdΦ) = i{pΦ,Φ}(x, ξ, τ)

∂τpΦ = −idΦ · ∂ξp(x, ξ − iτdΦ) = −i{pΦ,Φ}(x, ξ, τ).

So, we get ∂τ ({pΦ, pΦ}) = −i{{pΦ,Φ}, pΦ}+ i{pΦ, {pΦ,Φ}}. When specified for τ = 0, we obtain

∂

∂τ
{pΦ, pΦ}

∣∣∣∣
τ=0

= −i{{p,Φ}, p}+ i{p, {p,Φ}} = 2i{p, {p,Φ}}.

Together with (2.12), this concludes the proof of the lemma.

Proof of Lemma 2.1.8. The set N = {f = 0} ∩K is compact. Since g is continuous, its minimum on the
set N is reached. So, we have g ≥ minN g = C1 > 0 on N . Since g is continuous and N compact, there
exists an open neighborhood V of N so that g ≥ C1/2 on V . Now, K \ V is closed in K and therefore
compact. So, f reaches its minimum on K \ V . But since (K \ V ) ∩N = ∅, we have f 6= 0 on K \ V and
hence f > 0 on that set, that is C2 = minK\V f > 0. Define now C3 = minK\V g and C4 = maxK |h|.

We are in the following situation, for some A still to be chosen:

• on V , we have g +Af − 1
Ah ≥

C1

2 −
1
AC4.

• on K \ V , we have g +Af − 1
Ah ≥ C3 +AC2 − 1

AC4.

So, we need to choose A so that it leads to positive lower bound. If we want the final estimate with
C = C1/4, for instance, we need

A ≥ 4C4

C1
, and A2C2 +A

(
C3 −

C1

4

)
− C4 > 0.

Since C2 > 0, the last case is fulfilled if A is large enough since the polynomial of order 2 converges to +∞
as A goes to ∞.

A very important drawback to Definition 2.1.5 is that, it is not only dependent on the level set of the
functions, but also on the “convexity with respect to the level sets”. This is not a geometric assumption (in
general, g′′(x0) is a geometric quantity only if g′(x0) = 0). We now need to link this definition to geometric
quantities, so that to be able to formulate a result with, at least, a geometric assumption (that is invariant
by diffeomorphisms). Before that, let us stress an important stability feature of the pseudoconvexity
assumption of Definition 2.1.5.

2.1.3 Stability of the pseudoconvexity assumption
We prove that the pseudoconvexity condition of Definition 2.1.5 is stable by small C2 perturbations of
the weight function Φ. This will be very useful for perturbing the surface across which to prove unique
continuation.

Proposition 2.1.9 (Stability and Geometric convexification). Let Ω 3 x0 such that Ω is compact. Assume
P ∈ Diff2(Ω) has real-valued principal symbol, and Φ ∈ C∞ is pseudoconvex with respect to P at x0 (in
the sense of Definition 2.1.5). Then there exists ε0 > 0 so that any Φε ∈ C2(Ω) with ‖Φ− Φε‖C2(Ω) < ε0

is pseudoconvex with respect to P at x0.

Note that modifying Φ allows to slightly change its level sets. For instance, taking Φε(x) = Φ(x) −
ε|x − x0|2 (which shall be very useful for applications to unique continuation), the level set {Φε = 0} is
slightly bended (except at x0) into the set {Φ > 0} (where u will be assumed to be zero). This slight
change will be crucial for the proof of the unique continuation theorem. ♣ faire un dessin
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Proof. First, we notice that we can prove as in the proof of Proposition 2.1.7 (still using Lemma 2.1.8
combined with Lemma 2.1.6 for the limit when τ = 0) that Definition 2.1.5 implies (and is actually
equivalent to) the existence of an inequality of the form

cΦ(ξ, τ) + C1
|pΦ(x0, ξ, τ)|2

|ξ|2 + τ2
≥ C2(|ξ|2 + τ2),

uniformly for (ξ, τ) with |ξ|2 + τ2 = 1, τ ≥ 0 (see Lemma 2.1.6), where

cΦ(ξ, τ) =
1

iτ
{pΦ, pΦ}(x0, ξ, τ), for τ > 0 and cΦ(ξ, 0) = 2{p2, {p2,Φ}}(x0, ξ).

We then remark that all quantities in the above estimate only involve derivatives of Φ of order at most
2 (as a consequence of Lemma 2.1.6) at the point x0. It is therefore stable by the addition of a function
small for the C2 norm around x0.

2.2 Strongly pseudoconvex surfaces
Until this point, we have proved a Carleman estimate with weight Φ provided Φ satisfies a (weird?)
pseudoconvexity condition (see Definition 2.1.5). The main purpose of this section is to provide a geometric
characterization of surfaces S for which we can find a function Φ having S as a level set and being
appropriate for the Carleman estimate (that is, satisfies Definition 2.1.5).

Definition 2.2.1 (Usual pseudoconvexity for surfaces). Let Ω 3 x0 be an open set, P ∈ Diff2(Ω) with
real-valued principal symbol p2 and Ψ ∈ C∞(Ω) real-valued. We say that the oriented hypersurface
S = {Ψ = Ψ(x0)} 3 x0 is strongly pseudoconvex with respect to P at x0 if

{p2, {p2,Ψ}} (x0, ξ) > 0, if p2(x0, ξ) = {p2,Ψ}(x0, ξ) = 0 and ξ 6= 0; (2.13)
1

iτ
{pΨ, pΨ}(x0, ξ, τ) > 0, if pΨ(x0, ξ, τ) = {pΨ,Ψ}(x0, ξ, τ) = 0 and τ > 0, (2.14)

where pΨ(x, ξ, τ) = p2(x, ξ + iτdΨ(x)).

Note that the definition seems to depend on the defining function Ψ for the surface S, and not only
on the oriented hypersurface S itself. Lemma 2.2.2 shows this is not the case, and hence justifies the
definition.

Lemma 2.2.2. Assume S = {Ψ1 = Ψ1(x0)} = {Ψ2 = Ψ2(x0)} with dΨj(x0) 6= 0, j = 1, 2 and dΨ2(x0) =
λdΨ1(x0) for some λ > 0 (same orientation). Then Ψ1 satisfies (2.13) if and only if Ψ2 satisfies (2.13),
and Ψ1 satisfies (2.14) if and only if Ψ2 satisfies (2.14).

Before proving Lemma 2.2.2, we need the following two lemmata.

Lemma 2.2.3. Let Ω ⊂ Rn, p ∈ C∞(Ω × Rn) real-valued, and Ψ ∈ C∞(Ω;R). For all (x, ξ) ∈ Ω × Rn
and τ > 0, we have

1

iτ
{pΨ, pΨ}(x, ξ, τ) =

2

τ
Im [∂ξp(x, ξ − iτdΨ(x)) · ∂xp(x, ξ + iτdΨ(x))]

+ 2 Hess(Ψ)(x) [∂ξp(x, ξ − iτdΨ(x)); ∂ξp(x, ξ + iτdΨ(x))] ,

Lemma 2.2.4. Condition (2.14) (for all τ > 0) is equivalent to Condition (2.14) for τ = 1, that is, for
all ξ ∈ Rn,

1

i
{p2(x, ξ − idΨ), p2(x, ξ + idΨ)}(x = x0, ξ) > 0,

if p2(x0, ξ + idΨ(x0)) = {p2,Ψ}(x0, ξ + idΨ(x0)) = 0. (2.15)

This is more intrinsic reformulation of the condition which removes the unnecessary dependence with
respect to the parameter τ . Note however that the τ depending version of the assumption is useful in
applications to Carleman estimates.
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Proof of Lemma 2.2.4. We write p instead of p2 for simplicity. We get rid of the parameter τ > 0 by
homogeneity. Namely, we have, for τ > 0,

pΨ(x0, ξ, τ) = p(x0, ξ + iτdΨ(x0)) = τ2p(x0, ξ/τ + idΨ(x0))

= τ2pΨ(x0, ξ/τ, 1),

{pΨ,Ψ}(x0, ξ, τ) = ∂ξp(x0, ξ + iτdΨ(x0)) · ∂xΨ(x0) = τ∂ξp(x0, ξ/τ + idΨ(x0)) · ∂xΨ(x0)

= τ{pΨ,Ψ}(x0, ξ/τ, 1),

1

iτ
{pΨ, pΨ}(x0, ξ, τ) =

2

τ
τ3 Im [∂ξp(x, ξ/τ − idΨ(x)) · ∂xp(x, ξ/τ + idΨ(x))]

+ 2τ2 Hess(Ψ)(x) [∂ξp(x, ξ/τ − idΨ(x)); ∂ξp(x, ξ/τ + idΨ(x))]

=
τ2

i
{pΨ, pΨ}(x0, ξ/τ, 1),

after having used Lemma 2.2.3. As a consequence, Condition (2.14) for all ξ ∈ Rn and all τ > 0 is
equivalent to Condition (2.15) for all ξ ∈ Rn.

Proof of Lemma 2.2.3. This is the following computation

1

iτ
{pΨ, pΨ}(x0, ξ, τ) =

1

iτ
∂ξp(x0, ξ − iτdΨ(x0)) · ∂xp(x0, ξ + iτdΨ(x0))

+ Hess(Ψ)(x0) [∂ξp(x0, ξ − iτdΨ(x0)); ∂ξp(x0, ξ + iτdΨ(x0))]

− 1

iτ
∂xp(x0, ξ − iτdΨ(x0)) · ∂ξp(x0, ξ + iτdΨ(x0))

+ Hess(Ψ)(x0) [∂ξp(x0, ξ − iτdΨ(x0)); ∂ξp(x0, ξ + iτdΨ(x0))]

=
2

τ
Im [∂ξp(x0, ξ − iτdΨ(x0)) · ∂xp(x0, ξ + iτdΨ(x0))]

+ 2 Hess(Ψ)(x0) [∂ξp(x0, ξ − iτdΨ(x0)); ∂ξp(x0, ξ + iτdΨ(x0))] ,

where both equalities use the fact that p is a real-valued symbol (and Ψ a real-valued function).

Proof of Lemma 2.2.2. Let us first proof that under these assumptions, we may write Ψ2(x) = µ(x)Ψ1(x)
for x in a neighborhood of x0, with µ(x0) > 0. The statement of the lemma will be proved in a second
place.

First assume to simplify notations that x0 = 0. Since dΨ1(0) 6= 0, there is k ∈ {1, · · · , n} such that
∂xkΨ1(0) 6= 0. Assume e.g. k = n. The implicit function theorem implies that we may write locally
S = {(x′, xn) ∈ Rn−1 × R, xn = f1(x′)}, with f1(0) = 0 (since 0 ∈ S). We perform the following
local change of variables: χ(x′, xn) = (x′, xn − f1(x′)), which is a local diffeomorphism near 0, such that
χ(S) = {(x′, 0), x′ ∈ Rn−1} locally. Denoting Ψ̃j = Ψj ◦ χ−1, j = 1, 2, and remarking that Ψ̃j(y) = 0 iff
χ−1(y) ∈ S, we have locally

{xn = 0} = χ(S) = {Ψ̃1 = 0} = {Ψ̃2 = 0}.

This, together with the assumption of the lemma, implies in particular that dΨ̃j(0) = λjdxn with λj 6=
0, λ2/λ1 = λ > 0. The Taylor formula together with the fact that Ψ̃j(x

′, 0) = 0 writes Ψ̃j(x
′, xn) =

xnGj(x
′, xn), with Gj(x′, xn) =

∫ 1

0
∂xnΨ̃j(x

′, txn)dt. In particular, we have Gj(0, 0) = ∂xnΨ̃j(0, 0) = λj 6=
0. By continuity, we have Gj(x′, xn) 6= 0 in a whole neighborhood of zero, and, in this neighborhood,
we have Ψ̃2 = G2

G1
Ψ̃1, with G2

G1
(0) = λ2

λ1
= λ > 0. Coming back to the original variables yields Ψ2(x) =

µ(x)Ψ1(x), µ(x) = G2

G1
◦ χ, for x in a neighborhood of 0, with µ(0) > 0.

We are now in position to prove the main statement of the lemma. We write p instead of p2 for short.
With Ψ2(x) = µ(x)Ψ1(x), we have

{p,Ψ2}(x0, ξ, τ) = µ(x0){p,Ψ1}(x0, ξ, τ) + Ψ1(x0){p, µ}(x0, ξ, τ) = µ(x0){p,Ψ1}(x0, ξ, τ),

since Ψ1(x0) = 0. Also, using again Ψ1(x0) = 0, we have

{p, {p,Ψ2}}(x0, ξ, τ) = µ(x0){p, {p,Ψ1}}(x0, ξ, τ) + 2{p,Ψ1}(x0, ξ, τ){p, µ}(x0, ξ, τ).
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From these two lines and the fact that µ(x0) > 0, we deduce that Ψ1 satisfies (2.13) if and only if Ψ2

satisfies (2.13).
We now check for Condition (2.14) for τ = 1, that is Condition (2.15) (which is sufficient by Lemma 2.2.4).

With Ψ2(x) = µ(x)Ψ1(x) and Ψ1(x0) = 0, we have dΨ2(x0) = µ(x0)dΨ1(x0) together with

p(x0, ξ + idΨ2(x0)) = p(x0, ξ + iµ(x0)dΨ1(x0)),

{p,Ψ2}(x0, ξ + idΨ2(x0)) = µ(x0){p,Ψ1}(x0, ξ + iµ(x0)dΨ1(x0)).

Finally using Lemma 2.2.3, we have

1

i
{pΨ2

, pΨ2
}(x0, ξ, 1) = 2 Im [∂ξp(x0, ξ − idΨ2(x0)) · ∂xp(x0, ξ + idΨ2(x0))]

+ 2 Hess(Ψ2)(x0) [∂ξp(x0, ξ − idΨ2(x0)); ∂ξp(x0, ξ + idΨ2(x0))] .

We compute
Hess(Ψ2) = Ψ1 Hess(µ) + 2∂µ⊗ ∂Ψ1 + µHess(Ψ1),

and hence
Hess(Ψ2)(x0) = 2∂µ(x0)⊗ ∂Ψ1(x0) + µ(x0) Hess(Ψ1)(x0),

♣ ♣

Remark that Definition 2.2.1 looks very similar to Definition 2.1.5. It is just slightly weaker because
the positivity condition is assumed only under the additional conditions {p2,Φ} = 0 and {pΦ,Φ} = 0. In
particular, the level sets of a pseudoconvex functions are pseudoconvex oriented surfaces. This is however
not useful since Definition 2.1.5 is not geometric (but rather linked to Carleman estimates).

The importance of Definition 2.2.1 is twofold:

• It is a purely geometric definition: this comes from Lemma 2.2.2 and the fact that Conditions (2.13)-
(2.14) are invariant by diffeomorphisms ♣ prove that the Poisson bracket is invariant by
diffeomorphism: discuss action of a diffeomorphism on symbols/differential operators

• Once Ψ satisfies this geometric condition, one can produce a function Φ having the same levelsets
(hence keeping the geometry unchanged), and that satisfies the stronger pseudoconvexity condition
of Definition 2.1.5. This is the goal of the next section.

Note that, once again, Condition (2.13) (on the real domain) is the limit as τ → 0+ of Condition 2.14
(on the complex domain). This follows both from Lemma 2.1.6 and the fact that

{pΨ,Ψ}(x, ξ, τ) = ∂ξ
(
p(x, ξ + iτdΨ(x)

)
· ∂xΨ(x) = (∂ξp)(x, ξ + iτdΨ(x)) · ∂xΨ(x)

= {p2,Ψ}(x, ξ + iτdΨ(x))→ {p2,Ψ}(x, ξ), as τ → 0+. (2.16)

2.2.1 (Analytic) convexification
Proposition 2.2.5 (Analytic convexification). Let Ω 3 x0 be an open set, P ∈ Diff2(Ω) with real-valued
principal symbol p2 and Ψ ∈ C∞(Ω) real-valued. Assume the oriented hypersurface S = {Ψ = Ψ(x0)} is
strongly pseudoconvex with respect to P at x0 (Definition 2.2.1). Then there exists λ0 > 0 such that for
all λ ≥ λ0, the function Φ = eλΨ is pseudoconvex with respect to P at x0 (Definition 2.1.5).

Hence, the Carleman estimate of Theorem 2.1.1 holds with weight Φ.
Note that the geometry of the level-sets of Φ and Ψ are actually the same: only the values of the

level sets of Φ are stretched. Here, for any strongly pseudoconvex oriented surface S = {ψ = Ψ(x0)}
(which will be the relevant geometric condition for the unique continuation result under consideration),
this proposition produces an admissible Carleman weight (that is, a pseudoconvex function) Φ having
exactly the same geometric properties.

In order to simplify the notation for the proof, we recall that x0 is fixed and remark that changing the
function Ψ by a constant does not change the assumption. We may thus assume that

Ψ(x0) = 0, and hence Φ(x0) = 1 and dΦ(x0) = λdΨ(x0). (2.17)
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We also denote

cΨ(ξ, τ) =
1

iτ
{pΨ, pΨ}(x0, ξ, τ), for τ > 0 and cΨ(ξ, 0) = 2{p2, {p2,Ψ}}(x0, ξ),

with a similar definition for cΦ(ξ, τ). According to Lemma 2.1.6, cΨ(ξ, τ) and cΦ(ξ, τ) are continuous on
the whole Rn × R+. The proof of Proposition 2.2.5 is then based on the following computation.

Lemma 2.2.6. Assume Φ = eλΨ. For all (ξ, τ) ∈ Rn × R+ and all λ > 0, we have

cΦ(ξ, τ) = λcΨ(ξ, λτ) + 2λ2 |{pΨ,Ψ}(x0, ξ, λτ)|2 .

That is this additional term that comes from the convexification that will allow to get extra positivity
when {pΨ,Ψ} 6= 0. The positivity when {pΨ,Ψ} 6= 0 being ensured by the assumptions on Ψ.

We first prove the proposition from the lemma and then prove the lemma.

Proof of Proposition 2.2.5 from Lemma 2.2.6. Using Lemma 2.1.8 (combined with Lemma 2.1.6 and (2.16)
in the limit τ → 0+), Properties (2.13)-(2.14) imply the existence of C1, C2 > 0 so that

cΨ(ξ, τ) + C1 |{pΨ,Ψ}(x0, ξ, τ)|2 + C1
|pΨ(x0, ξ, τ)|2

|ξ|2 + τ2
≥ C2(|ξ|2 + τ2).

for any τ ≥ 0, |ξ|2 + τ2 = 1 (note that this takes into account the limit τ → 0+). Replacing τ by λτ for
λ ≥ 1 and using homogeneity, this can be reformulated as

cΨ(ξ, λτ) + C1 |{pΨ,Ψ}(x0, ξ, λτ)|2 + C1
|pΨ(x0, ξ, λτ)|2

|ξ|2 + λ2τ2
≥ C2(|ξ|2 + λ2τ2). (2.18)

for any (ξ, τ) 6= (0, 0) with τ ≥ 0.
Moreover, using Lemma 2.2.6 and noticing (see (2.17)) that

pΨ(x0, ξ, λτ) = p2(x0, ξ + iλτdΨ(x0)) = p2(x0, ξ + iτdΦ(x0)) = pΦ(x0, ξ, τ),

we obtain

cΦ(ξ, τ) + C1λ
|pΦ(x0, ξ, τ)|2

|ξ|2 + τ2
= λcΨ(ξ, λτ) + 2λ2 |{pΨ,Ψ}(x0, ξ, λτ)|2 + C1λ

|pΦ(x0, ξ, τ)|2

|ξ|2 + τ2

= λ

(
cΨ(ξ, λτ) + 2λ |{pΨ,Ψ}(x0, ξ, λτ)|2 + C1

|pΨ(x0, ξ, λτ)|2

|ξ|2 + τ2

)
.

Now taking λ ≥ max{C1/2, 1} and using (2.18) yields

cΦ(ξ, τ) + C1λ
|pΦ(x0, ξ, τ)|2

|ξ|2 + τ2
≥ λ

(
cΨ(ξ, λτ) + C1 |{pΨ,Ψ}(x0, ξ, λτ)|2 + C1

|pΨ(x0, ξ, λτ)|2

|ξ|2 + λ2τ2

)
≥ C2λ(|ξ|2 + λ2τ2) ≥ C2λ(|ξ|2 + τ2).

When recalling the definition of cΦ, this readily implies (2.11), and also (2.10) in the limit τ → 0+ (with
Lemma 2.1.6). This concludes the proof that Φ is pseudoconvex for P at x0 in the sense of Definition 2.1.5.

It only remains to prove Lemma 2.2.6.

Proof of Lemma 2.2.6. We compute

∂jΦ = λ∂jΨe
λΨ, ∂j,kΦ = λ∂j,kΨeλΨ + λ2(∂jΨ)(∂kΨ)eλΨ,

which we write in a shorter way as

dΦ = λeλΨdΨ, Hess(Φ)(ξ, ξ̃) = λHess(Ψ)(ξ; ξ̃)eλΨ + λ2(ξ · ∂xΨ)(ξ̃ · ∂xΨ)eλΨ.
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Taken at the point x0, and recalling (2.17), this implies

dΦ(x0) = λdΨ(x0),

Hess(Φ)(x0)(ξ, ξ̃) = λHess(Ψ)(x0)(ξ; ξ̃) + λ2(ξ · ∂xΨ(x0))(ξ̃ · ∂xΨ(x0)).

Using Lemma 2.2.3, we now obtain (we drop the fact that Ψ and the different derivatives of Ψ are taken
at x0)

cΦ(ξ, τ) =
1

iτ
{pΦ, pΦ}(x0, ξ, τ)

=
2

τ
Im [∂ξp(x0, ξ − iτλdΨ) · (∂xp(x0, ξ + iτλdΨ))]

+2λHess(Ψ) [∂ξp(x0, ξ − iτλdΨ); ∂ξp(x0, ξ + iτλdΨ)]

+2λ2 (∂ξp(x0, ξ − iτλdΨ) · ∂xΨ) (∂ξp(x0, ξ + iτλdΨ) · ∂xΨ)

= λcΨ(ξ, λτ) + 2λ2 |{p,Ψ}(x0, ξ + iτλdΨ)|2

= λcΨ(ξ, λτ) + 2λ2 |{pΨ,Ψ}(x0, ξ, λτ)|2 ,

proving the lemma.

2.2.2 Reducing the strong pseudoconvexity assumption to the condition on
the real space

In the particular case of differential operators of order two, with real principal symbol, an additional
simplification occurs. More precisely, Condition (2.13) on the real space implies Condition (2.14) in the
complex space. This is a very particular situation.

Proposition 2.2.7. Let Ω 3 x0 be an open set, P ∈ Diff2(Ω) with real-valued principal symbol p2 and
Ψ ∈ C∞(Ω) real-valued. Assume that the oriented surface S = {Ψ = Ψ(x0)} satisfies Condition (2.13) at
x0. Then S = {Ψ = Ψ(x0)} is strongly pseudoconvex with respect to P at x0 (i.e. both conditions (2.13)
and (2.14) are satisfied).

This proposition states that in the case of real symbols of order two, we can get rid of Condition (2.14)
on the complex domain (this is no longer the case if P is not of order two, or if its principal symbol is
not real). Therefore the only remaining geometric assumption for the unique continuation theorem (to be
stated in the next section) is (2.13). Its geometric content is commented in Section 2.3.2 below.

We split the proof of Proposition 2.2.7 into two lemmata, concerned with the non-characteristic case
(p2(x0, dΨ(x0)) 6= 0) and the characteristic case (p2(x0, dΨ(x0)) = 0), respectively.

Lemma 2.2.8. Assume p2 is a real symbol of order two near x0, and Ψ is such that p2(x0, dΨ(x0)) 6= 0.
Then, for any ξ ∈ Rn we have

pΨ(x0, ξ, τ) = {pΨ,Ψ}(x0, ξ) = 0 =⇒ τ = 0. (2.19)

In this case, Assumption (2.14) is thus empty.

Lemma 2.2.9. Assume p2 is a real symbol of order two near x0, and Ψ is such that p2(x0, dΨ(x0)) = 0.
Assume also (2.13) for all ξ ∈ Rn \ {0}. Then we also have (2.14).

Both proofs of Lemmata 2.2.8 and 2.2.9 rely on the fact that for fixed ξ ∈ Rn,

f(z) = p2(x0, ξ + zdΨ(x0)) = p2(x0, ξ) + z2p2(x0, dΨ(x0)) + 2zp̃2(x0, ξ, dΨ(x0)),

is a second order polynomial in the variable z, with real coefficients. Moreover, the assumption of (2.19)
(resp. of (2.14)) implies that

f(iτ) = p2(x0, ξ + iτdΨ(x0)) = pΨ(x0, ξ, τ) = 0 and
f ′(iτ) = ∂ξp2(x0, ξ + iτdΨ(x0)) · ∂xΨ(x0) = {p2,Ψ}(x0, ξ + iτdΨ(x0)) = {pΨ,Ψ}(x0, ξ) = 0,

that is to say, z = iτ (τ ∈ R+) is a double root of the polynomial f .
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Proof of Lemma 2.2.8. Since the coefficient in front of z2, namely p2(x0, dΨ(x0)) is non-zero, the polyno-
mial f has two complex roots which are either both in R, or complex conjugate. That z = iτ (τ ∈ R+) is
a double root of the polynomial f implies τ = 0.

The proof of Lemma 2.2.9 relies on tedious computations, that are collected in Section 2.2.3 below.

Proof of Lemma 2.2.9. Using that p2(x0, dΨ(x0)) = 0 together with Lemma 2.2.11, we obtain that

f(z) = p2(x0, ξ) + z{p2,Ψ}(x0, ξ).

The fact that f has a double root (at iτ) implies that actually, f is the zero polynomial, that is p2(x0, ξ) =
{p2,Ψ}(x0, ξ) = 0. Hence, Assumption (2.13) taken at the point ξ implies that either {p2, {p2,Ψ}} (x0, ξ) >
0 or ξ = 0. Moreover, the assumption p2(x0, dΨ(x0)) = 0 also yields that

{p2,Ψ}(x0, dΨ(x0)) = 2p̃2(x0, dΨ(x0), dΨ(x0)) = 2p2(x0, dΨ(x0)) = 0.

Hence, Assumption (2.13) taken at the point ξ = dΨ(x0) implies {p2, {p2,Ψ}} (x0, dΨ(x0)) > 0. Finally,
according to Lemma 2.2.12 we have

1

iτ
{pΨ, pΨ} (x0, ξ, τ) = 2 {p2, {p2,Ψ}} (x0, ξ) + 2τ2 {p2, {p2,Ψ}} (x0, dΨ(x0)),

and we have just proved that the first term in the right hand-side is nonnegative (even positive if ξ 6= 0)
and the second term is positive, implying

1

iτ
{pΨ, pΨ} (x0, ξ, τ) > 0 for τ > 0.

Remark 2.2.10. A simpler proof, could be made if we assume that we are in some coordinates so that
Ψ = x1. Actually, this is not a loss of generality since we could prove (but we did not do it yet) that the
assumptions and conclusions of Proposition 2.2.7 are invariant by change of coordinates and of defining
function for the surface. In that case, we can check that actually f can never be identically zero. Indeed,
if it happens, we have 0 = f(s) = pΨ = p2(x0, ξ + se1) and ∂ξ1p = 0. It gives

{p, {p,Ψ}} = {p, {p, x1}} = {p, ∂ξ1p} = ∇ξp · ∇x∂ξ1p−∇xp · ∇ξ∂ξ1p = 0.

This is impossible for ξ 6= 0 since we have p(x, ξ) = {p,Ψ} = 0 in the considered points. It contradict the
first assumption.

Note that the cancellation of {p, {p,Ψ}} under these assumptions is specific to the chosen coordinates.

2.2.3 Computations for real symbols of order 2

This section contains many tedious computations that are used only in the previous section, where we
remove the condition on the complex domain. These computations may/should be skipped at first (and
second) reading. They all heavily rely on the assumption that the symbol p(x, ξ) be real and homogeneous
of degree 2, using the language of quadratic forms. We start with the following properties.

Lemma 2.2.11. Let p(x, ξ) =
∑

1≤k,l≤n a
kl(x)ξkξl be a homogeneous symbol of order 2, with real-valued

coefficients. Denote by p̃(x, ξ, η) its polar form, namely p̃(x, ξ, η) =
∑
k,l

akl(x)+alk(x)
2 ξkηl. Then, we have

{p,Ψ}(x, ξ) = 2p̃(x, ξ, dΨ(x)) (2.20)

pΨ(x, ξ, τ) = p(x, ξ)− τ2p(x, dΨ(x)) + iτ{p,Ψ}(x, ξ) (2.21)
{pΨ,Ψ}(x, ξ, τ) = 2p̃(x, ξ, dΨ(x)) + 2iτp(x, dΨ(x)). (2.22)

Moreover, assume f only depends on x, then

{f, {p,Ψ}}(x) = −{p, f}(x, dΨ(x)), (2.23)

which, in particular, does not depend on ξ.
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Recall that p(x, ξ) = p̃(x, ξ, ξ) and p(x, ξ + η) = p(x, ξ) + 2p̃(x, ξ, η) + p(x, η) for ξ, η ∈ Cn.

Proof. First, by linearity, it is enough to prove (2.20) for p(x, ξ) = a(x)ξkξl and p̃(x, ξ, η) = a(x)
2 (ξkηl + ξlηk).

This implies

{p,Ψ}(x, ξ) = ∂ξ(a(x)ξkξl) · ∂xΨ(x) = a(x) [ξk(∂lΨ) + ξl(∂kΨ)] = 2p̃(x, ξ, dΨ(x)), (2.24)

which proves (2.20). Second, expanding the bilinear form, we have

pΨ(x, ξ, τ) = p(x, ξ + iτdΨ(x)) = p(x, ξ)− τ2p(x, dΨ(x)) + 2iτ p̃(x, ξ, dΨ(x)).

Recalling (2.20), this proves (2.21). Third, we have

{pΨ,Ψ}(x, ξ, τ) = ∂ξ
(
p(x, ξ + iτdΨ)

)
· ∂xΨ = (∂ξp)(x, ξ + iτdΨ) · ∂xΨ = {p,Ψ}(x, ξ + iτdΨ)

Using (2.20), we obtain

{pΨ,Ψ}(x, ξ, τ) = 2p̃(x, ξ + iτdΨ, dΨ) = 2p̃(x, ξ, dΨ) + 2iτ p̃(x, dΨ, dΨ) = 2p̃(x, ξ, dΨ) + 2iτp(x, dΨ),

which yields (2.22). Finally, writing again p(x, ξ) = a(x)ξkξl and recalling (2.24), we obtain

{f, {p,Ψ}} = {f, a(x) [ξk(∂lΨ) + ξl(∂kΨ)]} = −a(x) [(∂kf)(∂lΨ) + (∂lf)(∂kΨ)]

= −2p̃(x, df, dΨ) = −{p, f}(x, dΨ),

which proves (2.23).

Lemma 2.2.12. Let p be a real-valued symbol being homogeneous of degree 2. Then

1

iτ
{pΨ, pΨ} (x, ξ) = 2 {p, {p,Ψ}} (x, ξ) + 2τ2 {p, {p,Ψ}} (x, dΨ(x)).

Proof. Using the expression of pΨ in (2.21) together with {ā, a} = 2i{Re(a), Im(a)} (using that {a− b, a+ b} =
2 {a, b}), we have

1

iτ
{pΨ, pΨ} = 2

{
p− τ2p(x, dΨ), {p,Ψ}

}
= 2 {p, {p,Ψ}} − 2τ2 {p(x, dΨ), {p,Ψ}} .

Finally, using Lemma 2.2.13 below, we obtain

1

iτ
{pΨ, pΨ} = 2 {p, {p,Ψ}}+ 2τ2 {p, {p,Ψ}} (x, dΨ),

which proves the lemma.

For the above proof to be complete, it only remains to prove the following lemma.

Lemma 2.2.13. Let p : Ω × Rn → R be a homogeneous symbol of degree 2, with real-valued coefficients
and Ψ ∈ C∞(Ω). Then, we have

{p(·, dΨ), {p,Ψ}} (x) = −{p, {p,Ψ}} (x, dΨ(x)),

which, in particular, does not depend on ξ.

Proof. We start from the following general formula (for any symbols p, q), proved in Lemma 2.2.14 below,

{p( ·, dΨ), q}(x, dΨ(x)) + {p, q(·, dΨ)}(x, dΨ(x)) = {p, q}(x, dΨ(x)).

We write this identity with q(x, ξ) = {p,Ψ}(x, ξ) (which is a homogeneous polynomial of degree one, so
that its Poisson bracket with a function of x only is a function of x only), yielding

{p(·, dΨ), {p,Ψ}} (x) + {p, {p,Ψ}(·, dΨ)} (x, dΨ(x)) = {p, {p,Ψ}} (x, dΨ(x)). (2.25)
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But for real-valued homogeneous symbols of degree 2, Identity (2.20) gives {p,Ψ}(x, dΨ(x)) = 2p̃(x, dΨ(x), dΨ(x)) =
2p(x, dΨ(x)). Using this, together with (2.23), we have

{p, {p,Ψ}(·, dΨ)} (x, dΨ(x)) = 2{p, p(·, dΨ)}(x, dΨ(x)) = −2{p(·, dΨ), {p,Ψ}}(x).

Inserting this into (2.25), we obtain

{p(·, dΨ), {p,Ψ}} (x)− 2{p(·, dΨ), {p,Ψ}}(x) = {p, {p,Ψ}} (x, dΨ(x)),

which is the sought result.

Lemma 2.2.14. For all symbols p, q ∈ C∞(Ω× Rn) and all function Ψ ∈ C∞(Ω), we have

{p(·, dΨ), q}(x, dΨ(x)) + {p, q(·, dΨ)}(x, dΨ(x)) = {p, q}(x, dΨ(x)). (2.26)

Proof. On the one hand, the right hand-side of (2.26) writes

{p, q}(x, dΨ(x)) = (∂ξp)(x, dΨ(x)) · (∂xq)(x, dΨ(x))− (∂xp)(x, dΨ(x)) · (∂ξq)(x, dΨ(x)). (2.27)

On the other hand, we have

{p(·, dΨ), q}(x, ξ) = −(∂xp)(x, dΨ(x)) · (∂ξq)(x, ξ)−Hess Ψ [(∂ξp)(x, ∂Ψ(x)); (∂ξq)(x, ξ)] .

Applied to ξ = dΨ, this gives an expression of the first term in the left hand-side of (2.26), namely

{p(·, dΨ), q}(x, dΨ(x)) = −(∂xp)(x, dΨ(x)) · (∂ξq)(x, dΨ(x))

−Hess Ψ [(∂ξp)(x, dΨ(x)); (∂ξq)(x, dΨ(x))] .

By symmetry, we also have

{p, q(·, dΨ)}(x, dΨ(x)) = (∂ξp)(x, dΨ(x)) · (∂xq)(x, dΨ(x))

+ Hess Ψ [(∂ξp)(x, dΨ(x)); (∂ξq)(x, dΨ(x))] .

The sum of the last two identities gives the right hand-side (2.27), which proves (2.26).

2.3 The unique continuation theorem
In this chapter, collecting all results we proved so far, we are prepared to state and prove a very general
result of unique continuation for operators of order 2, with real principal symbol.

2.3.1 Statement and examples
The geometric definition we need is the following.

Definition 2.3.1 (Strongly pseudoconvexity surface for operators of order two with real principal sym-
bols). Let Ω 3 x0 be an open set, P ∈ Diff2(Ω) with real-valued principal symbol p2 and Ψ ∈ C∞(Ω)
real-valued. We say that the oriented hypersurface S = {Ψ = Ψ(x0)} is strongly pseudoconvex with
respect to P at x0 if it satisfies

p2(x0, ξ) = {p2,Ψ}(x0, ξ) = 0 =⇒ {p2, {p2,Ψ}}(x0, ξ) > 0 for all ξ ∈ Rn \ {0}. (2.28)

Note that {p,Ψ}(x0, ξ) = ∂ξp(x0, ξ) · ∂xΨ(x0).
We can check that Definition 2.3.1 is invariant if we change the defining function Ψ (see Lemma 2.2.2).

That is why this is a geometric property of the oriented surface solely. See Section 2.3.2 for an interpretation
as convexity with respect to the bicharacteristic curves.

The geometric condition (2.28) has to be compared with that discussed for vector fields in Examples 3-
4-5 in Section 1.2.1.
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Theorem 2.3.2 (Real operators of order 2). Let Ω 3 x0 be an open set of Rn, and let P ∈ Diff2(Ω) with
real principal symbol p2. Assume that the oriented hypersurface S = {Ψ = Ψ(x0)} is strongly pseudoconvex
with respect to P at x0. Then, there exists a neighborhood V of x0 so that for all u ∈ H1(Ω), we have{

Pu = 0 in Ω,
u = 0 in Ω ∩ {Ψ > Ψ(x0)}

}
=⇒ u = 0 in V. (2.29)

Another (slightly weaker) way to formulate the conclusion of the theorem is to say that x0 /∈ supp(u).
Here, we have assumed that all coefficients of P are smooth for simplicity. Finer regularity assumptions
are discussed in Section 2.3.4 below.

Remark 2.3.3 (Elliptic case). Note now that in the particular case where the operator P is elliptic at
x0, i.e. p2(x0, ξ) ≥ c|ξ|2, then the condition p2(x0, ξ) = 0 is never fulfilled when ξ 6= 0 and (2.28) is empty.
This is the following corollary.

Corollary 2.3.4 (Real elliptic operators of order 2). Let Ω an open set of Rn, x0 ∈ Ω and S 3 x0 be a
local hypersurface at x0. Let P ∈ Diff2(Ω) with real principal symbol p2. Assume also that P is elliptic at
x0, that is, there exists c > 0 so that p2(x0, ξ) ≥ c|ξ|2 for all ξ ∈ Rn. Then, there exists V a neighborhood
of x0 so that for any u ∈ C∞(Ω),{

Pu = 0 in Ω,
u = 0 in Ω ∩ S+ =⇒ u = 0 on V. (2.30)

Here, S+ denotes one (any) side of S.

This means that for elliptic operators of order 2, there is no geometric condition for unique continuation
across a hypersurface. Again, regularity issues are discussed in Section 2.3.4 below.

Remark 2.3.5 (Operators with constant coefficients). Consider here the simple case where P = AD ·D
where A is a constant real symmetric matrix. This is p2(x, ξ) = Aξ ·ξ. We have {p2,Ψ}(x, ξ) = 2Aξ ·dΨ(x)
and {p2, {p2,Ψ}}(x, ξ) = {Aξ · ξ, 2Aξ · dΨ(x)} = 4 Hess Ψ(x)(Aξ,Aξ). Condition (2.28) rewrites

Aξ · ξ = 0 and Aξ · dΨ(x0) = 0 =⇒ Hess Ψ(x0)(Aξ,Aξ) > 0 for all ξ ∈ Rn \ {0}.

Remark 2.3.6 (The wave operator). We discuss here the case of the wave operator with constant coef-
ficients, which is a particular case of the above examples with A = diag(−1, 1, · · · , 1). In the case of the
wave equation, P = ∂2

t −∆, p = −ξ2
t + |ξx|2, we compute (using that Ψ does not depend on ξ)

{p,Ψ} = ∇ξp · ∇(t,x)Ψ = −2ξt∂tΨ + 2ξx · ∇xΨ

{p, {p,Ψ}} = ∇ξp · ∇(t,x){p,Ψ} − ∇(t,x)p · ∇ξ{p,Ψ}
= ∇ξp · ∇(t,x){p,Ψ}
= −2ξt∂t [−2ξt∂tΨ + 2ξx · ∇xΨ] + 2ξx · ∇x [−2ξt∂tΨ + 2ξx · ∇xΨ]

= 4
[
ξ2
t ∂

2
t Ψ− 2ξtξx · ∇x∂tΨ + Hessx(Ψ)(ξx, ξx)

]
We now write the strong pseudoconvexity condition (2.28) specialized in the point (t, x) = (0, 0) (the

operator is translation invariant in (t, x)), in different situations.

• If |∂tΨ(0)| > |∇xΨ(0)|: the surface {Ψ = Ψ(0)} is called spacelike (its normal vector ∇t,xΨ is
timelike). The first two conditions imply |ξt∂tΨ(0)| = |ξx · ∂xΨ(0)| ≤ |ξx||∂xΨ(0)| = |ξt||∂xΨ(0)| <
|ξt||∂tΨ(0)|. This is a contradiction, and hence Condition (2.28) is empty.

Any spacelike surface satisfies the unique continuation. This is very natural. Actually, the Cauchy
problem is hyperbolic and indeed locally wellposed for any spacelike hypersurface (like for instance
the wave equation posed with initial data at t = 0, see Theorem 1.2.1).

• In several applications, the typical unique continuation result we need is across hypersurfaces of the
form Ψ(t, x) = ϕ(x). The strong pseudoconvexity condition then writes

ξ2
t = |ξx|2 and ξx · ∇xϕ(0) = 0 =⇒ Hessx(ϕ)(0)(ξx, ξx) > 0 ∀ξ ∈ Rn \ {0}.
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Typically, if Ψ(t, x) = |x|2 − 1, the condition holds when we want to prove the unique continuation
from the exterior of the ball to the interior and not in the other direction. There are actually
counterexamples if we allow a potential smooth in t and x (see Alinhac-Baouendi [AB95]).
Note also that for the 1D wave equation, the constraint ξx · ∇xϕ(0) = 0 is much more demanding
and implies ξx = 0 and ξ = 0 if ξ2

t = |ξx|2. This is natural since we can exchange the time and
space variable. So the finite speed of propagation (or a more refined version of it) implies the unique
continuation across any non characteristic hypersurface.

Theorem 2.3.2 will be proved in Section 2.3.3. Before this, let us describe the underlying geometry of
the condition (2.28).

2.3.2 Geometric interpretation of pseudoconvexity in the case of real symbol
of order 2

In this section, we explain the geometric content of the condition of Definition 2.3.1. For this we need to
introduce the Hamiltonian flow of the symbol p2. Recall that {p2, ·} is a derivation on C∞(Ω × Rn) (see
Definition 1.3.7 and the remarks thereafter) and can thus be identified with the vector field

Hp2
(x, ξ) = ∂ξp2(x, ξ) · ∂x − ∂xp2(x, ξ) · ∂ξ,

on Ω× Rn. We denote by χs the associated flow, defined by{
d
dsχs(x0, ξ0) = Hp2

(
χs(x0, ξ0)

)
,

χ0(x0, ξ0) = (x0, ξ0),
(2.31)

and called the Hamiltonian flow of p2. Remark that Hp2(p2) = {p2, p2} = 0 so that p2 is preserved along
the flow: p2 ◦ χs(x0, ξ0) = p2(x0, ξ0). Note also that the flow χs is (at least) locally defined in (s, x, ξ) a
neighborhood of (0, x0, ξ0) according to the Cauchy-Lipschitz theorem.

If we now denote by (xs, ξs) = χs, that is χs(x0, ξ0) =
(
xs(x0, ξ0), ξs(x0, ξ0)

)
and recall the definition

of the Poisson bracket {p2, ·} = ∂ξp2 · ∂x − ∂xp2 · ∂ξ, (2.31) now reads
d

ds
xs(x0, ξ0) = ∂ξp2

(
χs(x0, ξ0)

)
,

d

ds
ξs(x0, ξ0) = −∂xp2

(
χs(x0, ξ0)

)
,(

xs(x0, ξ0), ξs(x0, ξ0)
)
|s=0 = (x0, ξ0).

(2.32)

With these definitions in hand, we can now reformulate the strong pseudoconvexity condition of Defi-
nition 2.3.1. Namely, note that we have

{p2,Ψ}(x0, ξ) = Hp2
(Ψ)(x0, ξ) =

d

ds
Ψ ◦ xs(x0, ξ)|s=0,

{p2, {p2,Ψ}}(x0, ξ) = Hp2

(
Hp2(Ψ)

)
(x0, ξ) =

d2

ds2
Ψ ◦ xs(x0, ξ)|s=0.

Now, if for ξ ∈ Rn we define cξ(s) = Ψ ◦ xs(x0, ξ) (2.28) is equivalent to:

For all ξ ∈ Rn \ {0}, we have: p2(x0, ξ) = 0 and ċξ(0) = 0 =⇒ c̈ξ(0) > 0.

This means that for all ξ ∈ Rn \ {0},
• if ξ is noncharacteristic (p2(x0, ξ) 6= 0), we don’t care;

• if (ξ is characteristic and) the (projected) Hamiltonian curve xs(x0, ξ) is not tangent to S = {Ψ =
Ψ(x0)} at s = 0, we don’t care;

• if ξ is characteristic and the curve xs(x0, ξ) is tangent to S = {Ψ = Ψ(x0)}, then it should have
non-vanishing second derivative (tangency at order 2) and the curve (xs(x0, ξ))s∈(−ε,ε) should stay
in {Ψ ≥ Ψ(x0)}.

♣ picture!
This excludes the following situations

• tangent characteristic curves staying in {Ψ ≤ Ψ(x0)};

• contacts of higher order with the tangent at x0.
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2.3.3 Unique continuation: Proof of Theorem 2.3.2
In this section, we give the final proof of Theorem 2.3.2. ♣ explain geometric convexification

After the geometric preliminaries, it consists essentially in using Lemma 1.2.8 (which we reprove here
in a different way).

Proof of Theorem 2.3.2. ♣ draw a picture We first remark that we may assume that Ψ(x0) = 0 (up to
changing Ψ into Ψ − Ψ(x0), which does not change the assumption), so that S = {Ψ = 0}. Let u be a
C∞ solution of Pu = 0 in Ω so that u = 0 on Ω ∩ {Ψ > 0}. The surface S = {Ψ = 0} being strongly
pseudoconvex at x0, Proposition 2.2.5 allows to produce a new function Φ pseudoconvex for functions so
that (after having changed Φ into Φ−1) {Φ = 0} = {Ψ = 0}, {Φ > 0} = {Ψ > 0} and {Φ < 0} = {Ψ < 0}.

Proposition 2.1.9 yields the existence of ε > 0, such that Φε = Φ−ε|x−x0|2 satisfies the pseudoconvexity
for functions. As a consequence of Proposition 2.1.7 and Theorem 2.1.1, it therefore satisfies the following
properties

1. there exist R > 0, C > 0 and τ0 > 0 so that we have the following estimate

τ3
∥∥eτΦεw

∥∥2

L2 + τ
∥∥eτΦε∇w

∥∥2

L2 ≤ C
∥∥eτΦεPw

∥∥2

L2 , (2.33)

for any w ∈ C∞(B(x0, R)) and τ ≥ τ0.

2. there exists η > 0 so that Φε(x) ≤ −η for x ∈ {Φ ≤ 0} ∩ {|x− x0| ≥ R/2},

3. there exists a neighborhood V ⊂ B(x0, R/2) of x0 so that Φε(x) ≥ −η/2 for x ∈ V .

Property 1 is a consequence of Theorem 2.1.1, and R is fixed by that theorem.
Property 2 is true thanks to the parameter ε in the geometric convexification. Indeed, for |x−x0| ≥ R/2,

we have Φε(x) ≤ Φ(x)−εR2/4. If Φ(x) ≤ 0, this implies Φε(x) ≤ −εR2/4, so that we can take η = −εR2/4.
Property 3 is only a continuity argument since Φε(x0) = 0.
Pick χ ∈ C∞c (B(x0, R)) so that χ = 1 on B(x0, R/2). We want to apply the Carleman estimate to

w = χu solution of Pw = χPu + [P, χ]u = [P, χ]u. Notice that [P, χ] is a classical differential operator
of order 1 with coefficients supported in the set {R2 ≤ |x − x0| ≤ R}. As a consequence, using that
supp(u) ⊂ {Φ ≤ 0}, this implies

supp([P, χ]u) ⊂ {Φ ≤ 0} ∩ {R
2
≤ |x− x0| ≤ R},

where we have Φε(x) ≤ −η (according to Property 2). In particular, this implies
∥∥eτΦεPw

∥∥
L2 ≤

Ce−τη ‖u‖H1(B(x0,R)).
Moreover, since Φε(x) ≥ −η/2 and χ = 1 on V , we have

τ3/2
∥∥eτΦεw

∥∥
L2 ≥ τ

3/2
0

∥∥eτΦεχu
∥∥
L2(V )

≥ τ3/2
0

∥∥∥e−τη/2u∥∥∥
L2(V )

= τ
3/2
0 e−τη/2 ‖u‖L2(V ) .

So the Carleman estimate (2.33) implies

e−τη/2 ‖u‖L2(V ) ≤ C
∥∥eτΦεPw

∥∥
L2 ≤ Ce−τη ‖u‖H1(B(x0,R)) .

This gives ‖u‖L2(V ) ≤ Ce−τη/2 ‖u‖H1(B(x0,R)) and u = 0 on V by letting τ tend to infinity.

Note finally that, in order for the result to hold for u ∈ H1(Ω), we need to remark that a density
argument shows that the Carleman estimate is still valid for all w ∈ H1(Ω) such that supp(w) ⊂ B(x0, R)
and Pw ∈ L2(Ω). Here, in case u ∈ H1(Ω), we have w = χu ∈ H1(Ω) with supp(w) ⊂ supp(χ) ⊂ B(x0, R)
and Pw = 0 + [P, χ]u ∈ L2(Ω) since [P, χ] ∈ Diff1(Ω) and u ∈ H1(Ω). Hence, the Carleman estimate
applies and the remainder of the proof remains unchanged.

2.3.4 Lowering regularity requirements
In this section, we explain how the regularity of the coefficients of P or the solution u can be lowered in
different contexts.

57



Lowering regularity of the coefficients of P

Theorem 2.3.7. The conclusions of Theorem 2.3.2 and Corollary 2.3.4 hold as well if the Assumption
u ∈ H1

loc(Ω) and Pu = 0 in (2.29)-(2.30) is replaced by the following assumption: u ∈ H1
loc(Ω) is such that

Pu ∈ L2
loc(Ω) and there is Ω′ a neighborhood of x0 and C > 0 such that

|Pu|(x) ≤ C
n∑
k=1

|Dku|(x) + C|u|(x), for almost every x ∈ Ω′. (2.34)

In particular, the conclusions of Theorem 2.3.2 and Corollary 2.3.4 hold if the operator P ∈ Diff2(Ω) is
replaced by

P =

n∑
i,j=1

aij(x)DiDj +

n∑
k=1

bk(x)Dk + c(x), (2.35)

with aij ∈ C∞(Ω) real-valued, bk, c ∈ L∞loc(Ω). In this case, p2 denotes p2(x, ξ) =
∑n
i,j=1 a

ij(x)ξiξj.

Note that we have to re-define p2 in the latter situation since P /∈ Diff2(Ω). ♣ write a proof if
aij ∈ C1(Ω) ? Note that (2.34) is no longer a PDE, but a slightly weaker “differential inequality”. In the
situation of Corollary 2.3.4, the ellipticity assumption at the point x0 writes: there exists c > 0 so that

n∑
i,j=1

aij(x0)ξiξj ≥ c|ξ|2, for all ξ ∈ Rn.

Proof of Theorem 2.3.7. The proof follows essentially the same as that of Theorem 2.3.2. The geometry
is the same and the only point is how to get rid of the terms in the right hand-side of (2.34). We start
from the same Carleman inequality (2.33), namely

τ3
∥∥eτΦεw

∥∥2

L2 + τ
∥∥eτΦε∇w

∥∥2

L2 ≤ C
∥∥eτΦεPw

∥∥2

L2 , (2.36)

and apply it again to w = χu. On the right hand-side, writing Pw = Pχu = [P, χ]u+χPu and using (2.34),
we obtain,

∥∥eτΦεPw
∥∥
L2 ≤

∥∥eτΦε [P, χ]u
∥∥
L2 + C

n∑
k=1

∥∥eτΦεχDku
∥∥
L2 + C

∥∥eτΦεχu
∥∥
L2

≤
∥∥eτΦε [P, χ]u

∥∥
L2 + C

n∑
k=1

(∥∥eτΦεDkχu
∥∥
L2 +

∥∥eτΦε [Dk, χ]u
∥∥
L2

)
+ C

∥∥eτΦεχu
∥∥
L2

≤
∥∥eτΦε [P, χ]u

∥∥
L2 + C

n∑
k=1

∥∥eτΦε [Dk, χ]u
∥∥
L2 + C

∥∥eτΦε∇w
∥∥
L2 + +C

∥∥eτΦεw
∥∥
L2 .

Now, the last two terms can be absorbed in the left hand-side of the Carleman estimate (2.36) for τ large
enough, and we obtain

τ3
∥∥eτΦεw

∥∥2

L2 + τ
∥∥eτΦε∇w

∥∥2

L2 ≤ C
∥∥eτΦε [P, χ]u

∥∥2

L2 + C

n∑
k=1

∥∥eτΦε [Dk, χ]u
∥∥2

L2 .

The important point here is that on the right hand-side, only derivatives of χ appear: the term [Dk, χ]u
enjoys the same support properties as [P, χ]u. Hence, from this point forward, we can follow the proof of
Theorem 2.3.2 line by line.

Lowering regularity of the solution u

♣ to be written via propagation of singularities as a blackbox
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2.3.5 From local to global uniqueness (elliptic operators)
The unique continuation result that we obtain is only local. Yet, we could expect to iterate this result with
a well chosen sequence of hypersurfaces. It turns out that it is not easy to do in the general case. Take
for instance the wave equation. Suppose that you are given an open set ω and T > 0 so that a solution u
satisfies {

(∂2
t −∆)u = 0 on [0, T ]× Ω

u = 0 on [0, T ]× ω

The question of defining what is the "domain of dependence" for the unique continuation that can be
obtained with our unique continuation using iterated pseudoconvex surfaces (as described in Remark 2.3.6)
is not clear.

An easier situation is the elliptic case where the strong pseudoconvexity condition for the surface S is
empty. This allows to obtain the following global result.

Theorem 2.3.8 (Global result in the elliptic case). Let Ω be a connected open set and P satisfying the
assumptions of Corollary 2.3.4. Let u be a H1(Ω) solution to Pu = 0 on Ω, that satisfies u = 0 on an
arbitrary nonempty open set ω ⊂ Ω. Then, u = 0 on Ω.

The proof uses the local result together with a connectedness argument.

Proof. We define F = supp(u), which is a closed subset of Ω, and ∂F = F \ Int(F ) ⊂ Ω the boundary of
F . The proof proceeds in two steps: first proving that ∂F = ∅ by contradiction, and then concluding with
a connectedness argument.

Let us first prove that ∂F = ∅. Assuming ∂F 6= ∅, there exists x ∈ ∂F ⊂ Ω. Define R so that
B(x,R) ⊂ Ω. Take x1 ∈ Ω \ F with |x − x1| < R/2 (it exists since x ∈ ∂F ). So, we have u(y) = 0 in a
neighborhood of x1 by definition of the support. Next define r1 = sup {r ∈ [0, R/2];u(x) = 0 in B(x1, r)}.
We know that r1 > 0. So, we have obtained u = 0 in B(x1, r1).

Assume r1 < R/2. Since |x−x1| < R/2 and B(x,R) ⊂ Ω, B(x1, R/2) ⊂ Ω. So, we can apply Theorem
2.3.2 to any point x0 ∈ S(x1, r1) the sphere of radius r1 and of center x1 to get that for any x0 ∈ S(x1, r1),
there exists rx0

so that u(y) = 0 in B(x0, rx0
). Covering S(x1, r1) by a finite number of such balls using

the compactness of S(x1, r1) we get one ε so that u(y) = 0 on B(x1, r1 + ε) contradicting the definition of
r1. So, we have r1 = R/2.

But since |x−x1| < R/2, there exists a neighborhood of x included in B(x1, R/2). In particular, u = 0
in this neighborhood. This contradicts the assumption that x ∈ ∂F . As a consequence, we have obtained
∂F = ∅.

Now, since ∂F = F \ Int(F ) = ∅, we have F = Int(F ) and is thus closed and open. Moreover, we have
F 6= Ω since ω ∩ F = ∅. The connectedness of Ω then yields F = ∅, i.e. u = 0 on Ω.

♣ faire un dessin
A first useful application of this result is to eigenfunctions.

Corollary 2.3.9. Let Ω ⊂ Rn be a connected open set. Denote by −∆ the Laplace operator. Assume
ψ ∈ H1(Ω) satisfies −∆ψ = λψ on Ω and ψ = 0 on a nonempty open set ω ⊂ Ω. Then we have ψ = 0 on
Ω.

This means that eigenfunctions of the Laplace operator never vanish on a nonempty open set. The
same result also holds for the Laplace-Beltrami operator −∆g on a Riemannian manifold (M, g).

2.4 Quantitative estimates and application to eigenfunctions
In this section, we want to give some estimates that quantify the unique continuation, that is some
inequality proving in some sense the implication{

Pu small in Ω,
u small in U

=⇒ u small in Ũ .
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described in the introduction. More precisely, we would like to have some estimates of the kind ‖u‖Ũ ≤
ϕ(‖u‖U + ‖Pu‖Ω , ‖u‖Ω), with ϕ(a, b) → 0 as a → 0 when b is bounded. The ideal situation would be
some linear estimate in a, independent on b. This is the case when the Cauchy problem is wellposed.
For instance the wave operator across the surface {t = 0}. Yet, in those cases, Carleman estimates are
generally not the best way to get uniqueness and good estimates. We will be interested in some case where
the Cauchy problem is ill-posed and linear estimates are not expected to occur.

In our situation, the estimates that we can expect are more of Hölder type, that is ϕ(a, b) = aθb1−θ.
We could derive such local estimates in the general context of Theorem 2.3.2. We shall however restrict
our attention to elliptic operators, for which the geometric setting is simpler, the globalization is possible,
and which have several interesting applications.

2.4.1 Interlude: a semiglobal Carleman estimate
In Section 2.1 above, we proved:

• Φ is a pseudoconvex function for P at x0 =⇒ the Carleman estimate holds for all u ∈ C∞c (B(x0, r))
for some r > 0

• S = {Ψ = Ψ(x0)} is a strictly pseudoconvex surface for P at x0 =⇒ Φ := eλΨ is a pseudoconvex
function for P at x0 for λ large.

These are local result at/near the point x0. Here, we shall need similar results on a whole (relatively
compact) open set Ω. We state the results without proofs.

We first state the analogue of the Carleman estimate of Theorem 2.1.1. Its proof is exactly the same
as that of Theorem 2.1.1, except that we use the “semiglobal” Gårding inequality of Proposition 1.3.18
instead of the local one (Proposition 1.3.14).

Theorem 2.4.1 (Semiglobal Carleman estimate). Let Ω be an open subset of Rn such that Ω is compact.
Let P ∈ Diff2(Ω) be a (classical) differential operator with real-valued principal symbol p2 and Φ ∈
C∞(Ω;R).

Then, the following statements are equivalent:

1. There exist C, τ0 > 0 so that we have the following estimate

τ3
∥∥eτΦu

∥∥2

L2 + τ
∥∥eτΦ∇u

∥∥2

L2 ≤ C
∥∥eτΦPu

∥∥2

L2 , for all u ∈ C∞c (Ω), τ ≥ τ0; (2.37)

2. There exist C, τ0 > 0 so that we have the following estimate

τ ‖v‖2H1
τ
≤ C ‖PΦv‖2L2 , for all v ∈ C∞c (Ω), τ ≥ τ0; (2.38)

3. There exist C1, C2 > 0 such that for all (x, ξ, τ) ∈ Ω× Rn × R∗+,

C1

|ξ|2 + τ2

[
(Re pΦ)2 + (Im pΦ)2

]
(x, ξ, τ) +

1

τ
{Re pΦ, Im pΦ} (x, ξ, τ) ≥ C2

(
|ξ|2 + τ2

)
. (2.39)

4. The function Φ is pseudoconvex with respect to P on Ω, i.e. it satisfies

{p2, {p2,Φ}} (x, ξ) > 0, if p2(x, ξ) = 0 and (x, ξ) ∈ Ω× Rn \ 0; (2.40)
1

iτ
{pΦ, pΦ}(x, ξ, τ) > 0, if pΦ(x, ξ, τ) = 0 and (x, ξ, τ) ∈ Ω× Rn × R+

∗ , (2.41)

where pΦ(x, ξ, τ) = p2(x, ξ + iτdΦ(x)).

Proposition 2.4.2 (Analytic convexification). Let Ω be an open set such that Ω is compact, P ∈ Diff2(Ω)
with real-valued principal symbol p2 and Ψ ∈ C∞(Ω). Assume that for all x ∈ Ω, the oriented hypersurface
Sx = {Ψ = Ψ(x)} is strongly pseudoconvex with respect to P at x (Definition 2.2.1). Then there exists
λ0 > 0 such that for all λ ≥ λ0, the function Φ = eλΨ is pseudoconvex with respect to P on Ω (in the sense
of (2.40)-(2.41)).

And thus, the Carleman estimate of Theorem 2.4.1 holds with weight Φ. The proof of this proposition
is exactly the same as that of Proposition 2.2.5.
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2.4.2 Local interpolation estimates for elliptic operators
In what follows, we will remain in the elliptic framework where any smooth surface is strongly pseudocon-
vex. It allows to simplify 2 important facts:

• we can choose compact surfaces, like spheres. One advantage is that we can skip the geometric
convexification;

• the globalization is much easier, as we saw in Theorem 2.3.8 for the (qualitative) unique continuation
result.

We first state the local result.

Theorem 2.4.3 (Local quantitative estimates for real elliptic operators of order 2). Let Ω, P be as in
Corollary 2.3.4, x0 ∈ Ω. Let r > 0 so that B(x0, 3r) ⊂ Ω.

Then, there exists C > 0, 0 < δ < 1 so that

‖u‖H1(B(x0,2r))
≤ C

[
‖u‖H1(B(x0,r))

+ ‖Pu‖L2(B(x0,3r))

]δ
‖u‖1−δH1(B(x0,3r))

for any u ∈ C∞(Ω).

Note that in the context of complex analysis (for holomorphic functions on C), this inequality is usually
called the “Hadamard three spheres inequality” (sometimes also used for three lines) and can be proved
with different methods, using analyticity. A remarkable fact here is that the regularity requirements on
the coefficients are relatively low (and could be lowered with the same techniques).

Proof. We consider the relatively compact open set U = B(x0, 3r) \ B(x0, r/2). Denote Ψ = −|x− x0| ∈
C∞(U ;R). Moreover, we have dΨ 6= 0 on U , and P elliptic, so that for all x ∈ U , the set {Ψ = Ψ(x)} is
a smooth strongly pseudoconvex hypersurface with respect to P at x. According to Proposition 2.4.2, the
function Φ = eλΨ is thus pseudoconvex on U for λ large enough, fixed from now on.

Theorem 2.4.1 applies and yields the existence of C, τ0 > 0 so that we have the following estimate

τ3
∥∥eτΦw

∥∥2

L2 + τ
∥∥eτΦ∇w

∥∥2

L2 ≤ C
∥∥eτΦPw

∥∥2

L2 , for all w ∈ C∞c (U), τ ≥ τ0. (2.42)

Taking now χ ∈ C∞c (U) so that χ = 1 on B(x0, 5r/2) \B(x0, r), we want to apply the estimate (2.42)
to the function w = χu ∈ C∞c (U).

Concerning the right hand-side, we have Pw = χPu + [P, χ]u where [P, χ] is of order 1 supported in
two different connected subsets of U :

• |x− x0| ∈ [r/2, r], where Φ ≤ e−λr/2 := ρ3. The corresponding term is bounded by∥∥eτΦ[P, χ]u
∥∥
L2(|x−x0|∈[r/2,r])

≤ Ceτρ3 ‖u‖H1(B(x0,r))

• |x− x0| ∈ [5r/2, 3r], where Φ ≤ e−λ5r/2 := ρ1. The corresponding term is bounded by∥∥eτΦ[P, χ]u
∥∥
L2(|x−x0|∈[5r/2,3r])

≤ Ceτρ1 ‖u‖H1(B(x0,3r))

The term corresponding to χPu is bounded by Ceτρ3 ‖Pu‖L2(B(0,3r)) since Φ ≤ ρ3 on supp(χ).
The (square root of the) right hand-side of (2.42) is estimated from below by

τ3/2
∥∥eτΦw

∥∥
L2 + τ1/2

∥∥eτΦ∇w
∥∥
L2 ≥ c0

∥∥eτΦ(χu)
∥∥
L2(|x−x0|∈[r,2r])

+ c0
∥∥eτΦ∇(χu)

∥∥
L2(|x−x0|∈[r,2r])

.

But since χ = 1 on |x− x0| ∈ [r, 2r], we have, for a different constant C

τ3/2
∥∥eτΦw

∥∥
L2 + τ1/2

∥∥eτΦ∇w
∥∥
L2 ≥ C

∥∥eτΦ∇u
∥∥
L2(|x−x0|∈[r,2r])

+ C
∥∥eτΦu

∥∥
L2(|x−x0|∈[r,2r])

≥ Ceτρ2

[
‖∇u‖L2(|x−x0|∈[r,2r]) + ‖u‖L2(|x−x0|∈[r,2r])

]
where ρ2 := e−2λr is chosen so that Φ ≥ ρ2 on the set {|x− x0| ∈ [r, 2r]}.
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Combining these estimates in (2.42), we finally obtain

eτρ2 ‖u‖H1(|x−x0|∈[r,2r]) ≤ Ce
τρ1 ‖u‖H1(B(x0,3r))

+ Ceτρ3

[
‖u‖H1(B(x0,r))

+ ‖Pu‖L2(B(x0,3r))

]
.

with ρ1 < ρ2 < ρ3. This gives

‖u‖H1(|x−x0|∈[r,2r]) ≤ Ce
−C1τ ‖u‖H1(B(x0,3r))

+ CeC2τ
[
‖u‖H1(B(x0,r))

+ ‖Pu‖L2(B(x0,3r))

]
.

with C1 = ρ2 − ρ1 > 0 and C2 = ρ3 − ρ2 > 0. Next, we apply the following Lemma of interpolation type,
for which we postpone the proof.

Lemma 2.4.4. Given C1, C2, C3, τ0 > 0, there exists C > 0 such that for all a, b, c ≥ 0, we have

a ≤ e−C1τ b+ eC2τ c, for all τ ≥ τ0
a ≤ C3b.

}
=⇒ a ≤ Cb1−δcδ, δ =

C1

C1 + C2
.

Applying this Lemma with

a = ‖u‖H1(|x−x0|∈[r,2r]) /C, b = ‖u‖H1(B(x0,3r))
, c =

[
‖u‖H1(B(x0,r))

+ ‖Pu‖L2(B(x0,3r))

]
,

and noticing that a ≤ b/C, we obtain, with a different constant C > 0,

‖u‖H1(|x−x0|∈[r,2r]) ≤ C ‖u‖
1−δ
H1(B(x0,3r))

[
‖u‖H1(B(x0,r))

+ ‖Pu‖L2(B(0,3r))

]δ
.

Moreover, we have, if C ≥ 1,

‖u‖H1(B(x0,r))
≤ ‖u‖1−δH1(B(x0,3r))

‖u‖δH1(B(x0,r))
≤ C ‖u‖1−δH1(B(x0,3r))

[
‖u‖H1(B(x0,r))

+ ‖Pu‖L2(B(0,3r))

]δ
.

This gives the expected result by summing up.

Proof of the Lemma 2.4.4. We minimize in τ . The minimum is reached for τ =
ln
(
bC1
cC2

)
C1+C2

. To simplify

(actually, it is just changing b by bC2/C1), we apply the formula for τ1 =
ln( bc )
C1+C2

. It gives, if τ1 ≥ τ0,

a ≤ e−
C1

C1+C2
ln( bc )b+ e

C2
C1+C2

ln( bc )c

≤
(
b

c

)−δ
b+

(
b

c

)1−δ

c = 2b1−δcδ.

where δ = C1

C1+C2
.

In the case τ1 ≤ τ0, this means b
c ≤ eτ0(C1+C2), so b ≤ C(τ0, C1, C2)c. So, the assumption a ≤ C3b

gives a ≤ C3b
1−δbδ ≤ Cb1−δcδ with a new constant depending on τ0, C1, C2, C3.

This gives the expected estimate in both cases with an appropriate constant C > 0.

2.4.3 Semi-global interpolation estimates for elliptic operators
Now, we want to obtain similar global estimates. This works since, as we shall see, interpolation estimates
like that of Theorem 2.4.3 “propagate well”.

Theorem 2.4.5 (Global quantitative estimates for real elliptic operators of order 2). Let Ω ⊂ Rn be a
connected open set. Let P be as in (2.35) with aij ∈ C∞(Ω) real-valued elliptic at all points of Ω, bk,
c ∈ L∞loc(Ω). Let K be a compact subset of Ω and ω be a non-empty open subset of Ω.

Then, there exists C > 0, δ ∈ (0, 1) so that

‖u‖H1(K) ≤ C
[
‖u‖H1(ω) + ‖Pu‖L2(Ω)

]δ
‖u‖1−δH1(Ω) (2.43)

for any u ∈ C∞(Ω).
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Note that, at this point, we are not able to dominate the full ‖u‖H1(Ω) norm. Indeed, we did not prove
anything near the boundary ∂Ω. This requires additional work, see Section 2.5 below.

Remark 2.4.6. Note that interpolation inequalities like (2.43) are trivial for δ = 0, and would be very
strong (but false!) for δ = 1. Actually, the larger δ is, the stronger Inequality (2.43) is. More precisely,
Inequality (2.43) for some δ0 implies the same inequality for all δ ∈ (0, δ0] (with the same constant C).

Indeed, since δ ≤ δ0, we can decompose ‖u‖H1(K) = ‖u‖
δ
δ0

H1(K) ‖u‖
1− δ

δ0

H1(B(x1,rx))where both exponent are
nonnegative. Using (2.43) with δ0 for the first term and ‖u‖H1(K) ≤ ‖u‖H1(Ω) for the second, we obtain,

‖u‖H1(K) ≤ C
([
‖u‖H1(ω) + ‖Pu‖L2(Ω)

]δ0
‖u‖1−δ0H1(Ω)

) δ
δ0

‖u‖
1− δ

δ0

H1(Ω)

≤ C
[
‖u‖H1(ω) + ‖Pu‖L2(Ω)

]δ
‖u‖1−δH1(Ω) ,

and (2.43) is valid for δ ≤ δ0. This will be used in the proof below.

Proof. Fix first x0 ∈ ω and r0 > 0 such that B(x0, r0) ⊂ ω. By compactness, it is enough to prove the
following statement: for any x ∈ K, there exist 0 < rx < r0, Cx > 0, δx ∈ (0, 1) so that B(x, rx) ⊂ Ω and

‖u‖H1(B(x,rx)) ≤ C
[
‖u‖H1(B(x0,r0)) + ‖Pu‖L2(Ω)

]δx
‖u‖1−δxH1(Ω) . (2.44)

Indeed, we recover K by a finite number of such balls K ⊂ ∪i∈IB(xi, rxi). Take C = maxi∈I Cxi and
δ = mini∈I δxi . According to Remark 2.4.6, Inequality (2.44) is still true with δxi replaced by δ (and Cxi
replaced by C), that is, for all i ∈ I,

‖u‖H1(B(xi,rxi ))
≤ C

[
‖u‖H1(B(x0,r0)) + ‖Pu‖L2(Ω)

]δ
‖u‖1−δH1(Ω) .

By summing up over i ∈ I and using the covering property, we would obtain

‖u‖H1(K) ≤ C
[
‖u‖H1(B(x0,r0)) + ‖Pu‖L2(Ω)

]δ
‖u‖1−δH1(Ω) .

We are thus left to prove (2.44) for any x ∈ K.
We may also assume ‖Pu‖L2(Ω) ≤ ‖u‖H1(Ω). Indeed, if not, the result is straightforward since the right

hand side is larger than ‖u‖H1(Ω).
We will need the following geometric Lemma that will be prove later on.

Lemma 2.4.7. Under the previous assumptions, let x0 and x1 ∈ Ω and r0 > 0. Then, there exist
r ∈ (0, r0], N ∈ N and a sequence of points yk, k = 0, · · · , N so that

• y0 = x0, yN = x1.

• B(yk+1, r) ⊂ B(yk, 2r).

• B(yk, 3r) ⊂ Ω.

Assuming this Lemma, we prove recursively the following property: there exist Ck and δk ∈ (0, 1) so
that

‖u‖H1(B(yk,r))
≤ Ck

[
‖u‖H1(B(x0,r))

+ ‖Pu‖L2(Ω)

]δk
‖u‖1−δkH1(Ω) . (2.45)

• The property is true for k = 0 for C = 1 and any δk ∈ [0, 1] since ‖u‖H1(B(x0,r))
≤ ‖u‖H1(Ω).

• Assume the property true for k < N . Theorem 2.4.3 applied at the point yk (which can be applied
since B(yk, 3r) ⊂ Ω) gives C > 0, 0 < δ < 1 so that

‖u‖H1(B(yk,2r))
≤ C

[
‖u‖H1(B(yk,r))

+ ‖Pu‖L2(B(yk,3r))

]δ
‖u‖1−δH1(B(yk,3r))

.

63



Since B(yk+1, r) ⊂ B(yk, 2r) and B(yk, 3r) ⊂ Ω, it gives

‖u‖H1(B(yk+1,r))
≤ C

[
‖u‖H1(B(yk,r))

+ ‖Pu‖L2(Ω)

]δ
‖u‖1−δH1(Ω) .

The assumption at step k and the fact that δ > 0 gives

‖u‖H1(B(yk+1,r))
≤ C

[
Ck

[
‖u‖H1(B(x0,r))

+ ‖Pu‖L2(Ω)

]δk
‖u‖1−δkH1(Ω) + ‖Pu‖L2(Ω)

]δ
‖u‖1−δH1(Ω) .

Since we have assumed ‖Pu‖L2(Ω) ≤ ‖u‖H1(Ω), we have

‖Pu‖L2(Ω) ≤
[
‖u‖H1(B(x0,r))

+ ‖Pu‖L2(Ω)

]δk
‖u‖1−δkH1(Ω) .

So, we are left with some different constant Ck+1

‖u‖H1(B(yk+1,r))
≤ Ck+1

[[
‖u‖H1(B(x0,r))

+ ‖Pu‖L2(Ω)

]δk
‖u‖1−δkH1(Ω)

]δ
‖u‖1−δH1(Ω)

≤ Ck+1

[
‖u‖H1(B(x0,r))

+ ‖Pu‖L2(Ω)

]δkδ
‖u‖1−δkδH1(Ω) .

So, it gives the result with δk+1 = δkδ.

Proof of Lemma 2.4.7. Since Ω is an open connected set of Rn, it is connected by arc and we can find
γ : [0, 1]→ Ω a continuous path in Ω so that γ(0) = x0, γ(1) = x1.

The interval [0, 1] is a compact set. Denote d = maxt∈[0,1](dist(γ(t),Ωc). We fix r = min{d/4, r0}. By
compactness, γ is also uniformly continuous on [0, 1]. So, there exists ε > 0 so that |t − t′| ≤ ε implies
|γ(t)− γ(t′)| ≤ r/2. We take N =

⌊
1
ε

⌋
+ 1 and define

yk = γ(kε) for k = 0, · · · , N − 1

yN = x1 = γ(1).

This fulfills the expected criterium. For instance, B(yk+1, r) ⊂ B(yk, 2r) is fulfilled if |yk+1−yk| < r. This
works since for k ≤ N −2, |yk+1−yk| = |γ((k+ 1)ε)−γ(kε)| ≤ r/2 by the uniform continuity assumption.
For the last step, k = N − 1, the same argument applies since yN = γ(1) and yN−1 = γ(b1/εc ε). We
observe that |1−

⌊
1
ε

⌋
ε| ≤ ε because

∣∣ 1
ε −

⌊
1
ε

⌋∣∣ ≤ 1 by definition.

Below, when using estimates like those of Theorem 2.4.5, we shall need to replace local H1 norms of u,
by local L2 norms. This is possible at the cost of an additional L2 estimate of Pu. This uses the ellipticity
of P .

Lemma 2.4.8 (Local elliptic estimates). Let Ω ⊂ Rn and P ∈ Diff2(Ω) be elliptic with real principal
symbol. Then, for all U, Ũ ⊂ Ω open sets with U compact and U ⊂ Ũ , there exists C > 0 such that for all
u ∈ C∞(Ω), we have

‖u‖H1(U) ≤ C ‖u‖L2(Ũ) + C ‖Pu‖L2(Ũ) .

Proof. First recall (see Example 1.3.12) that P can be rewritten as

P =

n∑
i,j=1

Dia
ij(x)Dj +R1, R1 ∈ Diff1(Ω),

where aij = aji. Denoting A = (aij)i,j , this may be rewritten, with b ∈ C∞(Ω;Cn) and c ∈ C∞(Ω;C), as

P = −div(A(x)∇·) + b(x) · ∇+ c(x).

Now, we let χ ∈ C∞c (Ũ) have χ = 1 on U (supp(χ) may be taken compact since U is), and remark that

‖u‖2H1(U) ≤ ‖χ∇u‖
2
L2(Ω) + ‖u‖2L2(U) . (2.46)
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Hence, it suffices to estimate ‖χ∇u‖L2(Ω). Using the uniform ellipticity of the matrix A(x), and integrating
by parts, we have

‖χ∇u‖2L2(Ω) =

∫
Ω

χ2|∇u|2 ≤ C Re

∫
Ω

χ2A∇u · ∇u = −C Re

∫
Ω

div(χ2A∇u)u.

We next write

−div(χ2A∇u) = −χ2 div(A∇u)− 2χ∇χ ·A∇u = χ2Pu− χ2(b(x) · ∇u+ c(x)u)− 2χ∇χ ·A∇u

and deduce, using the Cauchy-Schwarz inequality,

‖χ∇u‖2L2(Ω) ≤ C
∫

Ω

χ2|Pu||u|+ C

∫
Ω

∣∣χ2(b(x) · ∇u+ c(x)u)u
∣∣+ C

∫
Ω

∣∣uχ∇χ ·A∇u∣∣
≤ C

(
‖χPu‖L2(Ω) ‖χu‖L2(Ω) + ‖χ∇u‖L2(Ω) ‖χu‖L2(Ω)

+ ‖χu‖2L2(Ω) + ‖χ∇u‖L2(Ω) ‖u∇χ‖L2(Ω)

)
.

Recalling that supp(χ) ⊂ Ũ and suppχ is compact, we have obtained, for all ε > 0, the estimate

‖χ∇u‖2L2(Ω) ≤ C ‖Pu‖
2
L2(Ũ) + ε ‖χ∇u‖2L2(Ω) +

C

ε
‖u‖2L2(Ũ) ,

which yields the sought result when taking ε = 1/2 and recalling (2.46).

2.4.4 Application to tunneling estimates for eigenfunctions
From the quantitative estimate of Theorem 2.4.5, we can already get some applications about spectral
estimates of eigenfunctions of second order elliptic operators. We first describe the context.

We will denote Tn = Rn/Zn the n-dimensional torus. This can be seen as [0, 1]n with the necessary
identification of points. Functions on Tn can be seen as functions on Rn with periodic boundary conditions.
Let A = (aij)ni,j=1 a symmetric matrix with aij ∈ C∞(Tn) real-valued. We define the operator −∆Au =

−div(A∇u) = −
∑
i,j ∂i

(
aij∂ju

)
. Assume also that ∆A is elliptic, that is there exists C so that

n∑
i,j=1

aij(x)ξiξj ≥ C|ξ|2, for all (x, ξ) ∈ Ω× Rn.

The operator ∆A is also symmetric, that is (∆Au, v)L2(Tn) = (u,∆Av)L2(Tn) for u, v ∈ C∞(Tn).
We can check that it can be extended to a positive self-adjoint operator on L2(Tn, dx), with domain

H2(Tn). Therefore, since the embedding of H2(Tn) into L2(Tn) is compact, the resolvent (−∆A + Id)−1

is well defined and compact on L2.
All this allows to define an orthonormal basis of L2(Tn). There exist some functions ψi ∈ C∞(Tn),

λi ∈ R (actually λi ≥ 0 since −∆A is positive) so that

• (ψi)i∈N is an orthonormal basis of the Hilbert space L2(Tn)

• −∆Aψi = λiψi.

We refer e.g. to [Bre83] Chapters VI and IX for more details about this construction.

Remark 2.4.9. The same construction holds for a general compact Riemannian manifold (M, g). Let
us recall briefly objects and notations from Riemannian geometry. We denote by 〈·, ·〉g = g(·, ·) the inner
product in TM. Remark that this notation omits to mention the point x ∈M at which the inner product
takes place: this allows to write 〈X,Y 〉g as a function onM (the dependence on x is omitted here as well)
when X and Y are two vector fields onM. We also denote for a vector field X, |X|2g = 〈X,X〉g.

We recall that the Riemannian gradient ∇g of a function f is defined by

〈∇gf,X〉g = df(X), for any vector field X.
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For a function f on M, we denote by
∫
f =

∫
M f(x)dVolg(x) its integral on M, where dVolg(x) is the

Riemannian density. We denote by divg the associated divergence, defined on a vector field X by∫
udivgX = −

∫
〈∇gu,X〉g, for all u ∈ C∞c (Int(M)).

We denote by ∆g = divg∇g the associated (nonpositive) Laplace-Beltrami operator.
Let us now recall how these objects write in local coordinates. In coordinates, for f a smooth function

and X =
∑
iX

i ∂
∂xi

, Y =
∑
i Y

i ∂
∂xi

smooth vector fields onM, we have

〈X,Y 〉g =

n∑
i=1

gijX
iY j ,

∇gf =

n∑
i,j=1

gij(∂jf)
∂

∂xi
,∫

f =

∫
f(x)

√
det g(x)dx,

divg(X) =

n∑
i=1

1√
det g

∂i

(√
det gXi

)
,

∆gf =

n∑
i,j=1

1√
det g

∂i

(√
det ggij∂jf

)
.

where (g−1)ij = gij . Note that in particular, we have in any local chart ∆g ∈ Diff2 with principal symbol∑n
i,j=1 g

ijξiξj , which is real and elliptic.
Recall also that for f, h smooth functions and X =

∑
iX

i ∂
∂xi

a smooth vector field onM, we have

∇g(fh) = (∇gf)h+ f(∇gh),

divg(fX) = 〈∇gf,X〉g + f divg(X),

The following result states a weak delocalization property of eigenfunctions of −∆g.

Theorem 2.4.10 (Tunneling estimates for eigenfunctions). Assume (M, g) is a compact connected Rie-
mannian manifold, and let ω ⊂ M be a nonempty open subset. Then, there exist C and κ > 0 such that
for all (λ, ψλ) ∈ R+ ×H2(M) with

−∆gψλ = λψλ,

we have

‖ψλ‖2L2(M) ≤ Ce
κ
√
λ ‖ψλ‖2L2(ω) .

This is a kind of observability estimate for eigenfunctions: the partial observation of eigenfunctions
on the small set ω allows one to recover at least an C−1e−κ

√
λ proportion of its total energy. Another

formulation is to say that eigenfunctions leave at least an exponentially small mass on any nonempty open
set. This theorem shall be generalized later on to linear combinations of eigenfunctions.

Proof. Let us consider the manifold R ×M, in which we denote the variable (x0, x). The operator P =
−∂2

x0
−∆g is a second order differential operator with real principal symbol, which reads ξ2

0 +
∑n
i,j=1 g

ijξiξj ,
hence is elliptic.

Define uλ(x0, x) = ex0

√
λψλ(x). We verify that Puλ = −λuλ − ex0

√
λ∆gψλ = 0. We want to apply

Theorem 2.4.5 to P and uλ on an open set Ω = (1/2, 5/2)×M and K = [1, 2]×M. Note that we are not
exactly in the configuration of the Theorem since R×M is not an open set of Rn. But it can be checked
that Theorem 2.4.5 holds equally well on a manifold (being a consequence of a local result, proved in local
charts♣ ).
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A combination of Theorem 2.4.5 (with K = [1, 2]×M, Ω = (1/2, 5/2)×M) with Lemma 2.4.8 yields
the existence of C > 0, δ ∈ (0, 1) such that

‖uλ‖H1([1,2]×M) ≤ C
[
‖uλ‖L2((1,2)×ω) + ‖Puλ‖L2((0,3)×M)

]δ
‖uλ‖1−δH1((1/2,5/2)×M) .

Using again Lemma 2.4.8 for the last term in the right handside, we obtain

‖uλ‖H1([1,2]×M) ≤ C
[
‖uλ‖L2((1,2)×ω) + ‖Puλ‖L2((0,3)×M)

]δ (
‖uλ‖L2((0,3)×M) + ‖Puλ‖L2((0,3)×M)

)1−δ

and, since Puλ = 0, this yields

‖uλ‖L2([1,2]×M) ≤ C ‖uλ‖
δ
L2((1,2)×ω) ‖uλ‖

1−δ
L2((0,3)×M) (2.47)

But on [1, 2], we have e
√
λs ≥ e

√
λ. So ‖uλ‖L2([1,2]×M) ≥ e

√
λ ‖ψλ‖L2(M). Similarly, we have

‖uλ‖L2((1,2)×ω) ≤ e
2
√
λ ‖ψλ‖L2(ω)

and
‖uλ‖L2((0,3)×M) ≤

√
3e3
√
λ ‖ψλ‖L2(M)

Combining the above three estimates in (2.47), we finally obtain

e
√
λ ‖ψλ‖L2(M) ≤ C

(
e2
√
λ ‖ψλ‖L2(ω)

)δ (
e3
√
λ ‖ψλ‖L2(M)

)1−δ
.

This rewrites as
‖ψλ‖δL2(M) ≤ Ce

(2δ+3(1−δ)−1)
√
λ ‖ψλ‖δL2(ω) ,

which gives the expected result.

To conclude this section, let us discuss briefly the optimality of this lower bound. The rate ec
√
λ is

not always optimal. This can be seen in dimension one: on T1 with the flat metric, the L2 norm of
eigenfunctions (namely, ψk(x) = e±ikx and combinations of ±) are uniformly bounded from below on any
nonempty open set.

However, there are some particular geometric situations (M, g, ω) where it is optimal. The next
proposition provides with such an example.

There are also geometries in which c(λj) = ec
√
λj can be replaced by a uniform constant, or sometimes

a power of λj or log(λj). The general question of making the link between the geometric properties of
(M, g, ω) and the appropriate c(λ) is a widely open problem in spectral geometry.

Proposition 2.4.11. ConsiderM = S2 with

S2 = {(x1, x2, x3) ∈ R3, x2
1 + x2

2 + x2
3 = 1} = {x ∈ R3, |x| = 1},

endowed with the metric g inherited from the Euclidean metric on R3. Assume ω ⊂ S2 is such that
ω ∩ {x3 = 0} = ∅. Then, there are constants C, c > 0 and a sequence of functions (ψk)k∈N such that

−∆gψk = k(k + 1)ψk, ‖ψk‖L2(S2) = 1,

and
‖ψk‖L2(ω) ≤ Ce

−ck.

The eigenfunctions ψk constructed below are called equatorial spherical harmonics and are known to
concentrate exponentially on the equator (which is a geodesic curve) given by x3 = 0.
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Proof. We set
uk = Pk|S2 , Pk(x1, x2, x3) = (x1 + ix2)k,

and first remark that we have uk ∈ C∞(S2). Next, we work in a particular coordinate set. We denote by
N = (0, 0, 1) and S = (0, 0,−1), the north and south poles, and have coordinates :

(0, π)× S1 → S2 \ {N,S}
(s, θ) 7→ (sin s cos θ, sin s sin θ, cos s)

Remark that s(x) = distg(x,N), for x ∈ S2. In these coordinates, the metric g is given by ds2 +(sin s)2dθ2,
the Riemannian volume element is dVolg = sin sdsdθ, the Laplace-Beltrami operator is given by

∆g =
1

sin(s)
∂s sin(s)∂s +

1

sin2(s)
∂2
θ ,

and the sequence uk is defined by

uk(s, θ) = (sin s cos θ + i sin s sin θ)k = sin(s)keikθ.

Let us check by a direct computation that this is an eigenfunction. We have

1

sin2(s)
∂2
θuk = −k2eikθ sin(s)k−2

and

1

sin(s)
∂s sin(s)∂suk =

eikθ

sin(s)
∂s
(
k cos(s) sin(s)k

)
=

keikθ

sin(s)

(
k cos(s)2 sin(s)k−1 − sin(s)k+1

)
= eikθ

(
k2(1− sin(s)2) sin(s)k−2 − k sin(s)k

)
.

Adding these two identities yields

∆guk = −k2eikθ sin(s)k − keikθ sin(s)k = −k(k + 1)uk, (2.48)

and uk indeed satisfies the eigenfunction equation for the eigenvalue k(k+1) on S2 \{N,S}, that is, almost
everywhere on S2. Now compute

1

2π
‖uk‖2L2(S2) =

1

2π

∫
S2

|uk(x)|2dVolg(x) =
1

2π

∫
(0,π)×S1

(sin s)2k+1dsdθ

=

∫ π

0

(sin s)2k+1ds =

∫ 1

−1

(1− x2
3)kdx3 =

∫ 1

−1

ek log(1−x2
3)dx3

= (1 +O(
1

k
))

∫
R
e−kx

2
3dx3 =

√
π

k
(1 +O(

1

k
)),

and hence

ck := ‖uk‖L2(S2) ∼ 21/2π3/4k−1/4, as k → +∞. (2.49)

Finally, we have

‖uk‖2L2(B(S,r)) = ‖uk‖2L2(B(N,r)) = 2π

∫ r

0

(sin s)2k+1ds ≤ π

k + 1
r2k+2,

which proves that ‖uk‖2L2(ω) ≤ Ce−κk as soon as ω ⊂ B(N, r) ∪ B(S, r) with r < 1, which is the case if
ω ∩ {x3 = 0} = ∅. Combined with (2.48), (2.49), and the fact that uk ∈ C∞(S2), this proves the sought
result for ψk := c−1

k uk.
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2.5 Estimates at the boundary and applications
♣ Beware! this section needs a strong lifting (and has not been taught in class). En particulier,
il faut changer Ψ (surfaces) et Φ (carleman)

In this section, we prove quantitative unique continuation estimates (namely interpolation inequalities)
for elliptic operators near a boundary (assuming e.g. Dirichlet boundary conditions). This follows from
Carleman estimates near the boundary. This allows to generalize the tunneling estimate of Theorem 2.4.10
to linear combinations of eigenfunctions, and to prove the observability/controllability of the heat equation.

2.5.1 Estimates at the boundary for elliptic operators with Dirichlet condi-
tions

Theorem 2.5.1 (Global quantitative estimates for real elliptic operator of order 2). Let Ω connected with
smooth boundary, and P be as in Theorem 2.3.2. Let Γ ⊂ ∂Ω a non empty open subset of the boundary.
Let K be a compact subset of Ω.

Then, there exists C > 0, 0 < δ < 1 so that

‖u‖H1(K) ≤ C
[
‖∂νu‖L2(Γ) + ‖Pu‖L2(Ω)

]δ
‖u‖1−δH1(Ω)

for any u ∈ C∞(Ω) with u = 0 on ∂Ω.

Obtaining the previous estimates follows a similar path as previously, except that we need to prove
some Carleman estimates until the boundary. By some change of variables, it is always possible (see
Lemma ??) to get to the following situation.

We decompose x ∈ Rn with x = (x′, xn) x′ ∈ Rn−1, xn ∈ R. The boundary ∂Ω becomes the set
{xn = 0} and P is of the form D2

xn + r(x,Dx′) where r(x,Dx′) is a family of operator depending on
x = (x′, xn), but with derivatives only in x′.

We denoteKr0 = Rn+∩B(x0, r0) and C∞c (Kr0) is the set of functions in C∞(Rn+) supported in B(x0, r0).
The index + in the norms means that it is taken on Rn+.

Theorem 2.5.2 (Local Carleman estimate). Let r0 > 0 and P = D2
xn +r(x,Dx′) be a differential operator

of order two on a neighborhood of Kr0 , with real principal part, where r(x,Dx′) is a smooth xn family of
second order operators in the (tangential) variable x′.

Let ψ be quadratic polynomial such that ψ′xn 6= 0 on Kr0 and

{p, {p, ψ}} (x, ξ) > 0, if p(x, ξ) = 0, x ∈ Kr0 , ξ 6= 0; (2.50)
1

iτ
{pψ, pψ}(x, ξ) > 0, if pψ(x, ξ) = 0, x ∈ Kr0 , τ > 0, (2.51)

where pψ(x, ξ) = p(x, ξ + iτ∇ψ).
Then, there exist C > 0, τ0 > 0 such that for any τ > τ0, we have for all u ∈ C∞c (Kr0/4)

τ‖eτψu‖21,+,τ ≤ C
(∥∥eτΨPu

∥∥2

0,+
+ τ3|(eτΨu)|xn=0|20

+τ |
(
D(eτΨu)

)
|xn=0

|20
)
. (2.52)

If moreover ∂xnψ > 0 for (x′, xn = 0) ∈ Kr0 , then we have for all u ∈ C∞c (Kr0/4) such that u|xn=0 = 0,

τ‖eτΨu‖21,+,τ ≤ C
∥∥eτΨPu

∥∥2

0,+
. (2.53)

Note that the Theorem applies to real elliptic operators, but also to wave type operators with the
associated pseudoconvexity condition.

We give a proof of this theorem in the appendix. The general idea is the following.
We would like to apply the same reasoning as before. Yet, we have to be more careful about the Gårding

inequality in the case of boundary. One possibility is to use symbolic calculus only in the tangential variable
x′ where integration by parts are allowed without boundary terms. But the integration by parts for D2

n

and its conjugated operator produce some boundary terms that we need to take into account.
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How to deal with boundary terms?
In the variable xn, the operator is D2

n and the conjugated operator is explicit (Dn + iτ(∂nψ))2 =
D2
n − τ2(∂nψ)2 + 2iτ(∂nψ)Dn − (∂2

nψ). The integration by parts can be explicitely computed. What is
not a priori obvious is that there is no term of order 2 and 3.

What will save us is that fact that the real part and the imaginary part don’t have the same number
of derivative in xn. Decomposing Pψ = Qr + iQi as before, we check that Qr has 2 derivatives in xn (D2

n)
while Qi only has one (2iτ(∂nψ)Dn).

Let us look at each term, using the integration by part formula (f,Dng) = (Dnf, g) + i(f, g)xn=0

• integrating by part of (Qru,Qiu) = (QiQru, u)+boundaryterms: the worst terms should come from
the integration by part of (D2

nu, (∂nψ)Dnu) and we expect the boundary term to be of the form
i(D2

nu, (∂nψ)u)xn=0. For instance, the boundary term corresponding to the to this should be of the
form

• integrating by part of (Qiu,Qru) = (QrQiu, u)+boundaryterms: the worst terms should come from
the integration by part of

((∂nψ)Dnu,D
2
nu) = (Dn [(∂nψ)Dnu] , Dnu) + i((∂nψ)Dnu,Dnu)xn=0

= (D2
n [(∂nψ)u] , Dnu) + i(Dn [(∂nψ)Dnu] , u)xn=0 + i((∂nψ)Dnu,Dnu)xn=0

This gives the boundary terms

i((∂nψ)D2
nu, u)xn=0 + i((Dn∂nψ)Dnu, u)xn=0 + i((∂nψ)Dnu,Dnu)xn=0.

The two terms of order 2 cancel. So we are left with some terms of order 1 that come into the boundary
terms that can be handled by the Carleman method. The true computation contains some more terms,
but with less derivative in x1.

How to deal with interior terms?
The interior terms are more or less the same as in the boundaryless case. So, we could expect that

their symbol satisfy the same positivity condition. Yet, we would like to use only a tangential Gårding
inequality, that is only in the derivatives in the variable x′ (with symbol only depending on the cotangent
variable ξ′.)

The idea is to perform a kind of euclidian division of the commutator i[Qr, Qi] by Dn. Indeed, we can
factorize i[Qr, Qi] = τ

[
C0D

2
n + C1Dn + C2

]
where Ci are tangential operators (we have also used that Qi

can be written τQ̃i). Moreover, since Qr contains some derivative in xn with main coefficient D2
n while the

main derivative of Qi in xn is 2iτ(∂nψ)Dn where (∂nψ) 6= 0. This allows to perform a similar "euclidian
division" with Qr, Qi which allows to write

i[Qr, Qi] = τD0Q
r +D1Q

i + τD2.

Since the terms τD0Q
r are in some sense weaker than ‖Qr‖L2 (and the same for Qi), we are left with

some tangential operator. D2 is not always positive, but the final task is to transfer the information we
have on pψ to this tangential operator.

2.5.2 Application to spectral estimates II: linear combinations of eigenfunc-
tions

Using the boundary estimates of Theorem 2.5.1, it is possible to get a more precise result. Actually, the
previous result remain true not only for eigenfunctions, but also for finite sum of eigenfunction. Since now,
the stability estimate is still true for an open set with boundary, we state the result for an elliptic operator
P with the Dirichlet boundary conditions. The framework will be quite similar to the previous one

Let Ω be a smooth compact open set with boundary. Let A = (aij)ni,j=1 a symmetric matrix with
aij ∈ C∞(Ω) real-valued. We define the operator Pu = −div(A∇u) = −

∑
i,j ∂i

(
aij∂ju

)
. We consider

(and we will still denote it P the selfadjoint extension of P associated to the Drichlet boundary condition,
that is u = 0 on ∂Ω. We use the same notation ψj and λj the eigenfunctions and eigenvalues.
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Theorem 2.5.3. Under the previous assumptions on P and the related ψi, λi. Let ω be an open subset
of Ω. There exists C and c > 0 so that we have the estimate uniform in λ

‖u‖2L2(Ω) ≤ Ce
c
√
λ ‖u‖2L2(ω) .

for any u =
∑
λj≤λ ujψj.

Proof. As before, we consider the elliptic operator Q = −∂2
s + P the operator defined on R+

s × Ω.

Define f(s, x) =
∑
i,λj≤λ uj

sinh(
√
λjs)√
λj

ψj(x) and we easily verify that it satisfies Qf = 0 and f = 0 on

R× ∂Ω and {0} ×Ω. Theorem 2.5.1 gives, if we take Γ = {0} × ω. Note that we can assume without loss
of generality that ω is far from ∂Ω, in order to avoid problems with "corners" at the points {0} × ∂Ω. A
weak form of the inequality is then

‖f‖L2([0,1]×Ω) ≤ C ‖∂sf‖
δ
L2({0}×ω) ‖f‖

1−δ
H1([0,2[×Ω)

We have ∂sf(0, x) = u(x), so ‖∂sf‖L2({0}×ω) = ‖u‖L2(ω).
As before, using Parseval identity

‖f‖2H1([0,2[×Ω) ≤ ‖f‖2L2([0,2[×Ω) + ‖∂sf‖2L2([0,2[×Ω) +

∫ 2

0

(−∆f, f)L2(Ω)

≤ C

∫ 2

0

∑
λj≤λ

|uj |2
(

cosh(
√
λjs)

2 + sinh(
√
λjs)

2
)
ds

≤ Cec
√
λ
∑
λj≤λ

|uj |2 ≤ Cec
√
λ ‖u‖L2(Ω) .

And similarly

‖f‖2L2([0,1[×Ω) ≥ ‖f‖2L2([0,1[×Ω)

≥ C

∫ 1

0

∑
λj≤λ

|uj |2
sinh(

√
λjs)

λj

2

ds

≥ C
∑
λj≤λ

|uj |2
∫ √λj

0

sinh(y)2

λ
3/2
j

dy ≥ C ′ ‖u‖2L2(Ω) .

So, we obtain, with some different constants C, c

‖u‖L2(Ω) ≤ Ce
c
√
λ ‖u‖δL2(ω) ‖u‖

1−δ
L2(Ω) .

This gives the result.

This type growth of the type e
√
λ is optimal whatever the geometry if ω 6= Ω. See [LRL12].

2.5.3 Application to the controllability of the heat equation
Our previous Theorem gives immediatly the following corollary for solutions of the heat equation at low
frequency.

Corollary 2.5.4. Under the previous assumptions on P and the related ψi, λi. Let ω be an open subset
of Ω. There exist C and c > 0 so that we have the estimate uniform in λ ≥ 0 and T > 0

‖u(T )‖2L2(Ω) ≤ Ce
c
√
λ 1

T

∫ T

0

‖u(t)‖2L2(ω) dt,

for any f =
∑
λj≤λ fjψj with u solution of the heat equation ∂tu−∆u = 0 on [0, T ]× Ω

u = 0 on [0, T ]× ∂Ω
u(0, x) = f(x) on Ω
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Proof. The decay of the energy gives ‖u(T )‖2L2(Ω) ≤ ‖u(t)‖2L2(Ω) for any 0 ≤ t ≤ T . Moreover, for any

t ∈ [0, T ], the spectral estimates can be written ‖u(t)‖2L2(Ω) ≤ Cec
√
λ ‖u‖2L2(ω). Integrating in time gives

the previous estimates and using

T ‖u(T )‖2L2(Ω) ≤
∫ T

0

‖u(t)‖2L2(Ω) ≤ Ce
c
√
λ

∫ T

0

‖u‖2L2(ω) .

We will prove some observability estimate for the heat equation on a bounded domain. It is known
that some observability estimates are equivalent to some result of control.

We have chosen to prove the observability and then to deduce the related result of control.
In the original paper, the idea was the following:

• Use the "observability inequality" of Theorem 2.5.3 to get some result about control of the low
frequency up to λ in time T/4 with a cost ≈ 4

T e
√
λ. This allows to control the λ first frequency to

zero.

• Use the decay of the heat equation on the remaining eigenvalues to get decay of e−λT/4 in time T/4.

• Iterate the result on dyadic times and tending to T .

The important fact is that the power 1/2 in λ in ec
√
λ is strictly smaller than the exponential decay e−λT/4.

We will work directly on the observability estimate, but still using the decay provided by the heat equation.

Theorem 2.5.5 (Observability for the heat equation). Let ω ⊂ Ω a non empty open set and T > 0. Then,
there exists C > 0 so that we have the estimate

‖u(T )‖2L2 ≤ C
∫ T

0

‖u‖2L2(ω)

for any u solution of  ∂tu−∆u = 0 on [0, T ]× Ω
u = 0 on [0, T ]× ∂Ω

u(0, x) = u0(x) on Ω

with u0 ∈ L2(Ω).

Proof. The idea is that our spectral estimate gives good estimates only when there are few high frequencies,
that is after the decay of the heat operator have operated, that is close to times T .

We will divide the interval [0, T ] as the union of the intervals [Tk+1, Tk] with T0 = T , Tk+1 = Tk−T2−k.
We check that Tk converges to T −

∑
k∈N∗ T2−k = 0. To simplify the notations, we denote Lk = T2−k the

length of the interval.
For each interval [Tk+1, Tk], we will select a frequency cutoff µk and decompose

u = uk,L + uk,H =
∑
λj≤µk

+
∑
λj>µk

We will cut [Tk+1, Tk] in two pieces, [Tk+1, Tk+1 + Lk/2] where we only use the damping and [Tk+1 +
Lk/2, Tk] where we observe (using that the high frequency have been damped). We apply Corollary 2.5.4
on [Tk+1 + Lk/2, Tk]

‖uk,L(Tk)‖2L2(Ω) ≤ Ce
c
√
µk

2

Lk

∫ Tk

Tk+1+Lk/2

‖uk,L(t)‖2L2(ω) dt. (2.54)

So, by triangular inequality, noticing that the error we do from the cut off in frequency is small. For low
frequencies, we simply write ‖uk,L(t)‖L2(ω) ≤ ‖u(t)‖L2(ω) + ‖uk,H(t)‖L2(ω) where, for high frequencies,

‖uk,H(t)‖L2(ω) ≤ ‖uk,H(t)‖L2(Ω) ≤ ‖uk,H(Tk+1 + Lk/2)‖L2(Ω) ≤ e
−µkLk/2 ‖u(Tk+1)‖L2(Ω) (2.55)
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where we have used the damping of high frequency.
Moreover, we have similarly

‖uk,H(Tk)‖L2(ω) ≤ e
−µkLk/2 ‖u(Tk+1)‖L2(Ω) . (2.56)

So, putting together (2.54), (2.55) and (2.56), we get

‖u(Tk)‖2L2(Ω) ≤ Cec
√
µk

2

Lk

∫ Tk

Tk+1+Lk/2

‖u(t)‖2L2(ω) dt+ Cec
√
µke−µkLk/2 ‖u(Tk+1)‖L2(Ω)

≤ Cec
√
µk

2

Lk

∫ T

0

‖u(t)‖2L2(ω) dt+ Cec
√
µke−µkLk ‖u(Tk+1)‖2L2(Ω) .

Now, we can choose µk. Recall that Lk = T2−k converges to zero. Pick for instance, µk =
√
C1L

−2
k with

C1 large. We have µkLk =
√
C1
√
µk and µk+1 = 2µk. If C1 is large enough, we have

Cec
√
µke−µkLk ≤ e−3c

√
µk+1 .

Indeed,

−c√µk + µkLk − 3c
√
µk+1 =

√
µk

(√
C1 − c(1 + 3

√
2)
)

= C12k
(
C1 − c(1 + 3

√
2)
)
.

This can be made arbitrary large uniformly for k ∈ N. Once C1 and µk are fixed, we have one constant C
so that

ec
√
µk

2

Lk
≤ Ce2c

√
µk

So, we obtain

‖u(Tk)‖2L2(Ω) ≤ Ce2c
√
µk

∫ T

0

‖u(t)‖2L2(ω) dt+ e−3c
√
µk+1 ‖u(Tk+1)‖2L2(Ω) .

e−3c
√
µk ‖u(Tk)‖2L2(Ω) ≤ Ce−c

√
µk

∫ T

0

‖u(t)‖2L2(ω) dt+ e−3c
√
µk+1 ‖u(Tk+1)‖2L2(Ω) .

Denoting zn = e−3c
√
µk ‖u(Tk)‖2L2(Ω), we get

zn − zn+1 ≤ Ce−c
√
µk

∫ T

0

‖u(t)‖2L2(ω) dt.

We recognize a telescopic series and that e−c
√
µk is summable. So, by summing up, we get with a new

constant, uniform in k ∈ N,

e−3c
√
µ0 ‖u(T )‖2L2(Ω) − e

−3c
√
µk ‖u(Tk)‖2L2(Ω) ≤ C̃

∫ T

0

‖u(t)‖2L2(ω) dt

Since ‖u(Tk)‖L2(Ω) is bounded, e−3c
√
µk ‖u(Tk)‖2L2(Ω) converges to zero, which gives the result.

Theorem 2.5.6 (Control to zero of the heat equation). Let ω ⊂ Ω a non empty open set and T > 0. Let
u0 ∈ L2(Ω). Then, there exists g ∈ L2([0, T ], L2(ω)) so that the solution of ∂tu−∆u = g on [0, T ]× Ω

u = 0 on [0, T ]× ∂Ω
u(0, x) = u0(x) on Ω

(2.57)

satisfies u(T ) = 0.
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Proof. We consider the dual to the heat equation, v is a solution of −∂tv −∆v = 0 on [0, T ]× Ω
v = 0 on [0, T ]× ∂Ω

v(T, x) = vT (x) on Ω
(2.58)

This is actually exactly the backward heat equation. It is made interesting, because at least for smooth
solutions u and v with Dirichlet boundary conditions, we have the formula that can be easily obtained by
multiplying the equation (2.57) by v (consider v real-valued for simplicity), integrating over [0, T ]×Ω and
integrating by parts ∫

Ω

u(T )v(T )−
∫

Ω

u(0)v(0) =

∫ T

0

∫
Ω

gv.

The formula can also be extended to the case where u0 ∈ L2(Ω), g ∈ L2([0, T ];L2(Ω)) , vT ∈ L2(Ω) by a
density argument.

Our hope if u(T ) = 0 would be to get
∫ T

0
gv =

∫
Ω
u0v(0). Reciprocally, we can check that if

∫ T
0
gv =∫

Ω
u0v(0) for any solution of (2.58) with vT ∈ L2(Ω), then u(T ) = 0.
Now, consider the quadratic form

a(vT , ṽT ) =

∫ T

0

∫
ω

vṽdx dt.

where v, ṽ are the associated solutions to (2.58). a is well defined for vT , ṽT ∈ L2(Ω) and defines a positive
quadratic form. Our observability estimates says that it is a scalar product. Yet, it is weaker than the
L2(Ω) norm. We define the completion H of L2(Ω) with respect to this norm.

Define the linear form

l(vT ) =

∫
Ω

u0v(0).

Our observability estimates can be written

‖v(0)‖2L2(Ω) ≤ C
∫ T

0

∫
ω

|v|2dx dt.

This says exactly that l is linear continuous in H, since u0 ∈ L2(Ω). By the Riesz representation (or
Lax-Milgram), there exists vu0

T ∈ H so that

a(vT , v
u0

T ) = l(vT )

for all vT ∈ H.
The application θ : L2(Ω) 7→ L2([0, T ] × ω) defined by θ(vT ) = v|[0,T ]×ω where v is solution of (2.58)

is well defined in L2(Ω), but also bounded for the norm a on H. Therefore, it can be extended to H.
Take g = θ(vu0

T ) ∈ L2([0, T ]× ω). By choice, we have∫ T

0

∫
Ω

gθ(vT ) = l(vT )

for any vT ∈ H. If we take in particular vT ∈ L2(Ω), this gives∫ T

0

∫
Ω

gθ(vT ) =

∫
Ω

u0v(0)

for v solution of (2.58). This gives the expected result.
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2.6 Further results and problems

2.6.1 The general Theorem of Hörmander
Remark 2.6.1 (Regarding the Carleman estimate). In the elliptic case, the "trick" of factorisation by τ
of the imaginary part of QI can be avoided. Indeed, close to {τ = 0} the symbol pΦ is actually close to p
and is therefore non zero.

Note that a more general assumption for treating the behavior of {pΦ, pΦ} close to {τ = 0} is to use
the principal normality assumption

|{p, p}| ≤ C|p||ξ|m−1.

The inequality is obviously fulfilled in the following two situations:

• elliptic operators (not necessarily with real-valued coefficients) in which case the ellipticity implies
|p||ξ|m−1 ≥ C|ξ|2m−1

• operators with real-valued principal symbol in which case {p, p} = 0.

In the more general case of principal normality, for the behavior of 1
iτ {pΦ, pΦ}, close to τ = 0, the inequality

allows to take advantage of the term |pφ|2 for proving some inequality related to (2.3). In that case, a
variant of Lemma 2.1.6 remains true, but only close to the set {pΦ = 0}.

We refer to Section 2.6.1 for the statemenent of the Theorem and to Hörmander [Hör94, Sections 28.3-
28.4] for the proof.

Theorem 2.6.2 (Hörmander’s theorem). Let Ω an open set of Rn and x0 ∈ Ω. Let P be a differential
operator of order m, possibly having complex-valued coefficients, having C∞(Ω) principal symbol and all
coefficients in L∞loc(Ω). Assume that P is principally normal, that is the principal symbol p of P satisfies:
for any compact K of Ω, there is C > 0 such that

|{p, p}| ≤ C|p||ξ|m−1.

for all (x, ξ) ∈ K × Rn.
Let Φ ∈ C2(Ω) real-valued so that ∇Φ(x0) 6= 0. Assume that it satisfies

Re {p, {p,Φ}} (x0, ξ) > 0, if p(x0, ξ) = {p,Φ}(x0, ξ) = 0 and ξ 6= 0;

1

iτ
{pΦ, pΦ}(x0, ξ, τ) > 0, if pΦ(x0, ξ, τ) = {pΦ,Φ}(x0, ξ, τ) = 0 and τ > 0,

where pΦ(x, ξ) = p(x, ξ + iτdΦ) and p is the principal symbol of P .
Then, there exists V one neighborhood of x0 in Ω so that for any u ∈ Hm−1

loc (V ),{
Pu = 0 in V,
u = 0 in V ∩ {Φ > Φ(x0)} =⇒ u = 0 on V.

This is Theorem 28.3.4 of [Hör94].

2.6.2 A short bibliography
Unique continuation results have a long history going back to Carleman [Car39] who first had the idea to
conjugate the operator with an exponential weight to get unique continuation. He proved the result in the
case of elliptic operators of order 2 in dimension 2. Calderón [Cal58] extended the result to some operators
with simple characteristics. Namely, that was in situations where pφ = {pφ, φ} = 0 never happens. The
general version was given by Hörmander [Hör63] for real operators and [Hör94]. Note that other works
consider the limit case where there is some higher order of cancelation. We refer to Zuily [Zui83] for more
details.

Theorem 2.4.10 was first proved by Donnelly and Fefferman [DF88] (under a stronger form). The proof
presented here, as well as the proof and use of interpolation inequalities is from Lebeau-Robbiano [LR95].
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The boundary Carleman estimates were proved by Lebeau-Robbiano [LR95] in order to give the same
application that we give in Section 2.5.3, that is the controllability of the heat equation. They also proved
the spectral estimates of Section 2.4.4.

Note that there is also another proof (independently) by Fursikov-Immanuvilov [FI96] of the control-
lability of the heat equation using directly some Carleman estimates for the heat equation. Details about
this and some link with the elliptic Carleman estimate are given in [LRL12].

2.6.3 Further questions
Many things have not been written in an optimal way in the previous theorems and can be improved:

• the fact that the aij are real-valued is not necessary♣ .

• the regularity of u can be much lowered. Note also, that if the coefficients are regular enough, the
regularity of u can often be recovered using classical elliptic regularity results, see Brézis [Bre83] for
instance.

• the regularity of the coefficients is not optimal. The main coefficients should actually be C1 while
the lower order terms can be in some Lp spaces.

• the fact to be an exact solution of Pu = 0 can be replaced by some weaker assumption like |Pu|(x) ≤
C (|u(x)|+ |∇u(x)|) for almost every x ∈ Ω.

Counterexamples of Alinhac
Rough coefficients, nonlinear problems
boundary conditions, interfaces
Global result
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2.7 Exercises on Chapter 2
Exercise 5 (warm up of the Exam of May, 2018). Given smooth functions Ψ : Rn → R and G : R→ R,
compute Hess(G ◦Ψ) and ∆(G ◦Ψ) (in terms of derivatives of G and Ψ).

Correction 5. We have ∂i(G ◦Ψ) = (∂iΨ)G′ ◦Ψ and ∂j∂i(G ◦Ψ) = (∂j∂iΨ)G′ ◦Ψ + (∂iΨ)(∂jΨ)G′′ ◦Ψ,
whence Hess(G ◦Ψ) = G′ ◦Ψ Hess(Ψ) +G′′ ◦ΨdΨ⊗ dΨ, that is to say

Hess(G ◦Ψ)(x)(η, ξ) = G′ ◦Ψ(x) Hess(Ψ)(x)(η, ξ) +G′′ ◦Ψ(x)(dΨ(x) · η)(dΨ(x) · ξ).

Also, this implies ∆(G ◦Ψ)(x) = G′ ◦Ψ(x) ∆Ψ(x) +G′′ ◦Ψ(x)|dΨ(x)|2.

Exercise 6 (Perturbations of the ∂̄ operator, part of the Exam of May, 2018). We consider on R2 the
operator P = Dx1

+ iDx2
+ V (x1, x2), where V ∈ L∞loc(R2;C), and U a bounded open set of R2.

1. Given a function Φ ∈ C∞(U ;R), compute PΦ = eτΦPe−τΦ. Decompose it as an operator in Diff1
τ (U)

plus a lower order term. Give the principal symbol of the operator in Diff1
τ (U), which we call pΦ.

2. Using a decomposition of the principal part of PΦ as a selfadjoint part and a skewadjoint part, prove
that for all functions v ∈ C∞c (U) and all τ ≥ 0, we have

‖PΦv‖2L2 ≥
τ

2

(
(∆Φ)v, v

)
L2 − ‖V v‖

2
L2 .

3. For r > 0 fixed, we consider the set U = B(0, 3r) \B(0, r/2). Construct a radial (i.e. depending on
|x| only) function Φ being decreasing in the radial variable, and such that there exists a constant
c0 > 0 such that ∆Φ ≥ c0 uniformly on U . Hint: one may choose Φ under the form G ◦ Ψ with G
and Ψ to be determined.

4. Deduce that, for such a function Φ, there exist two constants C, τ0 > 0 such that for all τ ≥ τ0 and
w ∈ C∞c (U), we have ∥∥eτΦPw

∥∥2

L2 ≥ C
∥∥eτΦw

∥∥2

L2 .

5. Prove that for all r > 0, there exist C > 0 and δ ∈ (0, 1) such that for all u ∈ C∞(B(0, 3r)), we have

‖u‖L2(B(0,2r)) ≤ C
(
‖u‖L2(B(0,r)) + ‖Pu‖L2(B(0,3r))

)δ
‖u‖1−δL2(B(0,3r)) . (2.59)

6. Let ω ⊂ R2 a bounded nonempty open set. Prove that every C∞ solution u to Pu = 0 in R2 such
that u = 0 in ω vanishes identically on R2.

7. In the case V = 0, give another proof of this result.

Correction 6. 1. We have D1(e−τΦu) = e−τΦ(D1u+ iτ∂1Φu) so that eτΦD1e
−τΦ = D1 + iτ∂1Φ and

PΦ = D1 + iτ∂1Φ + i (D2 + iτ∂2Φ) + V.

We have D1 + iτ∂1Φ + i (D2 + iτ∂2Φ) ∈ Diff1
τ (U), with principal symbol pΦ(x, ξ) = ξ1 − τ∂2Φ(x) +

i(ξ2 + τ∂1Φ(x)). The term V (x) will be considered as a lower order term.

2. We write PΦ = PR + iPI + V where

PR =
1

2
(PΦ + P ∗Φ) = D1 − τ∂2Φ(x), PI =

1

2i
(PΦ − P ∗Φ) = D2 + τ∂1Φ(x),
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are both formally selfadjoint. Then, we have

‖(PΦ − V )v‖2L2 = ((PR + iPI)v, (PR + iPI)v)L2 = ‖PRv‖2L2 + ‖PIv‖2L2 + (i[PR, PI ]v, v)L2 . (2.60)

We now compute [PR, PI ] = [D1− τ∂2Φ, D2 + τ∂1Φ] = [D1, τ∂1Φ]− [τ∂2Φ, D2], since [D1, D2] = 0 =
[∂2Φ, ∂1Φ]. That is to say, [PR, PI ]v = τ(D1∂1Φ)v + τ(D2∂2Φ)v = τ

i ∆Φv.

Together with (2.60), we have now obtained

2 ‖PΦv‖2L2 + 2 ‖V v‖2L2 ≥ ‖(PΦ − V )v‖2L2 = ‖PRv‖2L2 + ‖PIv‖2L2 + τ (∆Φv, v)L2 ≥ τ (∆Φv, v)L2 ,

and hence, for all v ∈ C∞c (U) and all τ ≥ 0,

‖PΦv‖2L2 ≥
τ

2

(
(∆Φ)v, v

)
L2 − ‖V v‖

2
L2 .

3. We set Ψ(x) := −|x| (Euclidean distance to zero, the sign does not matter in this question and in the
next question, but turns out to be a key point in Question 5), G(s) := eλs and Φ(x) := G◦Ψ = e−λ|x|.
We have ∇Ψ(x) = − x

|x| , so that |∇Ψ(x)| = 1 does not vanish, and ∆Ψ is a smooth function on
R2 \ {0}. According to the computation in Exercice 5, we have

∆Φ(x) = λe−λ|x| ∆Ψ(x) + λ2e−λ|x| = e−λ|x|(λ2 + λ ∆Ψ(x)) ≥ e−λ|x|(λ2 − λ ‖∆Ψ‖L∞(U)),

where U = B(0, 3r) \ B(0, r/2). Choosing e.g. λr := 2 ‖∆Ψ‖L∞(U) + 1 > 0, we have λ2
r −

λr ‖∆Ψ‖L∞(U) ≥ 1 and hence ∆Φ(x) ≥ e−λr3r =: c0 > 0 for all x ∈ U .

4. From the previous two questions, we have obtained for all v ∈ C∞c (U) that

‖PΦv‖2L2(U) ≥
τ

2

(
(∆Φ)v, v

)
L2(U)

− ‖V v‖2L2(U) ≥
τ

2
c0 ‖v‖2L2(U) − ‖V ‖

2
L∞(U) ‖v‖

2
L2

≥ τ

4
c0 ‖v‖2L2(U) ,

for all τ ≥ τ0 = 4
c0
‖V ‖2L∞(U). Recalling that PΦ = eτΦPe−τΦ and applying this inequality to

v = eτΦw (which belongs to C∞c (U) for w ∈ C∞c (U)), we have obtained∥∥eτΦPw
∥∥2

L2 ≥ Cτ
∥∥eτΦw

∥∥2

L2 , for all w ∈ C∞c (U), τ ≥ τ0.

5. The proof of this local interpolation inequality proceeds exactly as that of Theorem 2.4.3. The only
difference is that here P is of order one. Hence, commutators [P, χ] are of order zero and this results
in the fact that only L2 norms appear in (2.59) (as opposed to the statement of Theorem 2.4.3 in
which the operator is of order two, commutators are of order one, and the interpolation inequality
formulates with H1 norms).

6. Choose a point x0 ∈ ω. In Question 5 (and after a translation; the assumptions on V are translation-
invariant), we proved that for all r > 0, there exist C > 0 and δ ∈ (0, 1) such that for all u ∈
C∞(B(0, 3r)), we have

‖u‖L2(B(x0,2r))
≤ C ‖u‖δL2(B(x,r))

‖u‖1−δL2(B(x0,3r))
, (2.61)

where we have used that Pu = 0 on R2.

Now assume that u does not vanish identically, that is supp(u) 6= ∅. We set r0 := sup {r ≥
0, B(0, r) ∩ supp(u) = ∅}. We have r0 > 0 since x0 ∈ ω (which is open) and r0 < +∞ since
supp(u) 6= ∅. Moreover, (2.61) with r = r0 yields ‖u‖L2(B(x0,2r0)) ≤ 0, so that B(0, r0)∩supp(u) = ∅.
This implies 2r0 = r0 which contradicts 0 < r0 < +∞.

7. In case V = 0, we have P = ∂ (the Cauchy-Riemann operator) and solutions to Pu = 0 are real-
analytic on R2. Therefore, they satisfy the analytic continuation principle: a solution to Pu = 0
vanishing on an open set (even any set containing an accumulation point) vanishes on all R2.
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Exercise 7 (Carleman estimates for the Laplace operator, part of the Exam of May, 2018). We consider
in Rn the operator P = −∆ + V , where V ∈ L∞loc(Rn;R), and U a bounded open set of Rn.

1. Given a function Φ ∈ C∞(U ;R), compute PΦ = eτΦPe−τΦ. Decompose it as an operator in Diff2
τ (U)

plus a lower order term. Give the principal symbol of the operator in Diff2
τ (U), which we call pΦ.

2. Compute 1
4τ {Re(pΦ), Im(pΦ)}.

3. We now set Φ = G ◦ Ψ, with Ψ : U → R and G : R → R. Express 1
4τ {Re(pΦ), Im(pΦ)} in terms of

G,Ψ.

4. Show that if dΨ 6= 0 on U , if G′ > 0, G′′ > 0 on Ψ(U), and if G
′′

G′ is sufficiently large on Ψ(U), then
we have (

(x, ξ, τ) ∈ U × Rn × R+, (ξ, τ) 6= (0, 0), and Re(pΦ)(x, ξ, τ) = 0
)

=⇒ 1

4τ
{Re(pΦ), Im(pΦ)}(x, ξ, τ) > 0.

Hint: one may prove that the term containing |dΨ|4 is large, whereas the other terms either have the
right sign, or are sufficiently small when G′′

G′ is large.

5. Deduce a Carleman estimate for P with such a weight function Φ. Only explain the main steps of
the proofs, and omit the details.

We now want to give another proof of the same Carleman estimate.

6. Let f : U → R be a smooth function. Check that PΦ decomposes under the form

PΦ = Q2 + iQ1, Q2 = (PR − τf), Q1 = (PI − iτf),

with PR =
PΦ+P∗Φ

2 , PI =
PΦ−P∗Φ

2i . Give the principal symbol of PR, PI , Q2, Q1.

7. Prove that we have
‖PΦv‖2L2 = ‖Q2v‖2L2 + ‖Q1v‖2L2 + τ(Lv, v)L2 ,

for all v ∈ C∞c (U), where L belongs to Diffmτ (U) is to be determined, as well as its order m and its
principal symbol (in terms of pΦ and f).

8. Assume in this question the existence of a constant C > 0 such that for all (x, ξ, τ) ∈ U ×Rn ×R+,
we have

1

τ
{Re(pΦ), Im(pΦ)}(x, ξ, τ) + 2f(x) Re(pΦ)(x, ξ, τ) ≥ C(|ξ|2 + τ2). (2.62)

Deduce a Carleman estimate for P . Only explain the main steps of the proofs, and omit the details.

9. We again consider Φ = G ◦ Ψ with dΨ 6= 0 on U , and G′ > 0, G′′ > 0 on Ψ(U). Prove that for all
µ ∈ (0, 1), there exists λ0 > 0 such that if G

′′

G′ ≥ λ0 on Ψ(U), there is C > 0 such that

1

4τ
{Re(pΦ), Im(pΦ)}+ µ G′′ ◦Ψ|dΨ|2 Re(pΦ) ≥ C(|ξ|2 + τ2),

on U × Rn × R+. Hint: One may re-use the computations and the strategy of Question 4.

10. Conclude.
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Correction 7. 1. We have already computed in Example 1.3.11 that

eτΦ(−∆)e−τΦu = −∆u− τ2|∂Φ|2u+ 2τ∂Φ · ∂u+ τ(∆Φ)u,

and hence

PΦ = −∆− τ2|∂Φ|2 + 2τ∂Φ · ∂ + τ(∆Φ) + V,

where only V /∈ Diff2
τ (U) (since we do not assume smoothness). We also have τ(∆Φ) ∈ Diff1

τ (U) and
thus

pΦ(x, ξ, τ) = |ξ|2 − τ2|∂Φ|2 + 2iτ∂Φ · ξ

2. We have Re(pΦ)(x, ξ, τ) = |ξ|2 − τ2|∂Φ|2 and Im(PΦ)(x, ξ, τ) = 2τ∂Φ · ξ so that

{Re(pΦ), Im(pΦ)} =
∑
j

∑
k

(
4τξj∂j∂kΦξk + 4τ3∂jΦ∂j∂kΦ∂kΦ

)
,

so that

1

4τ
{Re(pΦ), Im(pΦ)} = Hess(Φ)(ξ, ξ) + τ2 Hess(Φ)(dΦ, dΦ).

3. According to Exercise 5 we have

Hess(Φ)(η, ξ) = G′ ◦Ψ Hess(Ψ)(η, ξ) +G′′ ◦Ψ(dΨ · η)(dΨ · ξ).

and hence

1

4τ
{Re(pΦ), Im(pΦ)} = G′ ◦Ψ Hess(Ψ)(ξ, ξ) +G′′ ◦Ψ(dΨ · ξ)2

+ τ2(G′ ◦Ψ)2
(
G′ ◦Ψ Hess(Ψ)(dΨ, dΨ) +G′′ ◦Ψ|dΨ|4

)
4. Remark first that Re(pΦ)(x, ξ, τ) = |ξ|2 − τ2|dΦ|2 so that the condition

(ξ, τ) 6= (0, 0), and Re(pΦ)(x, ξ, τ) = 0

implies actually that τ > 0, which we assume from now on.
Since G′′ > 0 on Ψ(U), we first have

1

4τ
{Re(pΦ), Im(pΦ)} ≥ G′ ◦Ψ Hess(Ψ)(ξ, ξ)

+ τ2(G′ ◦Ψ)2
(
G′ ◦Ψ Hess(Ψ)(dΨ, dΨ) +G′′ ◦Ψ|dΨ|4

)
Using the assumption that

0 = Re(pΦ)(x, ξ, τ) = |ξ|2 − τ2|dΦ|2 = |ξ|2 − τ2(G′ ◦Ψ)2|dΨ|2,

and denoting |A| = sup|ξ|=1A(ξ, ξ), we deduce

1

4τ
{Re(pΦ), Im(pΦ)} ≥ −G′ ◦Ψ|Hess(Ψ)||ξ|2

+ τ2(G′ ◦Ψ)2
(
−G′ ◦Ψ|Hess(Ψ)||dΨ|2 +G′′ ◦Ψ|dΨ|4

)
≥ −(G′ ◦Ψ)3|Hess(Ψ)|τ2|dΨ|2

+ τ2(G′ ◦Ψ)2
(
−G′ ◦Ψ|Hess(Ψ)||dΨ|2 +G′′ ◦Ψ|dΨ|4

)
≥ τ2(G′ ◦Ψ)3

(G′′ ◦Ψ

G′ ◦Ψ
|dΨ|4 − 2|Hess(Ψ)||dΨ|2

)
.

Assuming dΨ 6= 0 on U , G′ > 0, G′′ > 0 on Ψ(U), if we choose G such that G′′

G′ ≥ λ0 :=

3 maxU
|Hess(Ψ)|
|dΨ|2 on Ψ(U), we have obtained that 1

4τ {Re(pΦ), Im(pΦ)} > 0 on the set {(x, ξ, τ) ∈
U × Rn × R+, (ξ, τ) 6= (0, 0),Re(pΦ)(x, ξ, τ) = 0}.
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5. We first notice that the homogeneity of (Re pΦ)2 of degree four, of
{

Re pΦ,
Im pΦ

τ

}
of degree two,

together with the use of Lemma 2.1.8 on the compact set U ×{(ξ, τ) ∈ Rn×R+, |ξ|2 + τ2 = 1} yields
the existence of C1, C2 > 0 such that for all (ξ, τ) ∈ Rn × R∗+,

C1

|ξ|2 + τ2
(Re pΦ)2 +

1

τ
{Re pΦ, Im pΦ} ≥ C2

(
|ξ|2 + τ2

)
.

(Note that this inequality is actually stronger than (2.3), for we here do not need the term C1

|ξ|2+τ2 (Im pΦ)2

on the left hand-side. Note also that the explicit computation of the previous question could actually
directly yield the sought result, without making use of the compactness argument of Lemma 2.1.8).
The proof then follows that of Theorem 2.1.1, except that we have to use the semiglobal version of
the Gårding inequality, namely Proposition 1.3.18. We finally obtain the existence of C, τ0 > 0 so
that

τ ‖v‖2H1
τ
≤ C ‖PΦv‖2L2 , for all v ∈ C∞c (U), τ ≥ τ0.

In turn, after “unconjugating” (i.e. writing v = eτΦu), this translates into

τ3
∥∥eτΦu

∥∥2

L2 + τ
∥∥eτΦ∇u

∥∥2

L2 ≤ C
∥∥eτΦPu

∥∥2

L2 , for all u ∈ C∞c (U), τ ≥ τ0. (2.63)

6. We have as usual PΦ = PR + iPI with PR =
PΦ+P∗Φ

2 , PI =
PΦ−P∗Φ

2i . Now with Q2 = (PR − τf) and
Q1 = (PI − iτf) we have

Q2 + iQ1 = (PR − τf) + i(PI − iτf) = PR + iPI − τf + τf = PR + iPI = PΦ.

We have PR, PI ∈ Diff2
τ (U) whereas τf ∈ Diff1

τ (U). Therefore, the principal symbol of both PR and
Q2 is Re(pΦ) and the principal symbol of both PI and Q1 is Im(pΦ).

7. Beware that Q2 is selfadjoint but Q1 is not. We have

‖PΦv‖2L2 = ((Q2 + iQ1)v, (Q2 + iQ1)v)L2

= ‖Q2v‖2L2 + ‖Q1v‖2L2 + (iQ1v,Q2v)L2 + (Q2v, iQ1v)L2

= ‖Q2v‖2L2 + ‖Q1v‖2L2 + (i(Q2Q1 −Q∗1Q2)v, v)L2 .

We then remark that Q∗1 = PI + iτf = Q1 + 2iτf and hence

i(Q2Q1 −Q∗1Q2) = i(Q2Q1 − (Q1 + 2iτf)Q2) = i[Q2, Q1] + 2τfQ2.

Remarking that τ factorizes in the operator Q1 (it does for PI and for τf), we may write this as

‖PΦv‖2L2 = ‖Q2v‖2L2 + ‖Q1v‖2L2 + (τLv, v)L2 ,

where L = i
[
Q2,

Q1

τ

]
+ 2fQ2 is in Diff2

τ (U), with principal symbol 1
τ {Re(pΦ), Im(pΦ)}+ 2f Re(pΦ)

(according to the previous question together with the symbolic calculus).

8. If we now assume the symbolic estimate (2.62), we simply deduce from the previous question that

‖PΦv‖2L2 ≥ τ (Lv, v)L2 ,

where L ∈ Diff2
τ (U) has principal symbol 1

τ {Re(pΦ), Im(pΦ)} + 2f Re(pΦ) ≥ C(|ξ|2 + τ2). The
semiglobal version of the Gårding inequality of Proposition 1.3.18 directly yields the existence of
C, τ0 > 0 so that

τ ‖v‖2H1
τ
≤ C ‖PΦv‖2L2 , for all v ∈ C∞c (U), τ ≥ τ0,

which yields the usual Carleman estimate (2.63).
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9. In Question 4, we have obtained that Re(pΦ)(x, ξ, τ) = |ξ|2 − τ2(G′ ◦Ψ)2|dΨ|2 and

1

4τ
{Re(pΦ), Im(pΦ)} ≥ τ2(G′ ◦Ψ)3

(G′′ ◦Ψ

G′ ◦Ψ
|dΨ|4 − 2|Hess(Ψ)||dΨ|2

)
.

As a consequence,

1

4τ
{Re(pΦ), Im(pΦ)}+ µ G′′ ◦Ψ|dΨ|2 Re(pΦ)

≥ µ G′′ ◦Ψ|dΨ|2
(
|ξ|2 − τ2(G′ ◦Ψ)2|dΨ|2

)
+ τ2(G′ ◦Ψ)3

(G′′ ◦Ψ

G′ ◦Ψ
|dΨ|4 − 2|Hess(Ψ)||dΨ|2

)
= µ G′′ ◦Ψ|dΨ|2|ξ|2 + τ2(G′ ◦Ψ)3

(
(1− µ)

G′′ ◦Ψ

G′ ◦Ψ
|dΨ|4 − 2|Hess(Ψ)||dΨ|2

)
Henceforth, if µ ∈ (0, 1), both coefficients in front of |ξ|2 and of G′′◦Ψ

G′◦Ψ are positive (recall that we
still assume dΨ 6= 0 on U , G′ > 0, G′′ > 0 on Ψ(U)). We assume µ ∈ (0, 1) from now on. If we then
choose G such that G′′

G′ ≥ λ0 := 3 maxU
|Hess(Ψ)|

(1−µ)|dΨ|2 on Ψ(U), both coefficients in front of |ξ|2 and τ2

are positive (and independent of (ξ, τ)) and therefore there is a constant C > 0 such that

1

4τ
{Re(pΦ), Im(pΦ)}+ µ G′′ ◦Ψ|dΨ|2 Re(pΦ) ≥ C(|ξ|2 + τ2),

on U × Rn × R+.

10. In the end, we have obtained another proof of the Carleman estimate (2.63). Starting from any
function Ψ with dΨ 6= 0 on U , it may be “convexified” so that to yield an appropriate Carleman
weight Φ = G ◦ Ψ. Note that this can always be achieved by starting from G0 a convex increasing
function, then the function G(s) = G0(λs) will do the job for λ sufficiently large. We usually take
G0(s) = es for convenience. The functions Ψ and Φ have the same levelsets.

Note that this strategy has the advantage of only using a Gårding inequality for a genuine differen-
tial operator L, whereas the usual one makes use the Fourier multiplier (−∆ + τ2)−1 (in order to
downgrade the order of the operator P 2

R). This strategy however only works with elliptic differential
operators.

Exercise 8 (?). Let Ω be and open subset of Rn and x0 ∈ Ω. Let P ∈ Diff2(Ω) be a (classical) differential
operator with real-valued principal symbol p2 and Φ ∈ C∞(Ω;R). Assume that Assumption (2.3) is
satisfied.

1. Prove that

τ ‖v‖2H1
τ

+ τ−1‖Pv‖2L2 ≤ C ‖PΦv‖2L2 , for all v ∈ C∞c (B(x0, r)), τ ≥ τ0;

2. Prove that the same estimate is true for P replaced by P + V for V ∈ Ln
2 .

3. In case P is elliptic, prove that

τ−1‖v‖2H2
τ
≤ C ‖PΦv‖2L2 , for all v ∈ C∞c (B(x0, r)), τ ≥ τ0;

4. Still assuming P is elliptic, prove that the same estimate is true for P replaced by P + W · ∇ + V
for V ∈ Ln

2 and W ∈ L??? ♣ avec des inj de Sobolev

Correction 8. 1. Recall that from (2.2), we have

τ ‖v‖2H1
τ
≤ C ‖PΦv‖2L2 , for all v ∈ C∞c (B(x0, r)), τ ≥ τ0.

82



P̃Φ = eτΦP̃ e−τΦ and prove (2.4). To this aim, we notice that it is again equivalent to prove the
result with P̃ =

∑n
i,j=1Dia

ij(x)Dj instead of P . We decompose the operator P̃Φ again as in (2.5)
as P̃Φ = QR + iQI with Q∗R = QR, Q∗I = QI , QR, QI ∈ Diff2

τ given by

QR =

n∑
i,j=1

Dia
ijDj − τ2aij(∂iΦ)(∂jΦ) = P̃ − τ2

n∑
i,j=1

aij(∂iΦ)(∂jΦ) = P +R− τ2
n∑

i,j=1

aij(∂iΦ)(∂jΦ)

QI = iτ

n∑
i,j=1

Dia
ij(x)(∂jΦ) + (∂iΦ)aij(x)Dj

with R ∈ Diff1
τ . In particular, we have, using QR = P̃Φ − iQI in the second equality

‖Pv‖L2 ≤ ‖QRv‖L2 + ‖Rv‖L2 + Cτ2‖v‖L2

≤ ‖P̃Φv‖L2 + ‖QIv‖L2 + C‖v‖H1
τ

+ Cτ2‖v‖L2 ≤ ‖P̃Φv‖L2 + Cτ‖v‖H1
τ
.

Hence
τ−1‖Pv‖2L2 ≤ ‖P̃Φv‖2L2 + Cτ‖v‖2H1

τ
≤ C‖P̃Φv‖2L2 ,

where we have used the Carleman inequality in the last place. This implies the sought estimate.

2. We write the Hölder inequality ‖V v‖2L2 ≤ ‖|V |2‖Lp′‖|v|2‖Lp where 1
p + 1

p′ = 1. Next, if n ≥ 3 the

Sobolev embedding is H1 ↪→ L
2n
n−2 , and thus ‖|v|2‖

L
d
d−2

= ‖v‖2
L

2d
d−2
≤ C‖v‖2H1 . Choosing p = d

d−2 ,

we obtain p′ = d
2 and thus

‖V v‖L2 ≤ ‖V ‖
L
d
2
‖v‖H1 .

Therefore...

3. In this case, the result follows from local elliptic regularity (ref?): there is C > 0 depending on the
coefficients of P and r > 0 such that

‖v‖H2 ≤ C ‖Pv‖L2 + C‖v‖H1 for all v ∈ C∞c (B(x0, r)).

Combined with the first question, this yields the sought result.

Exercise 9 (Agmon estimates). Let V ∈ C∞b (Rn), bounded as well as all of its derivatives and real-valued.
We consider the operator Pτ depending a large parameter τ , defined by

Pτu = −∆u+ τ2V u

Let U an open bounded subset of Rn so that

V (x) ≥ ε > 0 for all x ∈ U,

and let W be an open set such that U bW .
Let ψ, φ ∈ C∞c (W ) so that 0 ≤ ψ, φ ≤ 1 and ψ = 1 on U , φ = 1 on supp(ψ).
Assume also

supp(φ) bW b {V (x) > ε} .

1. Compute eδτψPτe−δτψ for one δ > 0 to be chosen later on. Compute its principal symbol pτ,ψ.

2. Prove that for δ small enough and one c0 > 0, |pτ,ψ|2 ≥ c0 for all x ∈W , |ξ|2 + τ2 = 1.

3. We admit the following elliptic type estimate.

Let Qτ ∈ Diffmτ with principal symbol q so that q 6= 0 for all x ∈ K, (ξ, τ) 6= 0, then, for τ large
enough

‖v‖Hmτ ≤ C ‖Qτv‖L2 .
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for all v ∈ C∞(Rn) supported in K.

Prove the estimate ∥∥eδτψφu∥∥
H2
τ
≤ C

∥∥eδτψPτφu∥∥L2

for all u ∈ C∞c (Rn), τ ≥ τ0.

4. Using the properties of the support of ∇φ, prove the estimate
∥∥eδτψ[Pτ , φ]u

∥∥
L2 ≤ C ‖u‖H1

τ (W̃ )
with

W̃ so that supp(φ) b W̃ bW .

Here, we use the notation ‖u‖2
H1
τ (W̃ )

= ‖∇u‖2
L2(W̃ )

+ τ2 ‖u‖2
L2(W̃ )

.

5. Let U1 b U2 open subset. Prove that

‖u‖H2
τ (U1) ≤ C ‖Pτu‖L2(U2) + Cτ2 ‖u‖L2(U2) .

for u ∈ C∞c (U2).

6. Conclude that

‖u‖H2(U) ≤ Ce
−δτ/2 ‖u‖L2(W ) + C ‖Pτu‖L2(W ) .

7. Give an interpretation of the previous estimate.

Correction 9. ♣ To be written one day.
For the last question :
We write h = 1/τ the (small) semiclassical parameter, and consider the semiclassical stationary

Schrödinger operator Ph := h2P1/h = −h2∆ + V (x). We have proven the following statement so far:
for all ε > 0, all bounded open set U ⊂ {V ≥ ε} and all W such that U bW , there is δ > 0 such that we
have

‖u‖H2(U) ≤ Ce
−δ/h ‖u‖L2(W ) + Ch−2 ‖Phu‖L2(W ) .

One can also check that this statement remains valid if V is replaced by V − Eh with Eh ∈ R and
Eh → E ∈ R. This implies in particular that for any bounded open set U such that U ⊂ {V > E} and all
W such that U bW , there is δ > 0 such that we have

‖uh‖L2(U) ≤ Ce
−δ/h ‖uh‖L2(W ) , for uh such that (−h2∆ + V )uh = Ehuh, Eh → E, h ≤ h0. (2.64)

This can be interpreted as follows: A classical particle in the potential well V (x) has classical Hamil-
tonian H(x, ξ) = |ξ|2 + V (x) (x is the position of the particle and ξ its momentum). If the particle has
energy E, it lives in the energy layer {(x, ξ) ∈ Rn ×Rn, H(x, ξ) = E} (this follows from the fact that H is
preserved along the Hamiltonian flow it generates). In particular, the position of the particle is necessarily
in the so-called classically allowed region at energy E defined by KE = {x ∈ Rn, V (x) ≤ E} (projection of
the energy layer on the x-variable).

If we now consider a quantum particle at energy E, its wave-function uh(x) solves the semiclassical
stationary Schrödinger equation (−h2∆ + V )uh = Ehuh with Eh → E. If the eigenfunction is normalized
‖uh‖L2(Rn) = 1, the square of its modulus |uh(x)|2 is a probability density, which models the likelihood
of the particle to be at position x ∈ Rn. For an open set U ⊂ Rn, the quantity ‖uh‖2L2(U) models
the probability of finding the quantum particle/state uh in U . What we have proved in (2.64) may be
reformulated as

U ⊂ {V > E} =⇒ ‖uh‖2L2(U) ≤ Ce
−2δ/h.

That is to say, if U is in the classically forbidden region at energy E, namely Rn \KE = {V > E}, the
probability of finding a particle at energy E in U is exponentially small in the semiclassical limit h→ 0+

(i.e. in the limit from quantum mechanics to classical mechanics).
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Exercise 10 (Warm up, part of the Exam of May, 2019). Given a bounded open set Ω ⊂ Rn, we consider,
for m ∈ N, the class Diffmτ,γ(Ω) consisting of operators (depending on two large parameters τ, γ > 0) of the
form

P =
∑

|α|+β+δ≤m

pα,β,δ(x)τβγδDα, (α ∈ Nn, β ∈ N, δ ∈ N),

with coefficients pα,β,δ ∈ C∞(Ω) bounded as well as all their derivatives. We define by pm(x, ξ, τ, γ) =∑
|α|+β+δ=m pα,β,δ(x)τβγδξα its principal symbol in this class.

Prove that:

• if P1 ∈ Diffm1
τ,γ(Ω), P2 ∈ Diffm2

τ,γ(Ω), then P1P2 ∈ Diffm1+m2
τ,γ (Ω) with principal symbol pm1

pm2
;

• if P1 ∈ Diffm1
τ,γ(Ω), P2 ∈ Diffm2

τ,γ(Ω), then [P1, P2] ∈ Diffm1+m2−1
τ,γ (Ω) with principal symbol 1

i {pm1
, pm2

};

• if P ∈ Diffmτ,γ(Ω), then P ∗ ∈ Diffmτ,γ(Ω) with principal symbol pm.

Hint: one might consider first the case of operators of the form P = a(x)τβγδDα and use known results.

Correction 10. ♣ to be written one day

Exercise 11 (Limiting weights and limiting Carleman estimates, part of the Exam of May, 2019). This
Exercise is not independent from Exercises 3 and 10. The inequality 2ab ≤ a2 + b2 might be useful in this
exercise. The goal of this exercise is to prove the following Carleman estimate.

Theorem 2.7.1. Let Ω ⊂ Rn be a bounded open set. Assume P ∈ Diff2(Ω) is elliptic with real principal
symbol p2. Assume that ψ ∈ C∞(Ω;R) satisfies dψ 6= 0 on Ω together with

{pψ, pψ}(x, ξ, τ) = 0 for all (x, ξ, τ) ∈ Ω× Rn × R+, (2.65)

where pψ(x, ξ, τ) = p2(x, ξ + iτdψ(x)). Then, there exist C, τ0 > 0 such that

τ2
∥∥eτψu∥∥2

L2 +
∥∥eτψ∇u∥∥2

L2 ≤ C
∥∥eτψPu∥∥2

L2 , for all u ∈ C∞c (Ω), τ ≥ τ0. (2.66)

1. Compare this Carleman estimate with the usual one.

2. Is this Carleman estimate insensitive to the change of P into P+V (x)? respectively into P+W (x)·∇?

3. Prove the following lemma.

Lemma 2.7.2. Let G ∈ C∞(R) and ψ ∈ C∞(Ω;R), and set φ = G ◦ ψ. Assume p2(x, ξ) is a
homogeneous symbol of order two with real-valued coefficients, and set pφ(x, ξ, τ) = p2(x, ξ+iτdφ(x)).
Then we have with ξ = (G′ ◦ ψ)(x)η

1

2i
{pφ, pφ}(x, ξ, τ) =τ(G′′ ◦ ψ)(x)(G′ ◦ ψ)2(x)

(
|{p2, ψ}(x, η)|2 + 4τ2p2(x, dψ(x))2

)
+ (G′ ◦ ψ)3(x)

1

2i
{pψ, pψ}(x, η, τ).

4. In all the exercise, we only consider the function G(s) = Gγ,τ (s) = s+ γ
2τ s

2, and hence φ = φγ,τ =
G ◦ ψ = ψ + γ

2τ ψ
2.

(a) Prove the existence of C0 > 0 such that for τ ≥ C0γ, we have 1/2 ≤ G′ ◦ ψ ≤ 3/2 on Ω.

(b) Compute dφ in terms of dψ. Prove that there is C > 0 such that |∂jφ| ≤ C holds for j ∈
{1, · · · , n}, uniformly for γ, τ in the range τ ≥ C0γ.
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5. Prove that if ψ satisfies (2.65), then

1

2i
{pφ, pφ}(x, ξ, τ, γ) = γ|{p2, ψ}(x, ξ)|2 + 4γ(τ + γψ(x))2p2(x, dψ(x))2,

for all (x, ξ) ∈ Ω× Rn, τ, γ > 0. What is the homogeneity of 1
2i{pφ, pφ} in the variables (ξ, τ, γ)?

From now on, we assume that P = P ∗, that is, P =
∑n
i,j=1Dia

ij(x)Dj with aij(x) = aji(x)

real-valued and uniformly elliptic. We denote Pφ = eτφPe−τφ, PR =
Pφ+P∗φ

2 and PI =
Pφ−P∗φ

2i .

6. Give the explicit expression of Pφ, PR and PI in terms of φ and its derivatives.

7. Give the explicit expression of Pφ, PR and PI in terms of ψ and its derivatives. Deduce that
Pφ, PR, PI ∈ Diff2

τ,γ(Ω) and compute their principal symbols pφ, pR, pI in this class.

8. Prove that (PRv, v)L2 =
∑n
i,j=1(aijDjv,Div)L2 − (p2(·, τdφ)v, v)L2 for all v ∈ C∞c (Ω). Deduce the

existence of a constant C > 0 such that

‖∇v‖2L2 ≤ Cτ2 ‖v‖2L2 + Cτ−2 ‖PRv‖2L2 , for all τ > 0, γ ∈ (0, τ/C0], v ∈ C∞c (Ω).

9. Prove that we have i[PR, PI ] = 1
2i{pφ, pφ}(x,D, τ, γ)+R, with R ∈ Diff2

τ,γ . Here, {pφ, pφ}(x,D, τ, γ)
denotes the differential operator having {pφ, pφ} as full symbol.

10. Prove that for all R ∈ Diff2
τ,γ , there is C > 0 such that

|(Rv, v)L2 | ≤ C
(
τ2 ‖v‖2L2 + ‖∇v‖2L2

)
for all τ ≥ 1, γ ∈ (0, τ/C0], v ∈ C∞c (Ω).

11. Prove that (i[PR, PI ]v, v)L2(Ω) = 4γ ‖(τ + γψ(x))p2(x, dψ(x))v‖2L2 + γ(R2v, v)L2 + (Rv, v)L2 for all
v ∈ C∞c (Ω), where R2 ∈ Diff2

τ,γ is to be determined as well as its principal symbol.

12. Deduce that there is C > 0 such that

γ(R2v, v)L2 + (Rv, v)L2 ≥ −C
(
τ2 ‖v‖2L2 + ‖∇v‖2L2

)
for all τ ≥ 1, γ ∈ (0, τ/C0], v ∈ C∞c (Ω).

13. Deduce that there are γ0, C > 0 such that

γτ2 ‖v‖2L2 ≤ C (i[PR, PI ]v, v)L2(Ω) + C ‖∇v‖2L2 for all γ ≥ γ0, τ ≥ C0γ, v ∈ C∞c (Ω).

14. Prove that there are γ0, C > 0 such that

γτ2 ‖v‖2L2+γ ‖∇v‖2L2 ≤ C (i[PR, PI ]v, v)L2(Ω)+Cγτ
−2 ‖PRv‖2L2 for all γ ≥ γ0, τ ≥ C0γ, v ∈ C∞c (Ω).

15. Deduce that there are γ0, C > 0 such that

γτ2 ‖v‖2L2 + γ ‖∇v‖2L2 ≤ C ‖Pφv‖2L2 for all γ ≥ γ0, τ ≥ C0γ, v ∈ C∞c (Ω).

Prove that this estimate remains true if P is replaced by P +W (x) · ∇+ V (x) (up to changing the
constants involved).

16. Prove that there are τ0, C > 0 such that

τ2
∥∥eτφu∥∥2

L2 +
∥∥eτφ∇u∥∥2

L2 ≤ C
∥∥eτφPu∥∥2

L2 , for all u ∈ C∞c (Ω), τ ≥ τ0,

and conclude the proof of (2.66).

Correction 11. 1. ♣ to be written one day
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2.

3. We start from Lemma 2.2.3, implying

1

2iτ
{pφ, pφ}(x, ξ, τ) =

1

τ
Im [∂ξp2(x, ξ − iτdφ(x)) · ∂xp2(x, ξ + iτdφ(x))]

+ Hess(φ)(x) [∂ξp2(x, ξ − iτdφ(x)); ∂ξp2(x, ξ + iτdφ(x))] .

Recalling that dφ = G′ ◦ψdψ, taking ξ = (G′ ◦ψ)η and recalling that p2 (resp. ∂ξp2) is homogeneous
of degree 2 (resp. degree 1) w.r.t the second variable, we obtain

1

2iτ
{pφ, pφ}(x, ξ, τ) =

1

τ
(G′ ◦ ψ)3 Im [∂ξp2(x, η − iτdψ(x)) · ∂xp2(x, η + iτdψ(x))]

+ (G′ ◦ ψ)2 Hess(φ)(x) [∂ξp2(x, η − iτdψ(x)); ∂ξp2(x, η + iτdψ(x))] .

We have Hess(φ) = (G′ ◦ ψ) Hess(ψ) + (G′′ ◦ ψ)dψ ⊗ dψ so that

1

2iτ
{pφ, pφ}(x, ξ, τ) =

1

τ
(G′ ◦ ψ)3 Im [∂ξp2(x, η − iτdψ(x)) · ∂xp2(x, η + iτdψ(x))]

+ (G′ ◦ ψ)3 Hess(ψ)(x) [∂ξp2(x, η − iτdψ(x)); ∂ξp2(x, η + iτdψ(x))]

+ (G′ ◦ ψ)2(G′′ ◦ ψ)
(
∂ψ(x) · ∂ξp2(x, η − iτdψ(x))

)(
∂ψ(x) · ∂ξp2(x, η + iτdψ(x))

)
= (G′ ◦ ψ)3 1

2iτ
{pψ, pψ}(x, η, τ) + (G′ ◦ ψ)2(G′′ ◦ ψ)

×
(
∂ψ(x) · ∂ξp2(x, η − iτdψ(x))

)(
∂ψ(x) · ∂ξp2(x, η + iτdψ(x))

)
Using that ∂ξp2 is homogeneous of degree 1, we may expand(

∂ψ(x) · ∂ξp2(x, η − iτdψ(x))
)(
∂ψ(x) · ∂ξp2(x, η + iτdψ(x))

)
=
(
∂ψ(x) · ∂ξp2(x, η)

)2
+ τ2

(
∂ψ(x) · ∂ξp2(x, dψ(x))

)2
.

Then, we notice that {p2, ψ}(x, η) = ∂ξp2(x, η) ·∂xψ(x). Moreover, since p2 is a real-valued quadratic
form, we can write p2(x, ξ) =

∑
aijξiξj with aji = aij real, and thus ξ · ∂ξp2(x, ξ) =

∑
2aijξiξj =

2p2(x, ξ), whence ∂ψ(x) ·∂ξp2(x, dψ(x)) = 2p2(x, dψ(x)). Combining all these computations, we have
obtained

1

2iτ
{pφ, pφ}(x, ξ, τ) = (G′ ◦ ψ)3 1

2iτ
{pψ, pψ}(x, η, τ)

+ (G′ ◦ ψ)2(G′′ ◦ ψ)
((
∂ψ(x) · ∂ξp2(x, η)

)2
+ τ2

(
∂ψ(x) · ∂ξp2(x, dψ(x))

)2)
= (G′ ◦ ψ)3 1

2iτ
{pψ, pψ}(x, η, τ)

+ (G′ ◦ ψ)2(G′′ ◦ ψ)
((
{p2, ψ}(x, η)

)2
+ τ2

(
2p2(x, dψ(x))

)2)
,

which proves Lemma 2.7.2 after multiplication by τ .

4.
♣ to be written one day

Exercise 12 (Carleman estimates with linear weight, warm-up of the exam of May, 2020). In this exercise,
we consider the flat Laplace operator P = −∆ on a connected bounded open set Ω ⊂ Rn. We take
α ∈ Rn \ {0} a fixed vector and consider the weight function Φ(x) = α · x.

1. Compute PΦ = eτΦPe−τΦ, its full symbol, and its principal symbol pΦ.

2. Write PΦ = PR+ iPI where PR and PI are both selfadjoint. Compute the principal symbols pR, pI of
PR, PI respectively, as well as their Poisson bracket {pR, pI}. What can we deduce, as far as classical
Carleman estimates are concerned?
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3. Let L > 0. Prove that for all v ∈ C∞c ((0, L)× Rn−1) and all x1 ∈ (0, L), we have∫
Rn−1

|v(x1, x
′)|2dx′ ≤ 2 ‖v‖L2([0,L]×Rn−1) ‖∂x1

v‖L2([0,L]×Rn−1)

4. Deduce that there is C depending only on Ω, α such that ‖PIv‖L2(Ω) ≥ Cτ ‖v‖L2(Ω) for all τ ∈ R
and all v ∈ C∞c (Ω). Hint: one may reduce to the case α is proportional to e1 = (1, 0, · · · , 0), and
consider Ω ⊂ [0, L]× Rn−1.

5. Prove that there is C > 0 such that

‖eτα·x∆u‖2L2(Ω) ≥ Cτ
2 ‖eτα·xu‖2L2(Ω) , for all u ∈ C∞c (Ω), τ ∈ R.

6. Conclude that there is C > 0 such that

τ2 ‖eτα·xu‖2L2(Ω) + ‖eτα·x∇u‖2L2(Ω) ≤ C ‖e
τα·x∆u‖2L2(Ω) , for all u ∈ C∞c (Ω), |τ | ≥ 1.

7. Compare with usual Carleman estimates. Is this Carleman estimate sufficient for proving the follow-
ing result: for a nonempty open set ω ⊂ Ω,(

w ∈ C∞(Ω), ∆w = 0 in Ω, w = 0 in ω
)

=⇒ w = 0 on Ω?

Correction 12. 1. We have PΦ = −∆− τ2|α|2 + 2τα · ∇, its principal symbol and its full symbol are
equal and given by pφ(x, ξ, τ) = |ξ|2 − τ2|α|2 + 2iτα · ξ.

2. We have PR = −∆ − τ2|α|2 and PI = 2τα · D, with respective principal symbols pR(x, ξ, τ) =
|ξ|2 − τ2|α|2 and pI(x, ξ, τ) = 2τα · ξ. Finally, we have {pR, pI} = 0 identically (neither depends
on x). The classical Hörmander subellipticity condition (2.3) is not satisfied: on the characteristic
set {pφ = 0} = {(x, ξ, τ) ∈ Ω × Rn × R+, ξ ⊥ α, |ξ| = τ |α|}, the Poisson bracket {pR, pI} vanishes.
Hence the usual Carleman estimate cannot be true.

3. We have |v(0, x′)|2 = 0 and thus

|v(x1, x
′)|2 =

∫ x1

0

∂s|v(s, x′)|2ds =

∫ x1

0

2 Re
(
v(s, x′)∂sv̄(s, x′)

)
ds,

and hence∫
Rn−1

|v(x1, x
′)|2dx′ =

∫ x1

0

∫
Rn−1

2 Re
(
v(s, x′)∂sv̄(s, x′)

)
dsdx′ ≤

∫ L

0

∫
Rn−1

2|v(s, x′)||∂sv̄(s, x′)|dsdx′

≤ 2 ‖v‖L2([0,L]×Rn−1) ‖∂x1
v‖L2([0,L]×Rn−1) .

4. Then integrating in x1, and dividing by ‖v‖L2([0,L]×Rn−1) (if nonzero) implies for all v ∈ C∞c ((0, L)×
Rn−1),

‖v‖L2([0,L]×Rn−1) ≤ 2L ‖∂x1
v‖L2([0,L]×Rn−1) .

Next, the operator ∆ is rotationally/translationally invariant, so we may assume that α = |α|e1

(that is to say α ·D = |α|D1) and Ω ⊂ [0, L]× Rn−1. We thus obtain, for all v ∈ C∞c (Ω),

‖v‖L2(Ω) ≤ 2L ‖D1v‖L2(Ω) =
2L

|α|
‖α ·Dv‖L2(Ω) .

Recalling that PI = 2τα ·D, we have obtained

‖PIv‖L2(Ω) = 2τ ‖α ·Dv‖L2(Ω) ≥ τ
L

|α|
‖v‖L2(Ω) .
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5. We remark that [PR, PI ] = 0, so that, for all v ∈ C∞c (Ω) and τ ∈ R,

‖PΦv‖2L2(Ω) = ‖PIv‖2L2(Ω) + ‖PRv‖2L2(Ω) + (i[PR, PI ]v, v)L2(Ω)

= ‖PIv‖2L2(Ω) + ‖PRv‖2L2(Ω) ≥ ‖PIv‖
2
L2(Ω) ≥ τ

2 L
2

|α|2
‖v‖2L2(Ω) .

taken for v = eτα·xu with u ∈ C∞c (Ω), this yields the sought result.

6. Then, we remark that

(PRv, v)L2(Ω) = (−∆v, v)L2(Ω) − τ
2|α|2 ‖v‖2L2(Ω) = ‖∇v‖2L2(Ω) − τ

2|α|2 ‖v‖2L2(Ω) .

As a consequence,

‖∇v‖2L2(Ω) = (PRv, v)L2(Ω) + τ2|α|2 ‖v‖2L2(Ω) ≤
1

4|α|2
‖PRv‖2L2(Ω) + |α|2 ‖v‖2L2(Ω) + τ2|α|2 ‖v‖2L2(Ω) .

Recalling that ‖PΦv‖2L2(Ω) = ‖PIv‖2L2(Ω) + ‖PRv‖2L2(Ω), and using the previous question, we have
thus obtained, for all |τ | ≥ 1,

‖∇v‖2L2(Ω) ≤
1

4|α|2
‖PΦv‖2L2(Ω) + 2

|α|4

L2
‖PΦv‖2L2(Ω) .

Undoing the conjugation, we have v = eτα·xu hence ∇v = eτα·x∇u+ ταv and

‖eτα·x∇u‖2L2(Ω) ≤ 2 ‖∇v‖2L2(Ω) + 2τ2|α|2 ‖v‖2L2(Ω) ≤
(

1

2|α|2
+ 4
|α|4

L2
+ 2
|α|4

L2

)
‖eτα·xPu‖2L2(Ω) .

Together with the previous question, we obtain, for all |τ | ≥ 1,

τ2|α|2 ‖eτα·xu‖2L2(Ω) + ‖eτα·x∇u‖2L2(Ω) ≤
(

1

2|α|2
+ 7
|α|4

L2

)
‖eτα·xPu‖2L2(Ω) .

7. We have a loss of a power of τ in the left handside. This is a consequence of the fact that the subellip-
ticity condition (2.3) is not satisfied. This Carleman estimate allows to propagate uniqueness in the
direction α, but not in all other directions. Hence it does not imply straightforwardly unique contin-
uation from any nonempty open set. For example, to fix ideas, if Ω = (−1, 1)2 ⊂ R2 and α = e1, the
Carleman estimate from which we want to extract information essentially reads ‖eτx1χw‖L2(Ω) ≤
C ‖eτx1 [∆, χ]w‖L2(Ω). But if ω = (−1, 1) × (−δ, δ), we cannot choose χ ∈ C∞c ((−1, 1)2) such that
supp(∇χ) has two connected components, one included in ω, and both contained between two lev-
elsets of Φ = x1.

Note that this Carleman estimate is actually a particular case of Theorem 2.7.1 in Exercice 11.
However, the two proofs are very different. Here, we have an exact cancellation of the commutator
[PR, PI ] and the positivity comes from coercivity of PI (a Poincaré inequality). In Exercice 11, only
{pR, pI} = 0 (hence [PR, PI ] ∈ Diff2

τ instead of Diff3
τ ) and we convexify (in a subtle way) the weight

function to have positivity (in class Diff2
τ only, whence the loss of a power of τ) from the commutator

[PR, PI ].

Exercise 13 (Carleman estimate for the Laplace operator with singular weight, part of the exam of May,
2020). In this exercise, we consider the flat Laplace operator P = −∆ on Rn \ {0}, together with the
weight function Φ(x) = − log |x|. We also denote (with a slight abuse of notation) by F (x) the operator
of multiplication by F (x), e.g. the operator Dj |x|γ is defined by

(
Dj |x|γu

)
(x) = Dj(|x|γu(x)). The

derivative of the function will be denoted with parentheses, e.g. Djx
2
j is an operator (= x2

jDj + 2
i xj)

whereas Dj(x
2
j ) = 2

i xj is a function.

1. Compute Dj,τ = |x|−τDj |x|τ .
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2. Compute |x|1−τD2
j |x|τ+1 = PR,j + iPI,j where both PR,j and PI,j are formally selfadjoint. Write

PI,j in terms of the operator xjDj +Djxj .

3. Write −|x|1−τ∆|x|τ+1 = PR+ iPI where both PR and PI are formally selfadjoint. Write PI in terms
of the operator

A :=
1

2
(x ·D +D · x) = x ·D − in

2
,

where we have taken the gradient/divergence notation (x·D)u(x) =
∑n
j=1 xjDju(x) and (D·x)u(x) =∑n

j=1Dj(xju(x)). Compare with the usual computation of PΦ := eτΦPe−τΦ.

4. (About the operator A). Compute principal symbol a(x, ξ) of A and the Hamiltonian flow of the a.
For a smooth function f : (0,+∞)→ R, compute {a, f(|x|)}.

5. Compute the principal symbols pR, pI of PR, PI respectively, as well as their Poisson bracket {pR, pI}.
What can we deduce, as far as classical Carleman estimates are concerned?

6. Compute all following commutators: [iA,Dj ], [iA, xj ], [iA,D
2
j ], [iA,∆], [iA, |x|].

7. Compute [PR, PI ].

8. (a) In this question, we consider the operator Pλ := −∆ + λ for λ ∈ R. Prove that for all u ∈
C∞c (Rn \ {0}), all τ ∈ R and λ ∈ R, we have∥∥|x|1−τPλu∥∥2

L2(Rn)
≥ 4τλ

∥∥|x|−τu∥∥2

L2(Rn)
. (2.67)

(b) In this question, we consider the operator PV := −∆ + V (x) for V ∈ L∞loc(Rn). Prove that for
all R > 0, there exists τ0, C > 0 such that∥∥|x|1−τPV u∥∥2

L2(Rn)
≥ τC

∥∥|x|−τu∥∥2

L2(Rn)
, for all u ∈ C∞c (B(0, R) \ {0}), τ ≥ τ0. (2.68)

9. (Positivity estimates for the operator A) Using the positivity of ‖(A− if(|x|)) v‖2L2(Rn) for real-valued
functions f , prove that for all R > 0, there is C > 0 such that

‖Av‖2L2(Rn) ≥ C
∥∥∥√|x|v∥∥∥2

L2(Rn)
, for all v ∈ C∞c (B(0, R) \ {0}),

‖Av‖2L2(Rn) ≥ C
∥∥∥∥ 1

log(R)− log(|x|)
v

∥∥∥∥2

L2(Rn)

, for all v ∈ C∞c (B(0, R) \ {0}).

Compare these two inequalities with each other.

10. Deduce that for all R > 0, there is C > 0 such that∥∥|x|1−τ∆u
∥∥2

L2(Rn)
≥ Cτ2

∥∥∥|x|−τ− 1
2u
∥∥∥2

L2(Rn)
, for all u ∈ C∞c (B(0, R) \ {0}), τ ∈ R

∥∥|x|1−τ∆u
∥∥2

L2(Rn)
≥ Cτ2

∥∥∥∥ |x|−τ−1

log(R)− log(|x|)
u

∥∥∥∥2

L2(Rn)

, for all u ∈ C∞c (B(0, R) \ {0}), τ ∈ R.

Compare these two inequalities with each other, and compare with (2.67)-(2.68).

11. We now want to obtain an estimate on the gradient term.

(a) Compute [−∆, f(|x|)] on Rn \ {0} for a smooth function f : (0,+∞)→ R.
(b) Prove that for all R > 0, there is a constant C > 0 such that∥∥∥D|x|3/2v∥∥∥2

L2
≤ C

∥∥|x|1−τ∆|x|τ+1v
∥∥2

L2 , for all v ∈ C∞c (B(0, R) \ {0}), |τ | ≥ 1,∥∥∥∥∥D
(

log
( R
|x|
))−1

|x|v

∥∥∥∥∥
2

L2

≤ C
∥∥|x|1−τ∆|x|τ+1v

∥∥2

L2 , for all v ∈ C∞c (B(0, R/2) \ {0}), |τ | ≥ 1.

NB: as above, Df(|x|)|x| stands for the composition of the (vector-valued) operator D = 1
i∇

and the multiplication by f(|x|)|x|.
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12. Prove the following Carleman estimates: for all R > 0, there is C > 0 such that

τ2
∥∥∥|x|−τ− 1

2u
∥∥∥2

L2(Rn)
+
∥∥∥|x|−τ+ 1

2Du
∥∥∥2

L2(Rn)
≤ C

∥∥|x|1−τ∆u
∥∥2

L2(Rn)
,

for all u ∈ C∞c (B(0, R) \ {0}), |τ | ≥ 1,

τ2

∥∥∥∥∥|x|−τ−1

(
log
( R
|x|
))−1

u

∥∥∥∥∥
2

L2(Rn)

+

∥∥∥∥∥|x|−τ
(

log
( R
|x|
))−1

Du

∥∥∥∥∥
2

L2(Rn)

≤ C
∥∥|x|1−τ∆u

∥∥2

L2(Rn)
,

for all u ∈ C∞c (B(0, R/2) \ {0}), |τ | ≥ 1.

13. (Bonus: only treat this question if some time is left) Reprove these Carleman estimates in polar
coodinates (r, ω) ∈ (0,+∞)× Sn−1, where r = |x|. We recall that the Laplace operator is given by

∆ = ∂2
r +

1

r
∂r +

1

r2
∆Sn−1 =

1

r
∂rr∂r +

1

r2
∆Sn−1 ,

where ∆Sn−1 is the Laplace operator on the sphere in the variable ω.

14. (Bonus: only treat this question if some time is left) What can we say if we replace −∆ by P =∑
j,k a

jk(x)DjDk ∈ Diff2(Rn) such that C|ξ|2 ≥
∑
j,k a

jk(x)ξjξk ≥ C|ξ|2 for all (x, ξ) ∈ Rn × Rn?

Correction 13. 1. We compute Dj,τ := |x|−τDj |x|τ by

∂j(|x|τu) = |x|τ∂ju+ u∂j(|x|τ ) = |x|τ∂ju+ uτxj |x|τ−2,

and hence
Dj,τ = |x|−τDj |x|τ = Dj − iτ

xj
|x|2

.

♣ parler des facteurs de |x| ajoutes pour avoir de l’invariance par scaling.

2. Hence we can compute

|x|1−τD2
j |x|τ+1 = |x|

(
|x|−τDj |x|τ

)(
|x|−τDj |x|τ

)
|x| = |x|Dj,τDj,τ |x|

= |x|
(
Dj − iτ

xj
|x|2

)(
Dj − iτ

xj
|x|2

)
|x|

Expanding this expression, we obtain

|x|1−τD2
j |x|τ+1 = |x|D2

j |x| − τ2
x2
j

|x|2
− iτ

(
xj
|x|
Dj |x|+ |x|Dj

xj
|x|

)
Now, remarking that 1

|x|∂j(|x|) + |x|∂j( 1
|x| ) = 1

|x|
xj
|x| + |x|

(
− xj
|x|3

)
= 0, we deduce that

xj
|x|
Dj |x|+ |x|Dj

xj
|x|

= xjDj +
xj
|x|
Dj(|x|) +Djxj + |x|Dj(

xj
|x|

) = xjDj +Djxj

is selfadjoint, so that

|x|1−τD2
j |x|τ+1 = Pj,R + iPj,I , Pj,R = |x|D2

j |x| − τ2
x2
j

|x|2
, Pj,I = −τ (xjDj +Djxj) .

3. We deduce that

−|x|1−τ∆|x|τ+1 = PR + iPI , with

PR = −|x|∆|x| − τ2 = |x||D|2|x| − τ2,

PI = −τ
n∑
j=1

(xjDj +Djxj) = −τ (x ·D +D · x) = −2τA,
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Note that the choice Φ(x) = − log |x| leads to e−τΦ(x) = |x|τ . Hence, the usual computation is
PΦ := eτΦPe−τΦ = −|x|τ∆|x|τ , so that
Advantage : scale invariant.

4. We have a(x, ξ) = x · ξ. Its Hamiltonian flow is defined by (xt, ξt)(x0, ξ0) where

ẋt = ∂ξa(xt, ξt) = xt, ξ̇t = −∂xa(xt, ξt) = −ξt,

hence we have (xt, ξt)(x0, ξ0) = (etx0, e
−tξ0). This linear flow is (for positive t) a dilation in the

space variable x and a contraction in the frequency variable ξ. Finally, we have {a, f(|x|)} =
∂ξa · ∂x(f(|x|)) = x · x|x|f

′(|x|) = |x|f ′(|x|). In particular, {a,Φ} = {a,− log |x|} = −1.

5. We have pR(x, ξ) = |x|2|ξ|2 − τ2 and pI(x, ξ) = −2τx · ξ and thus (on the whole Rn × Rn)

{pR, pI}(x, ξ) = ∂ξpR(x, ξ) · ∂xpI(x, ξ)− ∂xpR(x, ξ) · ∂ξpI(x, ξ)
= 2|x|2ξ · (−2τξ)− 2|ξ|2x · (−2τx) = −4τ2|x|2|ξ|2 + 4τ2|ξ|2|x|2 = 0.

6. We have

[iA,Dj ] = [xj∂j , Dj ] = −Dj(xj)∂j = −Dj ,

[iA, xj ] = [xj∂j , xj ] = xj∂j(xj) = xj ,

[iA,D2
j ] = Dj [iA,Dj ] + [iA,Dj ]Dj = −2D2

j ,

[iA,∆] = −
n∑
j=1

[iA,D2
j ] = 2

n∑
j=1

D2
j = −2∆,

[iA, |x|] =

n∑
k=1

[xk∂k, |x|] =

n∑
k=1

xk∂k(|x|) =

n∑
k=1

x2
k

|x|
= |x|.

7. Recalling that PI = −2τA, we instead compute using the last question

[iA,−PR] = [iA, |x|∆|x|] = |x| [iA,∆|x|] + [iA, |x|] ∆|x|
= |x| [iA,∆] |x|+ |x|∆ [iA, |x|] + [iA, |x|] ∆|x|
= |x|(−2∆)|x|+ |x|∆|x|+ |x|∆|x| = 0,

that is to say, [PR, PI ] = 0. Note that this is consistent with the fact that {pR, pI} = 0 (but this is
even stronger!).

8. (a) Now we consider Pλ = −∆ + λ, and we perform the same decomposition:

|x|1−τPλ|x|τ+1 = −|x|1−τ∆|x|τ+1 + λ|x|2 = PR,λ + iPI ,

where PR,λ := PR + λ|x|2 is formally selfadjoint. As usual, we have for all v ∈ C∞c (Rn \ {0}),∥∥|x|1−τPλ|x|τ+1v
∥∥2

L2(Rn)
= ((PR,λ + iPI) v, (PR,λ + iPI) v)L2(Rn)

= ‖PR,λv‖2L2(Rn) + ‖PIv‖2L2(Rn) + (i[PR,λ, PI ]v, v)L2(Rn) .

Here,
i[PR,λ, PI ] = i [PR, PI ] + i

[
λ|x|2, PI

]
= 0 + i

[
λ|x|2,−2τA

]
= 2τλ[iA, |x|2],

where [iA, |x|2] = |x|[iA, |x|] + [iA, |x|]|x| = 2|x|2. Hence, i[PR,λ, PI ] = 4τλ|x|2 and we have the
inequality:∥∥|x|1−τPλ|x|τ+1v

∥∥2

L2(Rn)
≥ (i[PR,λ, PI ]v, v)L2(Rn) =

(
4τλ|x|2v, v

)
L2(Rn)

= 4τλ ‖|x|v‖2L2(Rn) .

As a consequence, writing u = |x|τ+1v, that is v = |x|−τ−1u (for u ∈ C∞c (Rn \ {0}), that is,
supported away from zero) we obtain the inequality (2.67).
Note that this simple inequality has applications to the absence of embedded eigenvalues. We
refer to Proposition 14.7.1 in [Hör83] and Theorem 14.7.2 (which is a unique continuation
statement from infinity) stating that no eigenvalues are embedded in the continuous spectrum
of −∆ + V if V is a suitable short range perturbation of the flat Laplace operator ∆.
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(b) We first fix λ = 1. If PV = −∆ + V (x) = P1 + (V (x) − 1), application of (2.67) with λ = 1
yields for all τ ∈ R and u ∈ C∞c (Rn \ {0}),

4τ
∥∥|x|−τu∥∥2

L2(Rn)
≤
∥∥|x|1−τP1u

∥∥2

L2(Rn)
≤ 2

∥∥|x|1−τPV u∥∥2

L2(Rn)
+ 2

∥∥|x|1−τ (V (x)− 1)u
∥∥2

L2(Rn)

Using that supp(u) ⊂ B(0, R), we further have∥∥|x|1−τ (V (x)− 1)u
∥∥
L2(Rn)

≤ ‖|x|(V (x)− 1)‖L∞(B(0,R))

∥∥|x|−τu∥∥
L2(Rn)

≤
∥∥|x|−τu∥∥

L2(Rn)

These two inequalities imply(
4τ − 2R2(‖V ‖L∞(B(0,R)) + 1)2

)∥∥|x|−τu∥∥2

L2(Rn)
≤ 2

∥∥|x|1−τPV u∥∥2

L2(Rn)
,

whence the sought result when taking τ ≥ τ0 with τ0 = 2R2(‖V ‖L∞(B(0,R)) + 1)2.

9. As above, we have

[iA, F (x)] = x · ∇F (x), [iA, f(|x|)] = x ·
(
f ′(|x|) x

|x|

)
= f ′(|x|)|x|. (2.69)

We see that [iA, F (x)] is maximal when F is radial and increasing. The second commutator is then
more precise.
Then we compute, for a real-valued function f ,

‖(A− if(|x|)) v‖2L2(Rn) = ‖Av‖2L2(Rn) + ‖f(|x|)v‖2L2(Rn) − (i[A, f(|x|)]v, v)L2(Rn)

= ‖Av‖2L2(Rn) +
(
f(|x|)2v, v

)
L2(Rn)

− (f ′(|x|)|x|v, v)L2(Rn)

Hence, we may write

‖Av‖2L2(Rn) ≥
((
f ′(|x|)|x| − f(|x|)2

)
v, v
)
L2(Rn)

(2.70)

We now choose the function f . Taking f(s) = s
2R implies

f ′(s)s− f(s)2 =
s

2R
− s2

4R2
≥ s

2R
− sR

4R2
=

s

4R
on the set {0 < s < R}.

Together with (2.70), this yields

‖Av‖2L2(Rn) ≥
( |x|

4R
v, v
)
L2(Rn)

=
1

4R

∥∥∥√|x|v∥∥∥2

L2(Rn)
, for all v ∈ C∞c (B(0, R) \ {0}).

If we try to optimize and instead choose f so that f ′(|x|)|x| = 2f(|x|)2, this will imply

‖Av‖2L2(Rn) ≥ ‖f(|x|)v‖2L2(Rn) .

This means f ′(s)s = 2f(s)2, that is to say, for R > 0 and s ∈ (0, R], f(s) = 1
2(log(R)−log(s)) =(

2 log
(
R
s

))−1. Coming back to the last inequality, this yields

‖Av‖2L2(Rn) ≥
1

4

∥∥∥∥ 1

log(R)− log(|x|)
v

∥∥∥∥2

L2(Rn)

, for all v ∈ C∞c (B(0, R) \ {0}).

These two inequalities have exactly the same form, except for the weight in the right handside.
Notice that the function s 7→ 1

log(R)−log(s) =
(
log
(
R
s

))−1 may be extended by continuity by 0 at
s = 0, tends to +∞ as s → R− and is strictly increasing on [0, R). Near 0 it is bigger than every
power of sγ , γ > 0 (the smaller γ, the better the estimate is). Hence, the second estimate is better
than the first one!
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10. The usual computation together with the nullity of the commutator in Question 7 implies that for
all v ∈ C∞c (Rn \ {0}),∥∥|x|1−τ∆|x|τ+1v

∥∥2

L2(Rn)
= ‖PRv‖2L2(Rn) + ‖PIv‖2L2(Rn) + (i[PR, PI ]v, v)L2(Rn)

= ‖PRv‖2L2(Rn) + ‖PIv‖2L2(Rn) .

We have moreover proved that PI = −2τA, so that∥∥|x|1−τ∆|x|τ+1v
∥∥2

L2(Rn)
≥ ‖PIv‖2L2(Rn) = 4τ2 ‖Av‖2L2(Rn) .

We deduce from the previous question that∥∥|x|1−τ∆|x|τ+1v
∥∥2

L2(Rn)
≥ R−1τ2

∥∥∥√|x|v∥∥∥2

L2(Rn)
, for all v ∈ C∞c (B(0, R) \ {0}), τ ∈ R (2.71)

∥∥|x|1−τ∆|x|τ+1v
∥∥2

L2(Rn)
≥ τ2

∥∥∥∥ 1

log(R)− log(|x|)
v

∥∥∥∥2

L2(Rn)

, for all v ∈ C∞c (B(0, R) \ {0}), τ ∈ R.

(2.72)

As a consequence, writing u = |x|τ+1v, that is v = |x|−τ−1u (for u ∈ C∞c (B(0, R) \ {0})) we obtain∥∥|x|1−τ∆u
∥∥2

L2(Rn)
≥ R−1τ2

∥∥∥|x|−τ− 1
2u
∥∥∥2

L2(Rn)
, for all u ∈ C∞c (B(0, R) \ {0}), τ ∈ R

∥∥|x|1−τ∆u
∥∥2

L2(Rn)
≥ τ2

∥∥∥∥ |x|−τ−1

log(R)− log(|x|)
u

∥∥∥∥2

L2(Rn)

, for all u ∈ C∞c (B(0, R) \ {0}), τ ∈ R.

As above, the second inequality is better than the first one. When comparing with (2.68), both of
these inequalities have a better power of τ (τ2 instead of τ), and moreover a better power of |x| near
zero (|x|−τ− 1

2 or even |x|−τ−1

log(R)−log(|x|) instead of |x|−τ ). The case of a power |x|−τ−1 is critical with
respect to scaling and requires a finer analysis.
Note however that (2.67) does not require functions to be supported in a compact set, and can also
be useful near infinity as already mentioned.

11. (a) We have [Dj , f(|x|)] = Dj(f(|x|)) = 1
i
xj
|x|f

′(|x|) and hence

[D2
j , f(|x|)] = Dj [Dj , f(|x|)] + [Dj , f(|x|)]Dj = Dj

1

i

xj
|x|
f ′(|x|) +

1

i

xj
|x|
f ′(|x|)Dj

= Dj [Dj , f(|x|)] + [Dj , f(|x|)]Dj

=
1

i

1

|x|
f ′(|x|)Djxj +

1

i
f ′(|x|)xjDj

1

|x|
+

1

i

xj
|x|
Dj(f

′(|x|)) +
1

i

xj
|x|
f ′(|x|)Dj

=
1

i

1

|x|
f ′(|x|)Djxj − f ′(|x|)

x2
j

|x|3
−

x2
j

|x|2
f ′′(|x|) +

1

i

1

|x|
f ′(|x|)xjDj .

Summing in j and recognizing the definition of A (in the first + last terms), we have obtained

[|D|2, f(|x|)] =
1

i

1

|x|
f ′(|x|)2A+

f ′(|x|)
|x|

− f ′′(|x|). (2.73)

(b) We want to use that |x||D|2|x| = PR + τ2 and that we have control on PRv and on v (in
appropriate weighted norms). To this aim, we compute for real-valued f

‖Df(|x|)|x|v‖2L2(Rn) = (Df(|x|)|x|v,Df(|x|)|x|v)L2(Rn) =
(
|x||D|2f(|x|)|x|v, f(|x|)v

)
L2(Rn)

=
(
|x||D|2|x|v, f(|x|)2v

)
L2(Rn)

+
(
|x|[|D|2, f(|x|)]|x|v, f(|x|)v

)
L2(Rn)

=
(
PRv, f(|x|)2v

)
L2(Rn)

+ τ2 ‖f(|x|)v‖2L2(Rn)

+
(
|x|[|D|2, f(|x|)]|x|v, f(|x|)v

)
L2(Rn)

.
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Note that the quantity on the left handside is real, so that we may take real parts:

‖Df(|x|)|x|v‖2L2(Rn) = Re
(
PRv, f(|x|)2v

)
L2(Rn)

+ τ2 ‖f(|x|)v‖2L2(Rn)

+ Re
(
[|D|2, f(|x|)]|x|v, f(|x|)|x|v

)
L2(Rn)

. (2.74)

Now, ifA,B,C are selfadjoint, [A,B]∗ = −[A,B] and Re(C[A,B]) = 1
2

(
(C[A,B])+(C[A,B])∗

)
=

1
2

(
C[A,B]− [A,B]C

)
= 1

2 [C, [A,B]]. This, together with (2.73) implies

Re
(
f(|x|)[|D|2, f(|x|)]

)
=

1

2

[
f(|x|), [|D|2, f(|x|)]

]
=

1

2

[
f(|x|), 1

i

1

|x|
f ′(|x|)2A

]
=

1

i

1

|x|
f ′(|x|) [f(|x|), A] =

1

|x|
f ′(|x|)f ′(|x|)|x| = f ′(|x|)2,

after having used (2.69). Coming back to (2.74), we deduce

‖Df(|x|)|x|v‖2L2(Rn) = Re
(
PRv, f(|x|)2v

)
L2(Rn)

+ τ2 ‖f(|x|)v‖2L2(Rn)

+
(
f ′(|x|)2|x|v, |x|v

)
L2(Rn)

= Re
(
PRv, f(|x|)2v

)
L2(Rn)

+ τ2 ‖f(|x|)v‖2L2(Rn) + ‖f ′(|x|)|x|v‖2L2(Rn) .

We have seen that
∥∥|x|1−τ∆|x|τ+1v

∥∥2

L2(Rn)
= ‖PRv‖2L2(Rn) + ‖PIv‖2L2(Rn), so that

Re
(
PRv, f(|x|)2v

)
L2 ≤

∥∥|x|1−τ∆|x|τ+1v
∥∥
L2

∥∥f(|x|)2v
∥∥
L2 ,

and hence

‖Df(|x|)|x|v‖2L2 ≤
∥∥|x|1−τ∆|x|τ+1v

∥∥
L2

∥∥f(|x|)2v
∥∥
L2

+ τ2 ‖f(|x|)v‖2L2(Rn) + ‖f ′(|x|)|x|v‖2L2(Rn) . (2.75)

We may now choose the function f . Taking for instance f(s) = (s/R)1/2 and recalling that
functions are supported in B(0, R) \ {0}, we obtain

R−1
∥∥∥D|x|3/2v∥∥∥2

L2
≤
∥∥|x|1−τ∆|x|τ+1v

∥∥
L2 R

−1 ‖|x|v‖L2 + τ2R−1
∥∥∥√|x|v∥∥∥2

L2
+ (4R)−1

∥∥∥√|x|v∥∥∥2

L2

≤ 1

2

∥∥|x|1−τ∆|x|τ+1v
∥∥2

L2 +
1

2
R−2 ‖|x|v‖L2 +

(
τ2 +

1

4

)
R−1

∥∥∥√|x|v∥∥∥2

L2

≤ 1

2

∥∥|x|1−τ∆|x|τ+1v
∥∥2

L2 +

(
τ2 +

3

4

)
R−1

∥∥∥√|x|v∥∥∥2

L2

Using our estimate (2.71), we have now obtained, for v ∈ C∞c (B(0, R) \ {0}) and |τ | ≥ 1

R−1
∥∥∥D|x|3/2v∥∥∥2

L2
≤ 1

2

∥∥|x|1−τ∆|x|τ+1v
∥∥2

L2 + 2
∥∥|x|1−τ∆|x|τ+1v

∥∥2

L2 =
5

2

∥∥|x|1−τ∆|x|τ+1v
∥∥2

L2

(2.76)

(c) We also remark that D|x|3/2v = 3
2i

x
|x|1/2 v + |x|3/2Dv so that using again (2.71), we have, for

|τ | ≥ 1

R−1
∥∥∥|x|3/2Dv∥∥∥2

L2
≤ R−1 3

2

∥∥∥√|x|v∥∥∥2

L2(Rn)
+

5

2

∥∥|x|1−τ∆|x|τ+1v
∥∥2

L2 ≤ 4
∥∥|x|1−τ∆|x|τ+1v

∥∥2

L2

Coming back to u = |x|τ+1v, we have Du = |x|τ+1Dv + (τ + 1)|x|τ−1xv and thus∥∥∥|x|−τ+1/2Du
∥∥∥2

L2
≤ 2

∥∥∥|x|3/2Dv∥∥∥2

L2
+ 2(τ + 1)2

∥∥∥|x|1/2v∥∥∥2

L2
≤ 2

∥∥∥|x|3/2Dv∥∥∥2

L2
+ 8τ2

∥∥∥|x|1/2v∥∥∥2

L2
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for |τ | ≥ 1. Together with (2.76) and (2.71), this is

R−1
∥∥∥|x|−τ+1/2Du

∥∥∥2

L2
≤ 5

∥∥|x|1−τ∆u
∥∥2

L2 + 8
∥∥|x|1−τ∆u

∥∥2

L2 = 13
∥∥|x|1−τ∆u

∥∥2

L2 .

Adding this with (2.71) finally yields

R−1
∥∥∥|x|−τ+1/2Du

∥∥∥2

L2
+R−1τ2

∥∥∥|x|−τ−1/2u
∥∥∥2

L2
≤ 14

∥∥|x|1−τ∆u
∥∥2

L2 .

(d) If we now choose for s ∈ (0, R], f(s) = 1
2(log(R)−log(s)) =

(
2 log

(
R
s

))−1 and recall that f ′(s)s =

2f(s)2. For functions supported in B(0, R) \ {0}, we obtain from (2.75) that

‖Df(|x|)|x|v‖2L2 ≤
∥∥|x|1−τ∆|x|τ+1v

∥∥
L2

∥∥f(|x|)2v
∥∥
L2 + τ2 ‖f(|x|)v‖2L2 +

∥∥f(|x|)2v
∥∥2

L2

≤ 1

2

∥∥|x|1−τ∆|x|τ+1v
∥∥2

L2 +
3

2

∥∥f(|x|)2v
∥∥2

L2 + τ2 ‖f(|x|)v‖2L2 .

Using that f is increasing, we have f(|x|) ≤ f(R/2) = (2 log 2)−1 < +∞ for x ∈ B(0, R).
Hence, for v ∈ C∞c (B(0, R/2) \ {0}), we have

‖Df(|x|)|x|v‖2L2 ≤
1

2

∥∥|x|1−τ∆|x|τ+1v
∥∥2

L2 +

(
3

2
(2 log 2)−2 + τ2

)
‖f(|x|)v‖2L2

≤ 1

2

∥∥|x|1−τ∆|x|τ+1v
∥∥2

L2 + 2τ2 ‖f(|x|)v‖2L2 ,

for |τ | ≥ 1 after having used 3
2 (2 log 2)−2 ≤ 1.

Using our estimate (2.72), we have now obtained, for v ∈ C∞c (B(0, R/2) \ {0}) and |τ | ≥ 1

‖Df(|x|)|x|v‖2L2 ≤
1

2

∥∥|x|1−τ∆|x|τ+1v
∥∥2

L2 + 2
1

4

∥∥|x|1−τ∆|x|τ+1v
∥∥2

L2 =
∥∥|x|1−τ∆|x|τ+1v

∥∥2

L2 .

(2.77)

We then remark thatDf(|x|)|x|v = f(|x|)|x|Dv+ 1
i

(
xf ′(|x|)+ x

|x|f(|x|)
)
v so that using again (2.72),

we have for v ∈ C∞c (B(0, R/2) \ {0}) and |τ | ≥ 1

‖f(|x|)|x|Dv‖2L2 ≤ 3 ‖Df(|x|)|x|v‖2L2 + 3 ‖f(|x|)v‖2L2 + 3 ‖|x|f ′(|x|)v‖2L2

Using f ′(s)s = 2f(s)2 ≤ 2f(R/2)f(s) = 2(2 log 2)−1f(s) in the last term, we deduce

‖f(|x|)|x|Dv‖2L2 ≤ 3 ‖Df(|x|)|x|v‖2L2 + (3 +
3

4
(log 2)−2) ‖f(|x|)v‖2L2

Combining with (2.77) and (2.72) (and using 3
4 (log 2)−2 ≤ 2) finally yields

‖f(|x|)|x|Dv‖2L2 + ‖f(|x|)v‖2L2 ≤ 3 ‖Df(|x|)|x|v‖2L2 + 6 ‖f(|x|)v‖2L2

≤ 3
∥∥|x|1−τ∆|x|τ+1v

∥∥2

L2 + 6
1

4

∥∥|x|1−τ∆|x|τ+1v
∥∥2

L2 ,

that is to say∥∥∥∥∥
(

log
( R
|x|
))−1

|x|Dv

∥∥∥∥∥
2

L2

+

∥∥∥∥∥
(

log
( R
|x|
))−1

v

∥∥∥∥∥
2

L2

≤ 18
∥∥|x|1−τ∆|x|τ+1v

∥∥2

L2 .

Coming back to u = |x|τ+1v as above yields the sought result.

Exercise 14 (Strong unique continuation, part of the exam of May, 2020). Let Ω be a connected open
set containing 0. Let V ∈ C∞(Ω) and let u ∈ C∞(Ω) be a solution to (−∆ + V )u = 0 in Ω. Assume
that ∂αu(0) = 0 for all α ∈ Nn. Prove that u = 0 in Ω. Hint: use one of the Carleman estimates of the
previous exercise.
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Correction 14. We write PV = −∆ + V . Fix R > 0 such that B(0, πR) ⊂ Ω. If u ∈ C∞(Ω) satisfies
∂αu(0) = 0 for all α ∈ Nn, then u = ON (|x|N ) for all N ∈ N. Hence, for all τ > 0 |x|−τu ∈ L2(B(0, R)).
Moreover, the same holds for PV u so that |x|−τ+1PV u ∈ L2(B(0, R)) as well. We now take χR ∈ C∞c (Ω)
such that supp(χR) ⊂ B(0, R) and χR = 1 in B(0, R/2).

Next, we need to remark that the Carleman estimate (2.68) generalizes to all functions v ∈ C∞c (B(0, R))
such that ∂αv(0) = 0 for all α ∈ Nn (here, any of the Carleman estimates proved in the previous exercise
works). Indeed, for such a function v, set vn = (1 − χ(x/n))v ∈ C∞c (B(0, R) \ {0}) for χ ∈ C∞c (Rn)
such that χ = 1 in a neighborhood of zero. For all τ ∈ R, we have |x|−τvn → |x|−τv in C∞(B(0, R))
and since v = ON (|x|N ) for all N ∈ N. Similarly, |x|1−τ∆vn → |x|1−τ∆v in C∞(B(0, R)) (this uses that
‖|x|−τ [∆, χ(x/n)]v‖L2(B(0,R)) → 0). As a consequence, the Carleman estimate (2.68) for τ ≥ τ0 applies to
vn:∥∥|x|1−τPV v∥∥2

L2(B(0,R))
←
∥∥|x|1−τPV vn∥∥2

L2(B(0,R))
≥ τC

∥∥|x|−τvn∥∥2

L2(B(0,R))
→ τC

∥∥|x|−τv∥∥2

L2(B(0,R))

We may then apply this inequality with v = χRu, where u is the function satisfying (−∆ + V )u = 0 in Ω
vanishing at infinite order at 0. This yields∥∥|x|1−τ [PV , χR]u

∥∥2

L2(B(0,R))
≥ τC

∥∥|x|−τχRu∥∥2

L2(B(0,R))
, for all τ ≥ τ0.

But [PV , χR] is a differential operator of order one with coefficients supported in B(0, R) \B(0, R/2). On
that set, we have |x|−τ+1 ≤

(
R
2

)−τ+1. Therefore, we have

∥∥|x|1−τ [PV , χR]u
∥∥
L2(B(0,R))

≤
(
R

2

)−τ+1

‖u‖H1(B(0,R)\B(0,R/2)) =

(
R

2

)−τ
Cu,R,

where Cu,R does not depend on τ . Coming back to the above Carleman inequality, we have obtained, for
some τ0 ≥ 1, and for another constant C̃u,R > 0 independent of τ ,

∥∥|x|−τχRu∥∥2

L2(B(0,R))
≤
(
R

2

)−τ
C̃u,R, for all τ ≥ τ0.

This rewrites as ∥∥∥eτ log( R
2|x| )χRu

∥∥∥2

L2(B(0,R))
≤ C̃u,R, for all τ ≥ τ0.

The same argument as in the course shows that this implies χRu = 0 on the set {log
(

R
2|x|

)
> 0} = {|x| <

R
2 }. On this set, χR = 1, so that u = 0 on B(0, R/2). This is an open subset of Ω, which is connected;
hence, from a result of the course, this implies u = 0 on the whole Ω (recall that it is connected).

Exercise 15 (Uniqueness under conditional pseudoconvexity, part of the exam of May, 2020). In this
exercise, we aim at proving the following result.

Theorem 2.7.3. Let Ω be a bounded open set of Rn and x0 ∈ Ω. Let P ∈ Diff2 and Q ∈ Diff1 with
respective principal symbols p2 and q1, with p2 real-valued. Assume that the oriented hypersurface S =
{Ψ = Ψ(x0)} satisfies (dΨ(x0) 6= 0 and) p2(x0, dΨ(x0)) 6= 0 and

{p2, {p2,Ψ}}(x0, ξ) > 0 for all ξ ∈ Rn \ {0} such that p2(x0, ξ) = {p2,Ψ}(x0, ξ) = q1(x0, ξ) = 0. (2.78)

Then, there exists a neighborhood V of x0 so that for all u ∈ C∞(Ω), if we have |Pu(x)| ≤ C (|∇u(x)|+ |u(x)|) for all x ∈ Ω,
|Qu(x)| ≤ C|u(x)| for all x ∈ Ω,
u = 0 in Ω ∩ {Ψ > Ψ(x0)} ,

(2.79)

then we have u = 0 in V .

We write and pΨ(x, ξ, τ) = p2(x, ξ + iτdΨ(x)) and assume (2.78) all along the exercise.
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1. Given a function Φ, compute the operator QΦ := eτΦQe−τΦ, give its order and its principal symbol
qΦ.

2. Prove that {pΨ,Ψ}(x0, ξ, τ) 6= 0 for all ξ ∈ Rn and τ > 0 such that pΨ(x0, ξ, τ) = 0.

3. We define

cΨ(ξ, τ) =
1

iτ
{pΨ, pΨ}(x0, ξ, τ), for τ > 0 and cΨ(ξ, 0) = 2{p2, {p2,Ψ}}(x0, ξ).

Prove the existence of C1, C2 > 0 so that

cΨ(ξ, τ) + C1

(
|{pΨ,Ψ}(x0, ξ, τ)|2 + |pΨ(x0, ξ, τ)|2 + |qΨ(x0, ξ, τ)|2

)
≥ C2,

for all (ξ, τ) ∈ Rn+1 such that τ ≥ 0 and |ξ|2 + τ2 = 1.

4. We now set Φ = eλΨ. Deduce that there exist constants λ0, C1, C2 > 0 such that for all λ ≥ λ0 we
have

cΦ(ξ, τ) + C1

(
|pΦ(x0, ξ, τ)|2

|ξ|2 + τ2
+ |qΦ(x0, ξ, τ)|2

)
≥ C2(|ξ|2 + τ2), (2.80)

for all (ξ, τ) ∈ Rn+1, τ ≥ 0.

5. We set P̃ = P+P∗

2 and P̃Φ = eτΦP̃ e−τΦ. Prove that if Φ satisfies (2.80), then there exist C, r, τ0 > 0
so that

τ ‖v‖2H1
τ
≤ C

∥∥∥P̃Φv
∥∥∥2

L2
+ Cτ ‖QΦv‖2L2 , for all v ∈ C∞c (B(x0, r)), τ ≥ τ0.

Hint: one may write P̃Φ = PR + iτ P̃I where PR and P̃I two formally selfadjoint operators to be

determined, compute 1
τ

∥∥∥P̃Φv
∥∥∥2

L2
, and link the principal symbols of the operators involved with those

appearing in (2.80).

6. Deduce that there exist C, τ0 > 0 so that

τ3
∥∥eτΦw

∥∥2

L2 + τ
∥∥eτΦ∇w

∥∥2

L2 ≤ C
∥∥eτΦPw

∥∥2

L2 + Cτ
∥∥eτΦQw

∥∥2

L2 ,

for all w ∈ C∞c (B(x0, r)), τ ≥ τ0.

7. Assume u ∈ C∞(Ω) satisfies Pu = 0 and Qu = 0, and let χ ∈ C∞c (B(0, r)). Then prove that there
exist C, τ0 > 0 so that for all τ ≥ τ0

τ3
∥∥eτΦχu

∥∥2

L2 + τ
∥∥eτΦ∇(χu)

∥∥2

L2 ≤ C
∥∥eτΦ[P, χ]u

∥∥2

L2 . (2.81)

8. Prove Theorem 2.7.3 in this case. Only explain the main steps of the proofs, and omit the details.

9. Assume now that u only satisfies (2.79) and prove Theorem 2.7.3. Only explain the difference with
respect to the preceding question.

Correction 15. 1. We have QΦ := eτΦQe−τΦ ∈ Diff1
τ , with principal symbol qΦ(x, ξ, τ) = q1(x, ξ +

iτdΦ(x)).

2. This is a reformulation of Lemma 2.2.8.

3. We first recall that cΨ is continuous up to τ = 0 according to Lemma 2.1.6. We thus consider on
Sn+ = {(ξ, τ), |ξ|2 + τ2 = 1, τ ≥ 0} the two continuous functions cΨ(ξ, τ) and

f(ξ, τ) = |{pΨ,Ψ}(x0, ξ, τ)|2 + |pΨ(x0, ξ, τ)|2 + |qΨ(x0, ξ, τ)|2.
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We have f ≥ 0 and Sn+ compact: if we prove that f(ξ, τ) = 0 =⇒ cΨ(ξ, τ) > 0, the result
follows from Lemma 2.1.8. Question 2 gives that f(ξ, τ) = 0 =⇒ τ = 0. But if τ = 0, we have
pΨ(x0, ξ, 0) = p2(x0, ξ), {pΨ,Ψ}(x0, ξ, 0) = {p2,Ψ}(x0, ξ) and qΨ(x0, ξ, 0) = q1(x0, ξ) so that

f(ξ, 0) = |{p2,Ψ}(x0, ξ)|2 + |p2(x0, ξ)|2 + |q1(x0, ξ)|2.

Condition (2.78), then precisely implies cΨ(ξ, 0) = 2{p2, {p2,Ψ}}(x0, ξ) > 0. Lemma 2.1.8 thus
yields (2.80).

4. Similar to the proof of Proposition 2.2.5 from Lemma 2.2.6.

5. idem cours

6. ♣ ...
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Chapter 3

The wave equation with coefficients
constant in time

In this chapter, we focus our attention to very specific operators of wave type ∂2
t +Q where Q = q(x,Dx)

is a positive elliptic operator. In Remark 2.3.6, we have seen that, in the framework of regular coefficient,
the unique continuation theorem of the previous chapter, starting from sets of the form {(t, x),Ψ(x) ≥ 0}
{ϕ(x) ≤ 0} requires some (strong) convexity assumptions of the surface. Yet, in the Holmgren Theo-
rem 1.2.4, the condition is less restrictive (in particular, unique continuation always holds across any
surface of the type {(t, x),Ψ(x) = 0}). It only requires the surface to be non-characteristic. In the case
of the flat wave operator ∂2

t −∆ for instance, the latter reads |∂tΨ|2 6= |∂xΨ|2. It means that the surface
should not be tangent to the light cone. More or less, this is the weakest condition that one could ex-
pect but would not contradict the finite speed of propagation. But we would like to relax the analyticity
assumption. The counterexamples of Alinhac and Baouendi [AB79, Ali83, AB95] actually prevent from
relaxing this assumption completely.

It turns out that some analyticity with respect to part of the variables can be sufficient, for instance
the time in our example of the wave equation. The results presented in this chapter have been proved
in [Tat95], and revisited/generalized in [Hör97, RZ98, Tat99]. Our presentation is inspired by [Hör97].

3.1 Setting and statement of the unique continuation result
In the following, the variable will be z = (t, x) ∈ R1+n with dual variable ξ = (ξt, ξx) ∈ R1+n. To keep the
notation coherent with the elliptic case, we will denote ξt = ξ0 and ξx will be written ξx = (ξ1, · · · , ξn).

The main theorem of this chapter will be the following.

Theorem 3.1.1 (Wave type operator with coefficients constant in time). Let T > 0 and Ωx an open set
of Rn. Denote Ω =]− T, T [×Ωx.

Let

Q =

n∑
i,j=1

aij(x)DiDj +
∑
k

bk(x)Dk + c(x)

be a differential operator of order 2 with aij ∈ C∞(Ωx) real-valued, bk, c ∈ L∞(Ωx). Assume also that Q
is positive elliptic, that is there exists C > 0 so that

q(x, ξx) :=

n∑
i,j=1

aij(x)ξiξj ≥ C|ξx|2, for all (x, ξx) ∈ Ωx × Rn.

Define P = ∂2
t +Q on Ω, having principal symbol p(t, x, ξt, ξx) = −ξ2

t + q(x, ξx). Let z0 = (t0, x0) ∈ Ω and
Ψ ∈ C2(Ω) with dΨ(z0) 6= 0 so that p(z0, dzΨ(z0)) 6= 0, i.e.

(∂tΨ(z0))2 6=
∑
i,j

aij(x0)(∂iΨ(z0))(∂jΨ(z0)).
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Then, there exists a neighborhood V of z0 so that for any u ∈ C∞(Ω),{
Pu = 0 in Ω,
u = 0 in Ω ∩ {Ψ > Ψ(z0)} =⇒ u = 0 on V. (3.1)

The main tool will be an inequality of Carleman type, but with an additional weight in the Fourier
variable. Namely, we let e−ε

|Dt|2
2τ be the Fourier multiplier defined naturally by

F

(
e−ε

|Dt|2
2τ u

)
(ξ) = e−ε

|ξt|2
2τ û(ξ), u ∈ S(Rn),

where ξt is the Fourier variable corresponding to the variable t and ξ = (ξt, ξx). Note that this amounts to
solving the heat equation with t as a “spatial” variable, during a “time” ε

2τ . Using the explicit expression of

the Fourier transform of the Gaussian e−ε
|ξt|2
2τ , this may be rewritten as a convolution with a heat kernel:(

e−ε
|Dt|2

2τ u

)
(t, x) =

( τ

2πε

)1/2
∫
R
e−

τ
2ε (t−s)2

u(s, x)ds.

This operator has several interesting features: it localizes close to Dt = 0 (i.e. in low frequencies w.r.t.

the time variable t), in an analytic way (the function e−ε
|Dt|2

2τ u produced is an entire function in the

t-variable). However (and consequently), note that e−
ε
2τ |Dt|

2

is not local; in particular, e−ε
|Dt|2

2τ u is not
compactly supported, even if u is.

For a smooth real-valued weight function Φ (later on, we will assume that it is polynomial of order 2),
the Carleman estimate below will make use of the operator

QΦ
ε,τu = e−ε

|Dt|2
2τ eτΦu.

The following is an analogue of the Definition 2.1.5, under which the Carleman estimate of Theo-
rem 2.1.1 holds. Here, the condition is weaker for it is only restricted to ξt = 0.

Definition 3.1.2 (Pseudoconvex function in ξt = 0). With the above assumptions for P , let Φ be smooth
and real-valued. We say that Φ is a pseudoconvex function with respect to P in ξt = 0 at z0 if

{p, {p,Φ}} (z0, ξ) > 0, if p(z0, ξ) = 0, ξt = 0, ξ 6= 0; (3.2)
1

iτ
{pΦ, pΦ}(z0, ξ, τ) > 0, if pΦ(z0, ξ, τ) = 0, ξt = 0, τ > 0, (3.3)

where pΦ(z, ξ, τ) = p(z, ξ + iτdΦ(z)).

Theorem 3.1.3 (Carleman estimate for wave type operators with coefficients constant in time). With
the above assumptions for P , let Φ be a quadratic real-valued polynomial such that Φ is a pseudoconvex
function with respect to P in ξt = 0 at z0, in the sense of Definition 3.1.2.

Then, there exist r, ε, d, C, τ0 > 0 such that for all τ ≥ τ0 and u ∈ C∞c (B(z0, r)), we have

τ‖QΦ
ε,τu‖2H1

τ
≤ C

∥∥QΦ
ε,τPu

∥∥2

L2 + Ce−dτ
∥∥eτΦu

∥∥2

H1
τ
. (3.4)

Note that if we set ε = 0, this would be a classical Carleman estimate. Yet, the role of the Fourier
multiplier will be to kill the high frequency in the variable t. So, we will just need to look at the very
small frequency in ξt. That is why the pseudoconvexity assumption is only made in ξt = 0.

3.2 Proving unique continuation using the Carleman estimate
In this section, we assume that Theorem 3.1.3 is proved and we will prove Theorem 3.1.1. Some part
will be similar to the classical case, that means constructing an approriate function Φ, pseudoconvex for
functions in ξt = 0 from the function Ψ defining the surface S = {Ψ = Ψ(z0)}.

The main differences are the following:
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• the pseudoconvexity is only on ξt = 0, so it requires a small adaptation of the convexification
procedure. Moreover, we want Φ to be quadratic.

• the Carleman estimate implies an additional Fourier multiplier (e−ε
|Dt|2

2τ ) that changes the proof of
unique continuation. The additional difficulty comes from the fact that the Carleman estimate (3.4)
only dominates the low frequencies in ξt of the function u.

3.2.1 Convexification
Quite similarly to the classical case, the natural assumption for the unique continuation Theorem 3.1.1 is a
strong pseudoconvexity condition similar to that of Definition 2.2.1, but restricted to the set {ξt = 0}. We
define this notion, and then check that any noncharacteristic surface is strongly pseudoconvex in ξt = 0.

Definition 3.2.1 (Pseudoconvex surface in ξt = 0). Let Ω 3 z0 be an open set, P ∈ Diff2(Ω) with
real-valued principal symbol p2 and Ψ ∈ C∞(Ω) real-valued. We say that the oriented hypersurface
S = {Ψ = Ψ(z0)} 3 z0 is strongly pseudoconvex with respect to P at z0 in ξt = 0 if

{p2, {p2,Ψ}} (z0, ξ) > 0, if p2(z0, ξ) = {p2,Ψ}(z0, ξ) = ξt = 0 and ξ 6= 0; (3.5)
1

iτ
{pΨ, pΨ}(z0, ξ, τ) > 0, if pΨ(z0, ξ, τ) = {pΨ,Ψ}(z0, ξ, τ) = ξt = 0 and τ > 0, (3.6)

where pΨ(z, ξ, τ) = p2(z, ξ + iτdΨ(z)).

The next lemma explains that the noncharacteristicity condition assumed in Theorem 3.1.1 is a par-
ticular case of Definition 3.2.1.

Lemma 3.2.2 (noncharacteristicity implies strong pseudoconvexity in ξt = 0). Let Ω, P as in Theo-
rem 3.1.1. If the surface S = {Ψ = Ψ(z0)} 3 z0 is noncharacteristic for P at z0 (p(z0, dzΨ(z0)) 6= 0), then
it is strongly pseudoconvex with respect to P at z0 in ξt = 0.

Proof. The principal symbol of P is p(t, x, ξt, ξx) = −ξ2
t + q(x, ξx) where q(x, ξx) =

∑
i,j a

ij(x)ξiξj .
So, we notice that for ξt = 0, we have p(t, x, 0, ξx) = q(x, ξx). Since q is assumed to be elliptic, the

assumption p(z0, ξ) = ξt = 0 implies ξ = 0 and therefore Condition (3.5) is empty.
We now check that (3.6) is also empty (note that we have actually already proved that (3.6) is empty

if p(x, dΨ) 6= 0 in Proposition 2.2.7). Denoting p̃(z0, ·, ·) the symmetric polar bilinear form of p(z0, ·), the
computations of Lemma 2.2.11 give

{pΨ,Ψ}(z0, ξ, τ) = 2p̃(z0, ξ, dΨ(z0)) + 2iτp(z0, dΨ(z0)).

The assumtion is p(z0, dΨ(z0)) 6= 0, hence Im{pΨ,Ψ} never cancels for τ > 0, and (3.6) is also empty.

Next, we will follow the same previous steps of convexification as Section 2.2.1.

Proposition 3.2.3 (Analytic convexification). Let Ω, P satisfy the assumptions of Theorem 3.1.1. Assume
that the surface S = {Ψ = Ψ(z0)} is strongly pseudoconvex with respect to P at z0 in ξt = 0, in the sense of
Definition 3.2.1. Then there exists λ0 > 0 such that for all λ ≥ λ0, the function Φ = eλΨ is a pseudoconvex
function with respect to P at z0 in ξt = 0, in the sense of Definition 3.1.2.

Note however that, as opposed to the classical case, the Carleman estimate of Theorem 3.1.3 does not
apply to the weight function Φ since it is not quadratic.

Proof. The proof is very similar to Proposition 2.2.5. Again, we assume that Ψ(z0) = 0 for simplicity, and
denote

cΨ(ξ, τ) =
1

iτ
{pΨ, pΨ}(z0, ξ, τ), for τ > 0 and cΨ(ξ, 0) = 2{p2, {p2,Ψ}}(z0, ξ),

with a similar definition for cΦ(ξ, τ). Lemma 2.1.6 still applies and cΨ(ξ, τ) and cΦ(ξ, τ) are both continuous
on the whole Rn × R+. Then, using Lemma 2.1.8, Definition 3.2.1 may be equivalently reformulated as
the existence of some constants C1, C2 > 0 so that

cΨ(ξ, τ) + C1

[
|{pΨ,Ψ}(z0, ξ, τ)|2 +

|pΨ(z0, ξ, τ)|2

|ξ|2 + τ2
+ |ξt|2

]
≥ C2(|ξ|2 + τ2).
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Lemma 2.2.6 still applies, giving

cΦ(ξ, τ) = λcΨ(ξ, λτ) + 2λ2 |{pΨ,Ψ}(z0, ξ, λτ)|2 .

The same arguments then lead to

cΦ(ξ, τ) + C1

[
|pΦ(z0, ξ, τ)|2

|ξ|2 + τ2
+ |ξt|2

]
≥ C2(|ξ|2 + τ2),

for λ large enough. This implies the result.

It remains to perform the Geometric convexification and to ensure that we can take the weight function
Φ quadratic.

Proposition 3.2.4 (Geometric convexification). Let Φ be a pseudoconvex function for P at z0 in ξt = 0,
in the sense of Definition 3.1.2. Assume further that Φ(z0) = 0.

Then there exists a function ϕ such that

1. ϕ pseudoconvex function for P at z0 in ξt = 0,

2. ϕ is a quadratic polynomial,

3. ϕ(z0) = 0 and there exists R0 > 0 such that for any 0 < R < R0, there exists η > 0 so that ϕ(z) ≤ −η
for z ∈ {Φ ≤ 0} ∩ {R/2 ≤ |z − z0| ≤ R}.

Proof. For δ > 0, we take

ϕ(z) = ΦT (z)− δ|z − z0|2.

where

ΦT (z) =
∑
|α|≤2

1

α!
(∂αΦ)(z0)(z − z0)α

that is ΦT is the Taylor expansion of Φ at order 2. Indeed, this is almost the same construction as in the
classical case, except that we have replaced Φ by its Taylor expansion at order 2.

First, we notice that the pseudoconvexity condition only involves derivative up to order 2 at z0. Hence,
ΦT is also a strongly pseudoconvex function in ξt = 0 at z0. Moreover, the same stability argument as in
Proposition 2.1.9 applies. So, for δ small enough, ϕ is as well a strongly pseudoconvex function in ξt = 0
at z0. We fix δ > 0 sufficiently small. It remains to prove the geometric properties.

Since ΦT is the Taylor expansion of Φ at order 2, there exists R0 small enough so that |ΦT − Φ| ≤
|z − z0|2δ/2 for |z − z0| ≤ R0. Now, take R ≤ R0.

Let z ∈ {Φ ≤ 0} ∩ {R/2 ≤ |z − z0| ≤ R}. Since Φ(z) ≤ 0, we have ΦT (z) ≤ |z − z0|2δ/2. Therefore,

ϕ(z) ≤ −δ|z − z0|2/2.

So, in particular since |z − z0|2 ≥ R2/4, we get ϕ(z) ≤ −δR2/8 and we can take η = δR2/8.

3.2.2 Unique continuation
In this section, we conclude the proof of the unique continuation of Theorem 3.1.1 assuming the Carleman
estimate of Theorem 3.1.3.

Proof of Theorem 3.1.1. Let u solution of Pu = 0 in Ω so that u = 0 on Ω ∩ {Ψ > 0}. The surface
S = {Ψ = Ψ(z0)} is strongly pseudoconvex at z0 in ξt = 0. Propositions 3.2.3 and 3.2.4 allow to produce
some quadratic function Φ (it is the function called ϕ in Proposition 3.2.4, which we now rename Φ)
that satisfies the pseudoconvexity for functions at z0 in ξt = 0. In particular, Theorem 3.1.3 applies. We
therefore obtain the following properties
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1. there exists R,C, d, ε > 0 and τ0 > 0 so that we have the following estimate

τ‖QΦ
ε,τw‖2H1

τ
≤ C

∥∥QΦ
ε,τPw

∥∥2

L2 + Ce−dτ
∥∥eτΦw

∥∥2

H1
τ

(3.7)

for any w ∈ C∞(B(z0, R)) and τ ≥ τ0.

2. Φ(z0) = 0 and there exists η > 0 so that Φ(z) ≤ −η for z ∈ {Ψ ≤ 0} ∩ {|z − z0| ≥ R/2},

3. Φ(z) ≤ d/4 in B(z0, R).

All the properties were already obtained. We only added Item 3, which follows from a continuity statement
(holding up to reducing R) using Φ(z0) = 0.

Pick χ ∈ C∞c (B(z0, R)) so that χ = 1 on B(z0, R/2). As before, we want to apply the Carleman
estimate to w = χu ∈ C∞c (B(z0, R)), solution of Pw = χPu+ [P, χ]u = [P, χ]u. Again, [P, χ] is a classical
differential operator of order 1 with coefficients supported in the set {R2 ≤ |z − z0| ≤ R}. Moreover, we
have supp(u) ⊂ {Ψ ≤ 0}, and thus [P, χ]u is supported in {Ψ ≤ 0} ∩ {R2 ≤ |z − z0|}, where we have
Φ ≤ −η. In particular, we have

∥∥QΦ
ε,τPw

∥∥
L2 ≤

∥∥eτΦPw
∥∥
L2 ≤ Ce−τη ‖u‖H1 .

For the second term in the right hand side, we use Property 3 to get

e−dτ
∥∥eτΦw

∥∥2

H1
τ
≤ e−dτedτ/2 ‖w‖2H1

τ
≤ e−dτ/2τ2 ‖w‖2H1 ≤ e−dτ/4 ‖u‖2H1 ,

for τ large enough.
So, we have obtained that there exist C, δ, τ0 > 0 so that

‖QΦ
ε,τw‖L2 ≤ Ce−δτ , for all τ ≥ τ0. (3.8)

We will use the following lemma that we prove below. It contains the main novelty with respect to the
proof of Theorem 2.3.2.

Lemma 3.2.5. Let Φ ∈ C∞(Ω) be a real-valued function such that dΦ 6= 0 on Ω. Let v ∈ C∞c (Ω) and
assume there exists C0, τ0, ε > 0 such that

‖QΦ
ε,τv‖L2 ≤ C0 for all τ ≥ τ0. (3.9)

Then, v is supported in {Φ ≤ 0}.

To apply the lemma, we rewrite (3.8) as ‖QΦ
ε,τe

δτw‖L2 ≤ C i.e. ‖QΦ+δ
ε,τ w‖L2 ≤ C. Lemma 3.2.5 applied

to the function Φ + δ implies that w is supported in the set {Φ + δ ≤ 0} = {Φ ≤ −δ}. Since we have
Φ(z0) = 0 and χ = 1 on B(z0, R/2), the set V = B(z0, R/2)∩ {Φ > −δ} is a neighborhood of z0 on which
u = w = 0, concluding the proof of the theorem.

We need to prove Lemma 3.2.5. Note that if we had ε = 0, the proof would be (easy and) another
formulation of the proof of Theorem 2.3.2. Before describing the details of the proof, we first give a sketch
of it to present the main new ideas.

1. Proving that supp(v) ⊂ {Φ ≤ 0} ⇐⇒ Proving v = 0 on {Φ ≥ 0} ⇐⇒ Proving that z 7→ χ ◦Φ(z)v(z)
vanishes identically on R1+n for all test function χ ∈ C∞(R), such that supp(χ) ⊂ [0,+∞). Again,
this may be reformulated equivalently in a weak form (still for all χ ∈ C∞(R) such that supp(χ) ⊂
[0,+∞)) as ∫

Rn+1

f(z)v(z)χ(Φ(z))dz = 0, for all f ∈ S(R1+n).

2. We change slightly the point of view and, considering f fixed, see this quantity as a distribution on
R, with χ as test function:

〈hf , χ〉E′(R),C∞(R) = 〈fv, χ(Φ)〉E′(Rn+1),C∞(Rn+1) =

∫
Rn+1

f(z)v(z)χ(Φ(z))dz (3.10)

This corresponds in fact to make a kind of foliation along the level sets of Φ: if we want to measure v,
we rather define the distribution hf = Φ∗(fv). Heuristically, hf (s) is the integral of fv on the level
set {Φ(x) = s}. According to the first point, the sought result supp(v) ⊂ {Φ ≤ 0} is now equivalent
to proving that

supp(hf ) ⊂ (−∞, 0].
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3. We shall see that the Fourier transform of hf is

ĥf (ζ) = 〈hf , s 7→ e−iζs〉E′(R),C∞(R) =

∫
Rn+1

f(z)v(z)e−iζΦ(z)dz,

and can be extended to the complex domain if v is compactly supported (which is assumed here).
In particular, for ζ ∈ iR+, ζ = iτ , we have ĥf (iτ) = 〈f, veτΦ〉. The assumption (3.9) gives an
information on the norm of eτΦv for τ large which can be translated in a uniform bound on |ĥf |
on the upper imaginary axis. A Phragmén-Lindelöf type argument allows to transfer this uniform
bound on |ĥf | to the whole upper half plan.

4. From the bound |ĥf | ≤ C on the whole upper half plan, a Paley-Wiener theorem (roughly saying
supp(g) ⊂ (−∞, 0]⇐⇒ |ĝ| ≤ C uniformly on the upper half complex plane) allows to conclude that
supp(hf ) ⊂ (−∞, 0] for all f , which is the sought result according to the first two points.

Let us now proceed to the details of the proof.

Proof of Lemma 3.2.5. We will work by duality. Let f ∈ S(Rn+1) with Fourier transform f̂ compactly
supported in B(0, R) for R large. We define the distribution hf ∈ E ′(R) by (3.10). Note that hf is a
distribution of order zero since

|〈hf , χ〉E′(R),C∞(R)| ≤
∫
Rn+1

|f(z)v(z)||χ(Φ(z))|dz ≤ ‖f‖L2 ‖v‖L2 sup
Φ(supp(v))

|χ|,

and is indeed compactly supported because supp(hf ) ⊂ Φ(supp(v)) = {Φ(z); z ∈ supp(v)} which is com-
pact. We shall prove below that hf is in fact a smooth function (using that v is).

Since hf ∈ E ′(R), the Fourier transform of hf can be computed for ζ ∈ R by

ĥf (ζ) =
〈
hf , e

−isζ〉
E′(Rs),C∞(Rs)

= 〈fv, e−iζΦ〉E′(Rn+1),C∞(Rn+1) =

∫
Rn+1

f(z)v(z)e−iζΦ(z)dz.

We notice that this formula still defines a function for ζ ∈ C satisfying the bound

|ĥf (ζ)| ≤
∫

supp(v)

|f(z)v(z)|eIm(ζ)Φ(z)dz ≤ eC1| Im(ζ)| ‖f‖L2 ‖v‖L2 , C1 = max
supp(v)

|Φ|. (3.11)

Its derivatives satisfy similar bounds, and we may derivate under the integral. The holomorphicity of
the integrand with respect to ζ implies that ĥf (ζ) satisfies the Cauchy Riemann equations and is thus
holomorphic on the whole C.

For ζ ∈ R, the Cauchy-Schwarz inequality (3.11) yields the general bound

|ĥf (ζ)| ≤ ‖f‖L2 ‖v‖L2 = Cf,v.

Now, we use the assumption of the lemma, namely (3.9), to obtain a bound on the upper imaginary axis.
Indeed, for ζ = iτ , and τ ≥ τ0, (3.9) implies

|ĥf (iτ)| =
∣∣〈fv, eτΦ〉

∣∣
E′(Rn+1),C∞(Rn+1)

=
∣∣〈f, veτΦ〉S′(Rn+1),S(Rn+1)

∣∣
=

∣∣∣∣〈eε |Dt|22τ f, e−ε
|Dt|2

2τ veτΦ〉S′(Rn+1),S(Rn+1)

∣∣∣∣
≤

∥∥∥∥eε |Dt|22τ f

∥∥∥∥
L2(Rn+1)

∥∥∥∥e−ε |Dt|22τ veτΦ

∥∥∥∥
L2(Rn+1)

≤
∥∥∥∥eε |ξt|22τ

∥∥∥∥
L∞(supp(f̂))

‖f‖L2(Rn+1)

∥∥QΦ
ε,τv

∥∥
L2(Rn+1)

≤ Ce εR
2

2τ ‖f‖L2(Rn+1)

≤ Cε,f,τ0C0.
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Note that at that point, the term eε
|Dt|2

2τ was harmless because the Fourier transform of f is compactly
supported in B(0, R). Otherwise eε

|Dt|2
2τ f does not have any meaning, even for f ∈ S(Rn+1). That is why

we had to work by duality.
Moreover, for τ ∈ [0, τ0], the estimate

|ĥf (iτ)| ≤ C

follows by compactness and continuity, with some appropriate constant C independent on τ .
Now, |ĥf | has a uniform bound on R∪ iR+, as well as an a priori subexponential growth (3.11). We are

thus in position to transfer the uniform bounds to the whole upper half plane by the Phragmén-Lindelöf
Theorem.

Lemma 3.2.6 (Phragmén-Lindelöf Theorem). Let g be a holomorphic function in Q1 = {x+ iy;x > 0, y > 0},
continuous in Q̄1. Assume that there exist c > 0 and C > 0 such that

|g(z)| ≤ Cec|z|, for all z ∈ Q1,

|g(z)| ≤ 1, for all z ∈ ∂Q1 = R+ ∪ iR+.

Then, we have |g(z)| ≤ 1 for all z ∈ Q1.

Applying this result to the function g = ĥf on both Q1 and the quarter plane {x+ iy;x < 0, y > 0},
we obtain that

|ĥf (ζ)| ≤ C for all ζ ∈ C, Im(ζ) ≥ 0.

We now want to apply the Paley-Wiener Theorem 3.2.8. We need first to prove that hf is in fact a smooth
function. To this aim, let us study the derivative of hf ,

〈h′f , χ〉E′(R),C∞(R) = −〈hf , χ′〉E′(R),C∞(R) = −
∫
Rn+1

f(z)v(z)χ′(Φ(z))dz.

Taking advantage of the assumption dΦ 6= 0 on Ω, we may assume (up to using a partition of unity of Ω)
for instance that ∂xnΦ 6= 0 on the whole Ω. We integrate by parts

〈h′f , χ〉E′(R),C∞(R) = −
∫

Ω

f(z)v(z)
1

∂xnΦ(z)
∂xn
(
χ ◦ Φ(z)

)
dz =

∫
Ω

∂xn

(
f(z)v(z)

1

∂xnΦ(z)

)
χ ◦ Φ(z)dz,

and, since v ∈ C∞c (Ω), we obtain |〈h′f , χ〉| ≤ C‖χ‖∞, and h′f is also a distribution of order zero. Iterating
this procedure (using the assumption v ∈ C∞c (Ω)) implies that h(m)

f is of order zero for all m ∈ N, hence
hf is a C∞ function on R. Since moreover, hf ∈ E ′(R), we finally have hf ∈ C∞c (R).

♣ new version We may now apply the following version of the Paley-Wiener theorem to hf .

Theorem 3.2.7 (Paley-Wiener-Schwartz). Suppose g ∈ E ′(R), of order zero. Then the following two
statements are equivalent:

• supp(g) ⊂ (−∞, 0],

• ĝ can be extended continuously as an entire function which is uniformly bounded in the closed upper
half-plane

C+ = {x+ iy;x ∈ R, y ≥ 0} .

This is a particular case of the general Paley-Wiener-Schwartz theorem, see e.g. [Hör90, Theorem 7.3.1].

Proof of Theorem 3.2.8. The direct implication is simpler. Notice first that ĝ(ζ) = 〈g, e−isζ〉E′(R),C∞(R)

holds for ζ ∈ R but also for ζ ∈ C, and ∂ζ ĝ(ζ) = 〈g, ∂ζe−isζ〉E′(R),C∞(R) = 0. Hence, ĝ(ζ) is an entire
function. Moreover, using the assumption supp(g) ⊂ (−∞, 0], we let χδ ∈ C∞c (R) such that χδ = 1 on
supp(g) and supp(χδ) ⊂ (−∞, δ]. We have g = gχδ and thus, for ζ = x+ iy ∈ C,

ĝ(ζ) = 〈g, e−isζ〉E′(R),C∞(R) = 〈g, e−isxesyχδ(s)〉E′(R),C∞(R).
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Using that g is of order zero implies existence of C > 0 such that for y ≥ 0,

|ĝ(ζ)| =
∣∣〈g, e−isxesyχδ(s)〉E′(R),C∞(R)

∣∣ ≤ C sup
s∈R

∣∣e−isxesyχδ(s)∣∣ ≤ Ceδy.
Since this is true for all δ > 0, we deduce that |ĝ(ζ)| ≤ C uniformly for Im(ζ) ≥ 0.

Let us now prove the converse implication (that used in the proof of Lemma 3.2.5), and assume ĝ is
holomorphic in the interior of C+, and uniformly bounded, say, by C0 on the whole C+. We define, for
δ, ε > 0 two small parameters (aimed at tending to zero), the function

Gε,δ(z) =
ĝ(z + iδ)

(1− iεz)2
,

which is a shift (by −iδ) and a regularization of ĝ. Note that Gε,δ has a pole at the point − i
ε , and is

holomorphic in {z ∈ C, Im(z) > max(−δ,− 1
ε )}, and in particular in a neighborhood of C+. Also, according

to the uniform boundedness of ĝ on C+, the function Gε,δ satisfies the bound:

|Gε,δ(z)| =
|ĝ(z + iδ)|
|1− iεz|2

≤ C0

(1 + εy)2 + (εx)2
, with z = x+ iy, y ≥ 0. (3.12)

In particular, for any y ≥ 0, the function x 7→ Gε,δ(x + iy) is in L1(R). Now, we are interested in its
inverse Fourier transform (on the real line)

gε,δ(s) =
1

2π

∫
x∈R

eisxGε,δ(x) dx,

which belongs to L∞(R). Notice first that we have

g = lim
ε→0+

lim
δ→0+

gε,δ, in S ′(R), (3.13)

since, for all ϕ ∈ S(R),∫
R
gε,δ(s)ϕ(s)ds =

∫
R
ĝε,δ(x)ϕ̂(x)dx =

∫
R
Gε,δ(x)ϕ̂(x)dx→

∫
R
ĝ(x)ϕ̂(x)dx =

∫
R
g(s)ϕ(s)ds,

as δ → 0+ and then ε → 0+. This follows from two dominated convergence arguments, using that
ĝ ∈ L∞(R), thus ĝϕ̂ ∈ L∞(R). According to (3.15), we are only left to proving that gε,δ(s) = 0 for all
s ≥ 0.

To this aim, we write (using again the dominated convergence arguments with Gε,δ ∈ L1(R))

gε,δ(s) = lim
N→+∞

1

2π

∫ N

−N
eisζGε,δ(ζ) dζ.

Using that Gε,δ is holomorphic in a neighborhood of C+, we change the integration contour from [−N,N ]
to the oriented rectangular contour γN = [−N,−N + iN ] ∪ [−N + iN,N + iN ] ∪ [N + iN,N ]:

gε,δ(s) = lim
N→+∞

1

2π

∫
γN

eiszGε,δ(z)dz.

We now estimate the integrand for s ≥ 0, using (3.14):

• On [−N,−N + iN ], we have |eiszGε,δ(z)| ≤ C0

1+(εN)2 , using that Im(z) ≥ 0 and s ≥ 0.

• On [−N + iN,N + iN ], we have |eiszGε,δ(z)| ≤ C0e
−sN

(1+εN)2 , using that Im(z) = N and s ≥ 0.

• On [N + iN,N ] we have as in the first case |eiszGε,δ(z)| ≤ C0

1+(εN)2 .
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Taking into account that the length of the path are of order N , we obtain for s ≥ 0∣∣∣∣∫
γN

eiszGε,δ(z)dz

∣∣∣∣ ≤ N C0

1 + (εN)2
+ 2N

C0e
−sN

(1 + εN)2
+N

C0

1 + (εN)2
→ 0 as N → +∞.

This yields gε,δ(s) = 0 for all s ≥ 0, ε > 0, δ > 0, and thus (3.15) concludes that supp(g) ⊂ (−∞, 0], and
hence the proof of the theorem.

♣ old version We may now apply the following version of the Paley-Wiener theorem to hf .

Theorem 3.2.8 (Paley-Wiener). Suppose g ∈ S(R). Then the following two statements are equivalent:

• g(s) = 0 for all s > 0,

• ĝ can be extended continuously as a bounded function in the closed upper half-plane

C+ = {x+ iy;x ∈ R, y ≥ 0} ,

with ĝ holomorphic in the interior.

Applying this result to the function hf gives supp(hf ) ⊂]−∞, 0]. Therefore, we have proved that for
χ ∈ C∞(R),

supp(χ) ⊂ [0,+∞) =⇒ 0 = 〈hf , χ〉 = 〈fv, χ(Φ)〉 = 〈f, χ(Φ)v〉 .

Since this is true for a subset of function f dense in S (those having compactly supported Fourier trans-
form), this means that the function χ(Φ)v is identically zero on R1+n as soon as supp(χ) ⊂ [0,+∞). That
is to say v = 0 for Φ > 0 or supp(v) ⊂ {Φ ≤ 0}, which concludes the proof of the lemma.

It now remains to give a proof of the Phragmén-Lindelöf Theorem (Lemma 3.2.6) and the Paley-Wiener
Theorem (Theorem 3.2.8).

Proof of Lemma 3.2.6. First note that the sector Q1 can be rotated, say to quadrant

Q = {z ∈ C, arg(z) ∈ [−π
4
,
π

4
]}.

We use the principal determination of the logarithm that is if z = reiθ with −π < θ < π. We define

gδ(z) = g(z)e−δz
3
2 ,

(where z3/2 = r3/2e3iθ/2), which is holomorphic in the quadrant Q.
Also, we have the bound

|e−δz
3
2 | = e−δr

3/2 cos(3θ/2).

On Q, we have |θ| ≤ π/4 and therefore |3θ/2| ≤ 3π/8 < π/2 and cos(3θ/2) ≥ cos(3π/8) =: η > 0.
So, the first assumption on g gives |gδ(reiθ)| ≤ Cecre−δr

3/2η. This implies limz∈Q,|z|→∞ |gδ(z)| = 0.
As a consequence, there exists R > 0 such that |gδ(z)| < 1/2 on {|z| ≥ R} ∩ Q. Now, on the bounded
set QR = Q ∩ {|z| ≤ R}, we apply the maximum principle (max

Q
R |gδ| = max∂QR |gδ|) to the function

gδ. According to the second assumption we have |gδ| ≤ 1 on ∂QR. This yields |gδ| ≤ 1 on QR and hence
|gδ| ≤ 1 on Q. Finally letting δ tend to zero, we have |gδ(z)| → |g(z)| for all z ∈ Q, which yields the sought
result.

Note that the a priori subexponential growth at infinity in the first assumption of the theorem could
be replaced by the weaker assumption |g(z)| ≤ Cec|z|

2−ε
for some ε > 0. However, the result is false for

ε = 0. The classical counterexample on the quarter plane Q is the holomorphic function z 7→ ez
2

. for
z = re±i

π
4 , it satisfies indeed ez

2

= er
2e±i

2π
4 = e±ir

2

and hence |ez2 | = 1 on ∂Q (however, ez
2

is clearly
not bounded on the real axis).
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Proof of Theorem 3.2.8. The direct implication is simpler. Assume g(s) = 0 for s ≥ 0, then ĝ(ζ) =∫
s≤0

e−isζg(s)ds for ζ ∈ R. This formula can be continuously extended to C+ with the estimate

|ĝ(x+ iy)| ≤
∫
s≤0

eys|g(s)|ds ≤
∫
s≤0

|g(s)|ds = ‖g‖L1(R) , for all y ≥ 0.

Its derivatives satisfy similar bounds (still on C+), and we may derivate under the integral. The holomor-
phicity of the integrand with respect to ζ implies that ĝ(ζ) satisfies the Cauchy Riemann equations and is
thus holomorphic in the interior of C+, with the estimate |ĝ(ζ)| ≤ ‖g‖L1(R).

Let us now prove the converse implication (that used in the proof of Lemma 3.2.5), and assume ĝ is
holomorphic in the interior of C+, and uniformly bounded, say, by C0 on the whole C+. We define, for
δ, ε > 0 two small parameters (aimed at tending to zero), the function

Gε,δ(z) =
ĝ(z + iδ)

(1− iεz)2
,

which is a shift (by −iδ) and a regularization of ĝ. Note that Gε,δ has a pole at the point − i
ε , and is

holomorphic in {z ∈ C, Im(z) > max(−δ,− 1
ε )}, and in particular in a neighborhood of C+. Also, according

to the uniform boundedness of ĝ on C+, the function Gε,δ satisfies the bound:

|Gε,δ(z)| =
|ĝ(z + iδ)|
|1− iεz|2

≤ C0

(1 + εy)2 + (εx)2
, with z = x+ iy. (3.14)

Now, we are interested in its inverse Fourier transform

gε,δ(s) =
1

2π

∫
ξ∈R

eisζGε,δ(ζ) dζ,

since we have
g(s) = lim

ε→0+
lim
δ→0+

gε,δ(s), for all s ∈ R. (3.15)

This follows from two dominated convergence arguments, using that ĝ ∈ L1(R). Therefore, we are only
left to proving that gε,δ(s) = 0 for all s ≥ 0.

To this aim, we write (using again the dominated convergence arguments with Gε,δ ∈ L1(R))

gε,δ(s) = lim
N→+∞

1

2π

∫ N

−N
eisζGε,δ(ζ) dζ.

Using that Gε,δ is holomorphic in a neighborhood of C+, we change the integration contour from [−N,N ]
to the oriented rectangular contour γN = [−N,−N + iN ] ∪ [−N + iN,N + iN ] ∪ [N + iN,N ]:

gε,δ(s) = lim
N→+∞

1

2π

∫
γN

eiszGε,δ(z)dz.

We now estimate the integrand for s ≥ 0, using (3.14):

• On [−N,−N + iN ], we have |eiszGε,δ(z)| ≤ C0

1+(εN)2 , using that Im(z) ≥ 0 and s ≥ 0.

• On [−N + iN,N + iN ], we have |eiszGε,δ(z)| ≤ C0e
−sN

(1+εN)2 , using that Im(z) = N and s ≥ 0.

• On [N + iN,N ] we have as in the first case |eiszGε,δ(z)| ≤ C0

1+(εN)2 .

Taking into account that the length of the path are of order N , we obtain for s ≥ 0∣∣∣∣∫
γN

eiszGε,δ(z)dz

∣∣∣∣ ≤ N C0

1 + (εN)2
+ 2N

C0e
−sN

(1 + εN)2
+N

C0

1 + (εN)2
→ 0 as N → +∞.

This yields gε,δ(s) = 0 for all s ≥ 0, ε > 0, δ > 0, and thus (3.15) concludes that g(s) = 0 for all s ≥ 0, and
hence the proof of the theorem.
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3.3 The Carleman estimate

3.3.1 The “conjugated operator”
As in the classical case, we need to check the effect of the conjugated operator. Yet, we have to be a little
careful, first because eε

|Dt|2
2τ is not well defined on any Sobolev space and even not on S.

As before, we make the change of variable v = eτΦu and for getting (3.4), we are left to prove

τ‖e−ε
|Dt|2

2τ v‖2H1
τ
≤ C

∥∥∥∥e−ε |Dt|22τ PΦv

∥∥∥∥2

L2

+ Ce−dτ ‖v‖2H1
τ

Our operator P commutes with e−ε
|Dt|2

2τ since its coefficients are independent on t. Yet, the operator
PΦ = eτΦPe−τΦ may depend on t because Φ depends on t. We will take advantage of the fact that since
Φ is quadratic, the principal symbol of PΦ only involves derivative of Φ of order at least 1 and is therefore
linear. We first prove the following simple lemma.

Lemma 3.3.1. Let u ∈ S(Rn+1), then

e−ε
|Dt|2

2τ (tu) =

(
t+ iε

Dt

τ

)
e−ε

|Dt|2
2τ u.

Proof. We first recall the classical formula

t̂v(ξ) =

∫
Rn+1

e−itξte−ix·ξxtv(t, x)dxdt =

∫
Rn+1

i∂ξte
−itξte−ix·ξxv(t, x)dxdt = i∂ξt v̂(ξ).

̂(
e−ε

|Dt|2
2τ (tu)

)
(ξ) = e−ε

|ξt|2
2τ (̂tu)(ξ) = e−ε

|ξt|2
2τ i∂ξt û(ξ) = i∂ξt

[
e−ε

|ξt|2
2τ û(ξ)

]
+ i

εξt
τ
e−ε

|ξt|2
2τ û(ξ)

=
̂[

te−ε
|Dt|2

2τ u
]
(ξ) + i

̂[
εDt

τ
e−ε

|Dt|2
2τ u

]
(ξ).

This can be rewritten as

e−ε
|Dt|2

2τ (tu) = te−ε
|Dt|2

2τ u+ iε
Dt

τ
e−ε

|Dt|2
2τ u =

(
t+ iε

Dt

τ

)
e−ε

|Dt|2
2τ u,

which proves the lemma.

Remark 3.3.2. Lemma 3.3.1 could easily be iterated to get the formula

e−ε
|Dt|2

2τ (tku) =

(
t+ iε

Dt

τ

)k
e−ε

|Dt|2
2τ u,

where the exponent k is meant in the sense of composition. For f polynomial in t, we would get

e−ε
|Dt|2

2τ (f(t)u) = f

(
t+ iε

Dt

τ

)
e−ε

|Dt|2
2τ u.

This means that the “formal” conjugated operator of f(t) by e−ε
|Dt|2

2τ is a differential operator, whose order
is given by the degree of the polynomial f .

For a general (even smooth) function f(t), it seems therefore very hard to give a precise meaning to
f
(
t+ iεDtτ

)
.

Even in the analytic case, f
(
t+ iεDtτ

)
would be an infinite sum of differential operators, that means

an operator of "infinite order". This is not clear how to define this in an exact way. Yet, some authors
managed to give some meaning of an approximation of this formula. Namely, the idea is to replace t+iεDtτ
by some approximate operator χ

(
t
κ

)
t + iχ

(
εDt
κτ

)
εDtτ for κ small. These operators have the advantage

to be bounded and we can consider some infinite series. We refer to Hörmander [Hör97]. Similarly, it is
possible to replace the holomorphic function f with a cutoff near small x and ξt, see Tataru [Tat95, Tat99].

110



We now want to understand how QΦ
ε,τ “commutes” with an operator P . To this aim, let us first consider

the simplest case in which P = Dj . We have the following key lemma.

Lemma 3.3.3. Assume Φ is a real polynomial of degree two in the variable t. For all k ∈ {0, · · · , n} (with
the convention t = z0, D0 = Dt)

QΦ
ε,τDk = (Dk)Φ,εQ

Φ
ε,τ ,

where (denoting Φ′′t,zk = ∂t∂zkΦ)

(Dk)Φ,ε = Dk + iτ∂kΦ(z)− εΦ′′t,zkDt.

Note that since Φ is quadratic in the variable t, the quantity Φ′′t,zj is actually constant in t! In particular,
the principal symbol of (Dk)Φ,ε is ξk+ iτ∂kΦ−εΦ′′t,zkξt. ♣ on suppose quadratique partout ou juste
en t

Proof. Since Φ is quadratic in the variable t, ∂kΦ is a polynomial of degree 1 in t and can be written as

∂kΦ = f1(x) + tf0.

where f1(x) (resp. f0) is polynomial in x of order 1 (resp. a constant). In particular, Lemma 3.3.1 gives

e−ε
|Dt|2

2τ [(Dk + iτ∂kΦ)u] = e−ε
|Dt|2

2τ [(Dk + iτ(f1(x) + tf0))u]

=

[
Dk + iτ

(
f1(x) +

(
t+ iε

Dt

τ

)
f0

)]
e−ε

|Dt|2
2τ u

= (Dk + iτ∂kΦ− εf0Dt)e
−ε |Dt|

2

2τ u.

To get an intrinsic expression, we notice that f0 = ∂t∂kΦ, so f0Dt can be written ∂t∂kΦDt. This concludes
the proof of the lemma.

This lemma allows to compute the principal symbol of the “conjugated operator” of general differential
operators (with coefficients independent of t).

Corollary 3.3.4 (The “conjugated operator”). Let Ω ⊂ Rn+1 = Rt×Rx and P ∈ Diffm(Ω) be a (classical)
differential operator with principal symbol pm. Assume also that all its coefficients are independent
on t (that is pα(z) = pα(x) for all |α| ≤ m). Let Φ be a real-valued function being quadratic in t. Then,
for any ε > 0, there exists a unique PΦ,εv ∈ Diffmτ (Ω) so that we have

QΦ
ε,τP = PΦ,εQ

Φ
ε,τ .

Moreover, the principal symbol of PΦ,ε is

pΦ,ε(z, ξ, τ) = pm(z, ξ + iτdΦ(z)− εΦ′′t,zξt),

where we use the notation Φ′′t,zξt = Hess(Φ)((ξt, 0, · · · , 0); ·) = ξtV with V the constant vector with coeffi-
cients Vk = (∂t∂kΦ).

We stress the fact that all coefficients of p should be independent of t: this is not an assumption on
the principal part of the operator only.

Remark 3.3.5. The expression “conjugated operator” is a bit abusive since eε
|Dt|2

2τ is not well defined as
an operator. Yet, we would like to write formally

PΦ,εv = QΦ
ε,τP

(
QΦ
ε,τ

)−1
v = e−ε

|Dt|2
2τ eτΦPe−τΦeε

|Dt|2
2τ v = e−ε

|Dt|2
2τ PΦe

ε
|Dt|2

2τ v.

Proof. The proof is similar to that of Lemma 1.3.10. We first prove the result forDα = Dα0
0 Dα1

1 · · ·D
αj
j · · ·Dαn

n .
Using composition formula of Proposition 1.3.6 together with Lemma 3.3.3, we obtain that the “conjugated
operator” (Dα)Φ,ε of Dα is in Diffmτ (Ω) and has principal symbol

n∏
k=0

(ξk + iτ∂kΦ− ε(∂t∂kΦ)ξt)
|αk| = (ξ + iτ∇Φ− εΦ′′t,zξt)α,
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where we use the notation Φ′′t,zξt = Hess(Φ)((ξt, 0, · · · , 0); ·).
Since all the functions pα(x) do not depend on t, they commute with QΦ

ε,τ . So, we get the conclusion
of the corollary.

Remark 3.3.6. In the case of a second order operator P (with coefficients independent of t), with real
symbol p, we have (denoting by p̃ the polar symmetric bilinear form of p),

pΦ,ε(z, ξ, τ) = p(z, ξ + iτdΦ(z)− εΦ′′t,zξt)
= p(z, ξ − εΦ′′t,zξt)− τ2p(z, dΦ(z)) + 2iτ p̃(z, ξ − εΦ′′t,zξt, dΦ(z)).

As in the classical case, an important point here is that Im(pΦ,ε(z, ξ, τ)) = τ2p̃(z, ξ − εΦ′′t,zξt, dΦ(z)) and
may be divided by τ .

A very important feature of the previous formula is that the principal symbol of PΦ,ε is actually close to
the principal symbol of PΦ if ε is small. So, we can expect that it satisfies the same subelliptic estimates.

3.3.2 A first subelliptic estimate
We first write the following Lemma on pΦ, that we have actually already used and proved in Proposi-
tion 3.2.3, using Lemma 2.1.8 and homogeneity, so we skip the proof.

Lemma 3.3.7. Let Ω, P satisfy the assumptions of Theorem 3.1.1. Assume that the function Φ is pseu-
doconvex with respect to P at z0 in ξt = 0, in the sense of Definition 3.1.2. Then there exist C1, C2 > 0
such that for any (ξ, τ) ∈ Rn × R+, we have

1

iτ
{pΦ, pΦ}(z0, ξ, τ) + C1

[
|pΦ(z0, ξ, τ)|2

|ξ|2 + τ2
+ |ξt|2

]
≥ C2(|ξ|2 + τ2).

where we have extended 1
iτ {pΦ, pΦ}(z0, ξ, τ) by continuity at τ = 0 with the value 2{p, {p,Φ}}(z0, ξ).

By perturbation, we can get a similar conclusion for the perturbated operator.

Lemma 3.3.8. Let Ω, P satisfy the assumptions of Theorem 3.1.1. Assume that the function Φ is pseu-
doconvex with respect to P at z0 in ξt = 0, in the sense of Definition 3.1.2. Then there exists ε0 > 0 so
that for any 0 ≤ ε < ε0, there exist C1, C2 > 0 such that for any (ξ, τ) ∈ Rn × R+, we have

1

iτ
{pΦ,ε, pΦ,ε}(z0, ξ, τ) + C1

[
|pΦ,ε(z0, ξ, τ)|2

|ξ|2 + τ2
+ |ξt|2

]
≥ C2(|ξ|2 + τ2).

where the quantity 1
iτ {pΦ,ε, pΦ,ε}(z0, ξ, τ) is extended by continuity at τ = 0.

Proof. The Lemma mainly follows by saying that pΦ,ε is a perturbation of pΦ and using Lemma 3.3.7.
Yet, we have to be a little careful because of the factor 1

τ . Noticing as before that 1
iτ {pΦ,ε, pΦ,ε} =

2
τ {Re pΦ,ε, Im pΦ,ε}. Then, using Remark 3.3.6 we can write Im pΦ,ε = τ p̃Φ,ε

i. Moreover, p̃Φ,ε
i and all its

derivatives are all continuous in ε. Hence, we can write 1
iτ {pΦ,ε, pΦ,ε} = 2{Re pΦ,ε, p̃Φ,ε

i}. It can therefore
be extended by continuity to τ = 0 and the result follows by a perturbation of Lemma 3.3.7.

We are now ready to prove a first subelliptic estimate that will be crucial for the final proof of Theo-
rem 3.1.3.

Proposition 3.3.9. Let Ω, P satisfy the assumptions of Theorem 3.1.1. Assume that the function Φ is
pseudoconvex with respect to P at z0 in ξt = 0, in the sense of Definition 3.1.2. Then, there exist ε > 0,
r > 0, C > 0 and τ0 > 0 so that we have the estimate

τ ‖v‖2H1
τ
≤ C ‖PΦ,εv‖2L2 + Cτ ‖Dtv‖2L2 , (3.16)

for any v ∈ C∞c (B(z0, r)) and τ ≥ τ0.
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Note that the parameter ε > 0 is fixed by this proposition (in fact, by Lemma 3.3.8). Note that this
estimate is extremely close to the usual Carleman estimate (2.2) of Theorem 2.1.1. The only difference is
the last term τ ‖Dtv‖2L2 in the right hand-side. This term comes from the fact that the pseudoconvexity
assumption (and hence the symbolic estimate of Lemma 3.3.8) is made on ξt = 0 only, i.e. on Dt = 0

only. Also, remark that this additional term has precisely the same strength as the term τ ‖v‖2H1
τ
on the

left handside of the estimate.

Proof. The proof is as well very similar to that of Theorem 2.1.1. A little care is needed to factorize the
skew-adjoint part of the operator. Note first that the form of Estimate (3.16) remains unchanged under
addition to P of a (classical) differential operator in Diff1(Ω), the coefficients of which do not depend on
the variable t. Indeed, after conjugation, the latter perturbation will yield a perturbation of PΦ,ε being
in Diff1

τ (Ω), which, applied to v, is bounded by ‖v‖2H1
τ
and thus can be absorbed in the left handside for

τ ≥ τ0 with τ0 large enough.
We then notice that, with P satisfying the assumptions of Theorem 3.1.1, we have

P = P̃ +R1, with P̃ = −D2
t +

∑
1≤i,j≤n

Dia
ij(x)Dj , and R1 ∈ Diff1

τ (Ω),

where aij(x) = aji(x). See also Example 1.3.12. The operator P̃ is chosen to be selfadjoint. According to
the previous discussion, it is sufficient to prove Estimate (3.16) for P replaced by P̃ . Applying Lemma 3.3.3
and the fact that QΦ

ε,τ exactly commutes with aij(x), we have the exact formula:

P̃Φ,ε = −(Dt + iτ∂tΦ− εΦ′′t,tDt)
2 +

∑
1≤i,j≤n

(Di + iτ∂iΦ− εΦ′′t,xiDt)a
ij(x)(Dj + iτ∂jΦ− εΦ′′t,xjDt).

We now collect all terms being factored by τ to obtain, for some M ∈ Diff1
τ (Ω),

P̃Φ,ε = −(Dt − εΦ′′t,tDt)
2 +

∑
1≤i,j≤n

(Di − εΦ′′t,xiDt)a
ij(x)(Dj − εΦ′′t,xjDt) + τM,

and remark that P̃Φ,ε − τM is a selfadjoint operator. As a consequence, when defining

PR,ε =
P̃Φ,ε + P̃ ∗Φ,ε

2
, PI,ε =

P̃Φ,ε − P̃ ∗Φ,ε
2i

,

we notice that we have, as in the proof of Theorem 2.1.1, PI,ε = τM− τM∗

2i =: τP̃I,ε (that is, τ can be
factorized in the skew-adjoint part of PI,ε). With this decomposition, we have PΦ,ε = PR,ε + iPI,ε =

PR,ε + iτ P̃I,ε, and may now proceed to the key computation, following the proof of Theorem 2.1.1. We
obtain

‖PΦ,εv‖2L2 = ‖PR,εv‖2L2 + ‖PI,εv‖2L2 + (i[PR,ε, PI,ε]v, v)

= ‖PR,εv‖2L2 + ‖PI,εv‖2L2 + τ
(
i[PR,ε, P̃I,ε]v, v

)
.

The same computations lead to

1

τ
‖PΦ,εv‖2L2 ≥ (Lv, v) ,

with

L = C1PR,ε(−∆ + τ2)−1PR,ε + C1PI,ε(−∆ + τ2)−1PI,ε +
i

τ
[PR,ε, PI,ε]

= C1PR,ε(−∆ + τ2)−1PR,ε + C1PI,ε(−∆ + τ2)−1PI,ε + i[PR,ε, P̃I,ε],

for τ ≥ τ0, τ0 large enough, and C1 being taken as in the conclusion of Lemma 3.3.8. We thus obtain

1

τ
‖PΦ,εv‖2L2 + C1 ‖Dtv‖2L2 ≥

(
(L+ C1D

2
t )v, v

)
. (3.17)
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The principal symbol of L+ C1D
2
t is

1

iτ
{pΦ,ε, pΦ,ε}(z, ξ, τ) + C1

[
|pΦ,ε(z, ξ, τ)|2

|ξ|2 + τ2
+ |ξt|2

]
.

We conclude as before using the symbolic estimate of Lemma 3.3.8 at the point z0, together with the
Gårding inequality of Proposition 1.3.14.

3.3.3 End of the proof of the Carleman estimate
Equipped with the subelliptic estimate (3.16), we may now proceed to the proof.

Setting v = QΦ
ε,τu = e−

ε
2τ |Dt|

2

(eτΦu), we need to prove the estimate

τ ‖v‖2H1
τ
≤ C ‖PΦ,εv‖2L2 + Ce−dτ

∥∥eτΦu
∥∥2

H1
τ
.

The latter is very close to (3.16), except for the last term, and it is very tempting to apply (3.16) to our
function v = QΦ

ε,τu. The hope is then that the term τ ‖Dtv‖2L2 is estimated by using that the multiplier

e−ε
|Dt|2

2τ “localizes” where Dt is small. This will indeed be done at the end of the proof. However, the first
problem we have to face is that, even if u is compactly supported, the function v = QΦ

ε,τu is not compactly
supported in the variable t. Indeed, the operator e−

ε
2τ |Dt|

2

is not local. We thus need to introduce an
additional cutoff in time, and estimate all commutators it produces.

Proof of Theorem 3.1.3. We assume for simplicity that the point z0 involved is z0 = (0, x0), i.e. t0 = 0.
We let ε > 0 and r > 0 be fixed by Proposition 3.3.9. We choose r0 > 0 with 2r0 = r, and, all

along the proof, we consider functions u ∈ C∞c (B(z0, r0/4)). Let χ ∈ C∞c (] − r0, r0[) such that χ = 1 on
]− r0/2, r0/2[.

Since v is not compactly supported in the variable t, we set f = χ(t)v(t, x) and we have supp(f) ⊂
[−r0, r0]× B(x0, r0/4) ⊂ B(z0, 2r0) = B(z0, r), so that we shall be able to apply Proposition 3.3.9 to the
function f . Our goal is to estimate v, so that we write

‖v‖H1
τ
≤ ‖f‖H1

τ
+ ‖v − f‖H1

τ

where
v − f = (1− χ)QΦ

ε,τu = (1− χ)e−
ε
2τ |Dt|

2

(χ̌eτΦu),

for some additional cutoff function χ̌ ∈ C∞c (]− r0/3, r0/3[) with χ̌ = 1 in a neighborhood of [−r0/4, r0/4]
so that χ̌u = u. We are in position to apply the following lemma to estimate the remainder v − f .

Lemma 3.3.10. Let χ1 ∈ C∞(Rn+1), χ2 ∈ C∞(Rn+1) with all derivatives bounded such that

dist(supp(χ1), supp(χ2)) > 0.

Then there exist C, c > 0 such that for all u ∈ S(Rn) and all λ ≥ 0, we have∥∥∥∥χ1e
− |Dt|

2

λ (χ2u)

∥∥∥∥
L2

≤ Ce−cλ ‖u‖L2 ,

∥∥∥∥χ1e
− |Dt|

2

λ (χ2u)

∥∥∥∥
H1
τ

≤ Ce−cλ ‖u‖H1
τ
.

As a consequence of Lemma 3.3.10, we obtain, for τ ≥ τ0

‖v‖H1
τ
≤ ‖f‖H1

τ
+ Ce−c

τ
ε ‖eτΦu‖H1

τ
. (3.18)

The subelliptic estimate (3.16) applied to f gives

τ ‖f‖2H1
τ
≤ C ‖PΦ,εf‖2L2 + Cτ ‖Dtf‖2L2 , (3.19)

and we need to estimate the two terms on the right handside in terms of v.
First, we estimate the term ‖PΦ,εf‖L2 = ‖PΦ,εχv‖L2 ≤ ‖χPΦ,εv‖L2 + ‖[PΦ,ε, χ]v‖L2 . For the commu-

tator, we write [PΦ,ε, χ]v = [PΦ,ε, χ]e−
ε
2τ |Dt|

2

χ̌eτΦu. We notice that [PΦ,ε, χ] is a differential operator of
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order 1 in (D, τ) with some coefficients supported on supp(χ′t) that is, away from supp(χ̌). In particular,
Lemma 3.3.10 implies ‖[PΦ,ε, χ]v‖L2 ≤ Ce−c

τ
ε

∥∥eτΦu
∥∥
H1
τ
. This yields

‖PΦ,εf‖L2 ≤ ‖PΦ,εv‖L2 + Ce−c
τ
ε

∥∥eτΦu
∥∥
H1
τ
. (3.20)

Second, we estimate the term ‖Dtf‖L2 . We obtain in a similar fashion

‖Dtf‖L2 = ‖Dt(χv)‖L2 ≤ ‖χDtv‖L2 + ‖χ′(t)e− ε
2τ |Dt|

2

χ̌eτΦu‖L2 ≤ ‖Dtv‖L2 + Ce−c
τ
ε

∥∥eτΦu
∥∥
L2 (3.21)

where we have used again Lemma 3.3.10 in the last inequality.
Let ς a small constant to be fixed later on. We distinguish between frequencies of size smaller and

bigger than ςτ . We obtain

‖Dtv‖L2 = ‖Dte
− ε

2τ |Dt|
2

eτΦu‖L2 ≤ ‖Dt1|Dt|≤ςτv‖L2 + ‖Dt1|Dt|≥ςτe
− ε

2τ |Dt|
2

eτΦu‖L2

≤ ‖Dt1|Dt|≤ςτv‖L2 + max
ξt∈[ςτ,+∞)

(ξte
− ε

2τ |ξt|
2

)‖eτΦu‖L2 .

Now, on R+, the function s 7→ se−
ε
2τ s

2

reaches its maximum at s =
√

τ
ε , and is decreasing on [

√
τ
ε ,+∞).

Hence, if τ ≥ 1
ς2ε , then

√
τ
ε ≤ ςτ , the function s 7→ se−

ε
2τ s

2

is decreasing on the interval [ςτ,+∞), and
thus bounded by its value at ςτ . This yields, for all τ ≥ max(τ0,

1
ς2ε ), the estimate

‖Dtv‖L2 ≤ ςτ‖v‖L2 + ςτe−
τς2ε

2 ‖eτΦu‖L2 . (3.22)

Combining all estimates so far, namely (3.18)-(3.19)-(3.20)-(3.21)-(3.22), we have proved that there are
some constants c > 0 (depending on ε) and C > 0 so that for any ς > 0, we have for τ ≥ max(τ0,

1
ς2ε ),

τ ‖v‖2H1
τ
≤ C ‖PΦ,εv‖2L2 + Cς2τ3‖v‖2L2 + C

(
e−cτ + ς2τ3e−τς

2ε
)∥∥eτΦu

∥∥2

H1
τ
.

We now fix the constant ς small enough so that the term Cς2τ3‖v‖2L2 ≤ Cς2τ‖v‖2H1
τ
can be absorbed in

the left handside of the estimate. This yields the sought estimate for τ ≥ max(τ0,
1
ς2ε ), and concludes the

proof of the theorem.

Proof of Lemma 3.3.10. Using the Fourier transform of the Gaussian (classical computation), we have

(e−
|Dt|2
λ f)(t) =

(
λ

4π

) 1
2
∫
Rs
e−

λ
4 |s−t|

2

f(s) ds.

We have

χ1e
− |Dt|

2

λ (χ2u)(t, x) =

(
λ

4π

) 1
2
∫
Rs
χ1(t, x)e−

λ
4 |s−t|

2

(χ2u)(s, x) ds

=

(
λ

4π

) 1
2

χ1(t, x)

∫
s,|t−s|≥d

e−
λ
4 |s−t|

2

(χ2u)(s, x) ds

where we have used the properties of support for the second equality, so that

|χ1e
− |Dt|

2

λ (χ2u)|(t, x) ≤ ‖χ1‖L∞
(
λ

4π

) 1
2
∫
s,|t−s|≥d

e−
λ
4 |s−t|

2

|χ2u|(s, x) ds

≤ ‖χ1‖L∞
(
λ

4π

) 1
2 (

1|·|≥de
−λ4 |·|

2

∗Rs |χ2u|(·, x)
)

(t).

As a consequence, using the Young inequality, we have

‖χ1e
− |Dt|

2

λ (χ2u)‖L2 ≤ ‖χ1‖L∞
(
λ

4π

) 1
2 ∥∥∥1|·|≥de−λ4 |·|2∥∥∥

L1(R)
‖χ2u‖L2(Rn+1). (3.23)
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Next, using that

1

2

∥∥∥1|·|≥de−λ4 |·|2∥∥∥
L1(R)

=

∫ +∞

d

e−
λ
4 s

2

ds =
2√
λ

∫ +∞

d
√
λ/2

e−y
2

dy =
2√
λ

∫ +∞

d
√
λ/2

e−
y2

2 e−
y2

2 dy

≤ 2√
λ
e−

d2

8 λ

∫ +∞

d
√
λ/2

e−
y2

2 dy ≤ 2√
λ
e−

d2

8 λ

∫ +∞

0

e−
y2

2 dy =
2√
λ
e−

d2

8 λ

√
π

2
.

Coming back to (3.23), we have obtained the existence of a constant C > 0 such that for all λ > 0,

‖χ1e
− |Dt|

2

λ (χ2u)‖L2 ≤ C ‖χ1‖L∞ ‖χ2‖L∞ e
− d2

8 λ‖u‖L2(Rn+1),

which implies the result in L2. The proof in H1 or in H1
τ follows the same.

3.4 Lowering regularity
In Theorem 3.1.1, we have assumed the solution u to Pu = 0 to be C∞ near (t0, x0). Looking carefully
at the proof, one can notice that local H1 regularity suffices to develop the arguments of the proof (up
to using an appropriate generalization of the Paley-Wiener theorem ♣ ). For such H1 solutions, we first
notice that the required regularity of the coefficients of the principal part of Q(x,Dx) in the x-variable is
only C1, as in the classical case, see ??.♣ In case of

3.4.1 Unique continuation for C1 coefficents

3.4.2 Unique continuation for distributional solutions
In the present section, we explain how, in case the coefficients Q(x,Dx) are C∞, the regularity of u solution
to Pu = 0 is only u ∈ D′(Ω). See [Hör97, Remark p205]

3.5 Global unique continuation and non characteristic hypersur-
faces

3.5.1 Distance and metric
Let Ωx, P be as in Theorem 3.1.1. Assume Ωx connected. We are going to define the Riemannian distance
related to the operator Q.

We can assume that aij(x) is symmetric without changing the operator P . The ellipticity and positivity
assumption shows that for any x ∈ Ωx, we can define the matrix (gij) = (aij)−1 which is still positive.

For any x ∈ Ωx and v ∈ Rn (' TxRn), we define

|v|g(x) :=

√√√√ n∑
i,j=1

gij(x)vivj ,

the Riemannian norm of the tangent vector v at the point x. Moreover, if γ ∈ C1([0, 1]; Ωx) (or even
γ ∈W 1,∞([0, 1]; Ωx) or γ ∈W 1,1([0, 1]; Ωx)) is a smooth path, we define its length as

length(γ) =

∫ 1

0

|γ̇(t)|g(γ(t))dt.

This allows to define the Riemannian distance associated to g as

dist(x1, x2) = inf
{

length(γ), γ ∈ C1([0, 1]; Ωx), γ(0) = x1; γ(1) = x2

}
.
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3.5.2 The global theorem
Theorem 3.5.1 (Semi-global unique continuation for waves). Let Ωx, P be as in Theorem 3.1.1. Let x0,
x1 ∈ Ωx. Let ω0 be neighborhood of x0 in Ωx. Then, for any T > dist(x0, x1), there exist ε > 0 and Vx1

one neighborhood of x1 so that for any u ∈ C∞(Ω),{
Pu = 0 in ]− T, T [×Ωx,
u = 0 in ]− T, T [×ω0

=⇒ u = 0 in ]− ε, ε[×Vx1
. (3.24)

As a corollary, we deduce the following result. Given an open set Int(M) ⊂ Rn endowed with a metric
g and for E ⊂M, we introduce the largest distance of E to a point ofM:

L(M, E) := sup
x∈M

dist(x,E), dist(x,E) = inf
y∈E

dist(x, y). (3.25)

Corollary 3.5.2 (Global unique continuation for waves). Let Int(M) ⊂ Rn be a bounded domain and let
∆g be an elliptic operator onM. For any nonempty open subset ω ofM, if u satisfies

u ∈ C∞((−T, T )× Int(M)), ∂2
t u−∆gu = 0 in (−T, T )× Int(M), T > L(M, ω),

then u vanishes identically.

Proof of Theorem 3.5.1. According to Lemma 3.5.3 below, we can find local coordinates (w, xn) near γ in
which the path γ by γ(s) = (0, s`0) and the metric is given by the matrix m(w, xn) ∈Mn(R) with

m(w, xn) =

(
m′(xn) 0

0 1

)
+OMn(R)(|w|), for w ∈ BRn−1(0, δ), δ > 0, (3.26)

with m′(xn) ∈ Mn−1(R) (uniformly) definite symmetric. With these coordinates in the space variable,
and still using the straight time variable, the symbol of the wave operator is given by

p(t, w, xn, ξt, ξw, ξn) = p(w, xn, ξt, ξw, ξn) = −ξ2
t + 〈m(w, xn)ξ, ξ〉, ξ = (ξw, ξn), (3.27)

where we have used ξt for the dual of the time variable and ξw, ξn for the dual to w ∈ BRn−1(0, δ) and
xn ∈ [0, `0].

We now aim to apply Theorem 3.1.1 and we need to construct appropriate non characteristic hyper-
surfaces.

Pick again t0 with `0 < t0 < T . For b < δ small, to be fixed later on, we define

xn = l, x′ = (t, w), D =

{
(t, w)

∣∣∣∣(wb )2

+
( t
t0

)2

≤ 1

}
G(t, w, ε) = ε`0ψ

(√(w
b

)2

+
( t
t0

)2
)
, φε(t, w, xn) := G(t, w, ε)− xn, ε ∈ [0, 1]

where ψ is such that

ψ even, ψ(±1) = 0, ψ(0) = 1,

ψ(s) ≥ 0, |ψ′(s)| ≤ α, for s ∈ [−1, 1],

with 1 < α < t0
`0
. This is possible since t0

`0
> 1.

Note also that the fact that ψ is even gives that G(t, w, ε) is actually smooth.
Note also that the point (t = 0, w = 0, xn = `0) corresponding in the local coordinates to x1 belongs

to {φ1 = 0}. We have

dφε(t, w, xn) = ε`0

((w
b

)2

+
( t
t0

)2
)−1/2

ψ′

(√(w
b

)2

+
( t
t0

)2
)(

tdt

t20
+
wdw

b2

)
− dxn.
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Given the form of the principal symbol of the wave operator in these coordinates (see (3.26)-(3.27)), we
obtain

p(w, xn, dφε(t, w, xn)) = −ε2`20
t2

t40

((w
b

)2

+
( t
t0

)2
)−1

|ψ′|2

+`20
ε2

b4
〈m′(xn)w,w〉

((w
b

)2

+
( t
t0

)2
)−1

|ψ′|2 + 1

+O(|w|2)

(
1 +

ε2`20
b4
|w|2

((w
b

)2

+
( t
t0

)2
)−1

|ψ′|2
)
,

where |ψ′|2 is taken at the point

(√(
w
b

)2

+
(
t
t0

)2
)
. Now, since α < t0

`0
and m′(xn) is uniformly (for

xn ∈ [0, `0]) definite positive, there is η > 0 so that for |w| ≤ b small enough, we have

1 +O(|w|2) ≥ α2 `
2
0

t20
+ η

〈m′(xn)w,w〉+O(|w|2)|w|2 ≥ 1

2
〈m′(xn)w,w〉 ≥ 0.

Hence, there is a sufficiently small neighborhood (taking again b small enough) of the path (i.e. of w = 0),
in which we have (for any ε ∈ [0, 1]), and any (t, w, xn) ∈ D × [0, `0]

p(w, xn, dφε(t, w, xn)) ≥ −ε
2

t20
`20

( t
t0

)2
((w

b

)2

+
( t
t0

)2
)−1

|ψ′|2 + α2 `
2
0

t20
+ η

≥ −`
2
0

t20
|ψ′|2 + α2 `

2
0

t20
+ η ≥ η.

So, the surface {φε = 0} is noncharacteristic for any ε ∈ [0, 1] and, therefore, strictly pseudoconvex with
respect to the wave operator.

Now, define Kε = {xn ≤ G(t, w, ε)} ∩ {xn ≥ 0}.
Consider ε0 = sup {ε;u = 0 on Kε}. A continuity argument yields that that u = 0 on Kε0 . A com-

pactness argument on the compact set (taking into account the "corners") and the successive application
of Theorem 3.1.1 gives the result. ♣ un peu rapide...

Lemma 3.5.3. Let γ : [0, 1]→ Ωx be a smooth path without self intersection (that is to say, γ is injective)
of length `0 so that γ(0) = x0 and γ(1) = x1.

Then, there are some coordinates (w, l) ∈ BRn−1(0, ε)× [0, `0] in an open neighborhood U near γ([0, 1])
so that

• γ([0, 1]) = {w = 0} × [0, `0],

• the metric g is of the form m(l, w) =

(
1 0
0 m′(l)

)
+OMn(R)(|w|),

Proof. The path γ is of length `0 so, we can reparametrize it by γ : [0, `0] → Ωx such that γ is unitary
(that is |γ̇(s)|γ(s) = 1 for all s ∈ (0, `0)). Moreover, since γ does not have self intersection, there exist U a
neighborhood in Ωx of γ and a diffeomorphism ψ such that

• ψ(U) ⊂ {(x, y) ∈ Rn |x ∈ [−ε, `0 + ε], |y| ≤ ε},

• ψ(γ(s)) = (s, 0),

• ψ(U) = {(x, y) ∈ Rn, f1(y) ≤ x ≤ f2(y) |x ∈ [−ε, `0 + ε], |y| ≤ ε} for some smooth functions fi lo-
cally defined
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Then, we make some change of variable to diagonalize the metric on γ. By unitarity of the coordinates,
the metric on γ has the form

m(x, 0) =

(
1 l(x)

tl(x) g(x)

)
,

where l is a line vector and g is a positive definite matrix. We perform the change of variable Φ : (x, y) 7→

(x̃, ỹ) = (x− ax · y, y). In y = 0, we have DΦ(x, 0) =

(
1 −ax
0 Id

)
with tDΦ(x, 0) =

(
1 0
−tax Id

)
(in

particular, the change of variable is valid for small y) and DΦ(x, 0)−1 =

(
1 ax
0 Id

)
with tDΦ(x, 0)−1 =(

1 0
tax Id

)
. Moreover, in the new coordinates, the set in {ỹ = 0} and the metric there is given by

tDΦ(x, 0)−1m(x, 0)DΦ(x, 0)−1 =

(
1 l(x) + a(x)

tl(x) +t a(x) ∗

)
So, we choose a(x) = −l(x) so that in this new coordinates m(x, 0) is of the form

m(x, 0) =

(
1 0
0 ∗

)
. (3.28)

The expected property of m is then obtained by the mean value theorem using the diagonal form (3.28)
on γ.

3.6 Approximate controllability

3.7 Further remarks

3.7.1 The general theorem
of Tataru Robbiano-Zuily, Hörmander

3.7.2 Quantitative estimates
boundary Carleman estimates

119



3.8 Exercises on Chapter 3
♣ Mieux preciser la regularite des solutions dans les 2 exos

Exercise 16 (The Gaussian multiplier). 1. Compute the Fourier transform of s 7→ e−s
2

on R. Hint:
differentiate the Fourier transform and solve a differential equation.

2. Deduce the Fourier transform of the Gaussian x 7→ e−|x|
2

on Rn.

3. Deduce the Fourier transform of x 7→ e−
|x|2
λ for λ > 0 on Rn. Hint: use a scaling argument.

4. For λ > 0, we define the Fourier multiplier Sλ = e−
|Dx|2
λ on S(Rn) by F(Sλu)(ξ) = e−

|ξ|2
λ F(u)(ξ).

Prove that Sλu = fλ ∗ u with

fλ =

(
λ

4π

)n/2
e−λ

|x|2
4 .

5. Relate Sλu to the solution of the heat equation on Rn with initial datum u ∈ S(Rn), namely{
∂tv −∆v = 0
v(0, x) = u(x).

(3.29)

Deduce that the solution v of (3.29) writes v(t, ·) = Kt ∗ u with Kt(x) =
(

1
4πt

)n/2
e−
|x|2
4t .

6. Let u ∈ S(Rn) be nonnegative and not identically vanishing. Prove that for any λ > 0, and x ∈ Rn,
(Sλu)(x) > 0. Deduce that Sλ is not local: the property supp(Sλu) ⊂ supp(u) does not hold.

7. (a) Prove that for z ≥ 0, we have∫ +∞

z

e−s
2

ds =
1√
π

∫ +∞

0

e−z
2(1+s2)

1 + s2
ds ≤

√
π

2
e−z

2

.

(b) Prove that for all m ∈ N, there is Cm > 0 such that for all r ≥ 0, t ∈ (0, 4],∫ +∞

r

sme−
s2

t ds ≤ Cm〈r〉m−1te−
r2

t

(c) Deduce that there is Cn > 0 such that for all closed set E ⊂ Rn all x ∈ Rn and all t ∈ (0, 4],
we have ∫

E

e−
1
t |x−y|

2

dy ≤ Cn 〈dist(x,E)〉n−2
√
te−

dist(x,E)2

t , (3.30)

where dist denotes the Euclidean distance in Rn.
(d) Conclude that there is C > 0 such that for all u ∈ C0

b (Rn), all x ∈ Rn and all λ ≥ 1, we have

|Sλu(x)| ≤ C 〈dist(x, supp(u))〉n−2
λ
n−1

2 e−
λ
4 dist(x,supp(u))2

‖u‖L∞ .

(Note that this might be interpreted as a refinement of the result of Lemma 3.3.10: here, the
coefficient in the exponential decay is made explicit – and is optimal – in terms of the Euclidean
distance).

Correction 16. 1. We denote f(s) = e−s
2

differentiate

df̂(ξ)

dξ
=

d

dξ

∫
Rn
e−isξe−s

2

ds = −i
∫
Rn
se−isξe−s

2

ds =
i

2

∫
Rn
e−isξ∂s(e

−s2)ds

= −ξ
2

∫
Rn
e−isξe−s

2

ds = −ξ
2
f̂(ξ).
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So, this equation can be explicitely solved by f̂(ξ) = f̂(0)e−
ξ2

4 . It is still a Gaussian, but we have

to find the normalization constant f̂(0). To compute f̂(0) =
∫
R e
−s2ds, notice that

(∫
R e
−s2ds

)2

=∫
R2 e
−(x2+y2)dxdy =

∫
r>0

e−r
2

(2πr)dr = −π
∫
r>0

∂r(e
−r2

)dr = π. We thus have
∫
R e
−s2ds =

√
π

and f̂(ξ) =
√
πe−

ξ2

4 .

2. In higher dimension, we compute∫
Rn
e−ix·ξe−|x|

2

=

∫
Rx1

· · ·
∫
Rxn

e−ix1ξ1 · · · e−ixnξne−x
2
1 · · · e−x

2
ndx1 · · · dxn

= f̂(ξ1) · · · f̂(ξn) = πn/2e−
|ξ|2

4 .

3. Now, we want to compute ĝλ(ξ) where gλ = e−
|x|2
λ . By scaling, we have

ĝλ(ξ) =

∫
Rn
e−ix·ξe−

|x|2
λ dx = λn/2

∫
Rn
e−i
√
λy·ξe−|y|

2

dy = λn/2g1(
√
λξ) = (πλ)n/2e−λ

|ξ|2
4 .

That is
̂
e−
|x|2
λ (ξ) = (πλ)n/2e−λ

|ξ|2
4 .

4. Now, we want to give a convolution formulation for Sλ. We have for u ∈ S(Rn), Ŝλu(ξ) = e−
|ξ|2
λ û(ξ).

So, using (1.24), we have

Sλu = F−1

(
e−
|ξ|2
λ û

)
= F−1

(
e−
|ξ|2
λ

)
∗ u = fλ ∗ u,

with

fλ = F−1

(
e−
|ξ|2
λ

)
=

1

(2π)n
̂
e−
|·|2
λ =

(πλ)n/2

(2π)n
e−λ

|x|2
4 =

(
λ

4π

)n/2
e−λ

|x|2
4 . (3.31)

5. Assume u ∈ S(Rn) and v is a smooth solution of the heat equation (3.29) with v(t, ·) ∈ S(Rn) for
t ≥ 0. Then, applying the Fourier transform in x yields{

∂tv̂(t, ξ) + |ξ|2v̂(t, ξ) = 0
v̂(0, ξ) = û(ξ).

This leads to v̂(t, ξ) = e−t|ξ|
2

û(ξ), i.e. v(t, ·) = e−t|Dx|
2

u = S1/tu. Together with the expression
of S1/t as a convolution operator in the previous question, we deduce v(t, ·) = e−t|Dx|

2

u = S1/tu =(
1

4πt

)n/2
e−
|x|2
4t ∗ u.

6. We deduce that

Sλu(x) = fλ ∗ u(x) =

(
λ

4π

)n/2 ∫
Rn
e−λ

|x−y|2
4 u(y)dy, x ∈ Rn, λ > 0.

This is nonnegative for all x ∈ Rn since the integrand is nonnegative. Moreover, having Sλu(x) = 0

would yield e−λ
|x−y|2

4 u(y) = 0 for all y ∈ Rn, which is not the case except if u vanishes identically.
In particular, we have fr λ > 0(

u ∈ L1(Rn), u ≥ 0, u not identically vanishing
)

=⇒ supp(Sλu) = Rn.

The conclusion holds even if supp(u) = B(0, 1), and thus Sλ is not local.
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7. (a) To prove the equality, differentiate both terms with respect to z > 0:

d

dz

(
1√
π

∫ +∞

0

e−z
2(1+s2)

1 + s2
ds

)
=

1√
π

∫ +∞

0

−2ze−z
2(1+s2)ds =

2e−z
2

√
π

∫ +∞

0

−ze−z
2s2ds

=
2e−z

2

√
π

∫ +∞

0

−e−y
2

dy = −e−z
2

=
d

dz

(∫ +∞

z

e−s
2

ds

)
.

Moreover, for z = 0 both integrals coincide, thus the formula for all z ≥ 0. Then, the inequality
follows from

1√
π

∫ +∞

0

e−z
2(1+s2)

1 + s2
ds =

e−z
2

√
π

∫ +∞

0

e−z
2s2

1 + s2
ds ≤ e−z

2

√
π

∫ +∞

0

1

1 + s2
ds =

√
π

2
e−z

2

(b) As a consequence, we first have∫ +∞

r

sme−
s2

t ds = t
m+1

2

∫ +∞

r

(s/
√
t)me−

s2

t ds/
√
t = t

m+1
2

∫ ∞
r/
√
t

yme−y
2

dy

Integrating by parts once, we obtain∫ ∞
α

yme−y
2

dy =
1

2
αm−1e−α

2

+
m− 1

2

∫ ∞
α

ym−2e−y
2

dy.

Iterating integration by parts, we see that for all 0 < t ≤ 4, r ≥ 0, we have

t
m+1

2

∫ ∞
r/
√
t

yme−y
2

dy ≤ Cmt
m+1

2 〈r/
√
t〉m−1e−

r2

t ≤ Cm〈r〉m−1t1e−
r2

t ,

which yields the sought result.

(c) As a consequence, there exists Cn > 0 such that for all r ≥ 0, t ∈ (0, 4],∫
|y|≥r

e−
|y|2
t dy = |Sn−1|

∫
ρ≥r

e−
ρ2

t ρn−1dρ ≤ Cn 〈r〉n−2
te−

r2

t .

Given a closed set E ⊂ Rn, if the point x does not belong to E, we have E∩B(x, dist(x,E)) = ∅,
and hence E ⊂ B(x, dist(x,E))c. As a consequence, if x /∈ E, then for any t ∈ (0, 4], we may
apply the last inequality to deduce∫

E

e−
1
t |x−y|

2

dy ≤
∫
B(x,dist(x,E))c

e−
1
t |x−y|

2

dy ≤ Cn 〈dist(x,E)〉n−2
te−

dist(x,E)2

t .

If x ∈ E, we simply notice that for any t > 0∫
E

e−
1
t |x−y|

2

dy ≤
∫
Rn
e−

1
t |x−y|

2

dy = (πt)
n
2 .

(this inequality actually holds for all x ∈ Rn). The last two inequalities imply the sought
estimate valid for all x ∈ Rn.

(d) We recall that Sλu = fλ ∗ u with fλ =
(
λ
4π

)n/2
e−λ

|x|2
4 . Taking t = 4/λ ∈ (0, 4] in the above

estimate and writing |u| ≤ ‖u‖L∞ 1supp(u) yields, for λ ≥ 1,

|Sλu(x)| ≤
(
λ

4π

)n/2 ∫
Rn
e−λ

|x−y|2
4 |u(y)|dy ≤

(
λ

4π

)n/2
‖u‖L∞

∫
supp(u)

e−λ
|x−y|2

4 dy

≤ Cλn/2 ‖u‖L∞ 〈dist(x, supp(u))〉n−2
λ−1/2e−

λ
4 dist(x,supp(u))2

,

whence the sought estimate.

122



Exercise 17 (Schrödinger equation). In this exercise, we consider solutions to the Schrödinger equation
in Rn, namely {

i∂tu−∆u = 0,
u(0, x) = u0(x).

(3.32)

1. Compute the Fourier transform in the space variable of a solution to (3.32) in terms of û0. Prove
that if u solves (3.32), then we have for all s ∈ R and all t ∈ R, ‖u(t, ·)‖Hs(Rn) = ‖u0‖Hs(Rn).

2. Prove that

F

((
1

−4πit

)n/2
e
|x|2
4it

)
(ξ) = eit|ξ|

2

, for all t 6= 0

(the Fourier transform is understood as an element of S ′(Rn)). Hint: Use an analytic continuation
argument together with Exercise 16.

3. Prove that there is C > 0 such that

‖u(t, ·)‖L∞ ≤
C

|t|n/2
‖u0‖L1 , for all t 6= 0,

for any smooth solution u with u(t) ∈ S(Rn) of the Schrödinger equation 3.32.

4. Assume n = 1 for simplicity, and let C, γ > 0 be two parameters. Prove that if u0 ∈ L1(Rn) is such
that

|u0(x)| ≤ Ce−γ|x|, for all x ∈ R, (3.33)

then for any t 6= 0 the solution x 7→ u(t, x) can be extended as a holomorphic function in a neigh-
borhood Γt ⊂ C of the real axis, to be determined.

5. Still in the case n = 1, deduce that if u0 ∈ L∞comp(R) does not vanish identically, then, for all t 6= 0,
the associated solution u(t, ·) to (3.32) cannot vanish on a nonempty open set ω ⊂ R.

We now consider the Schrödinger equation (3.32) set on the torus x ∈ Tn := Rn/(2πZ)n. We denote
by e−it∆u0 the solution u(t, ·) of (3.32).

6. Prove that there exists T > 0 such that e−i(t+T )∆u0 = e−it∆u0 for all u0 ∈ L2(Tn) and all t ∈ R.

7. Deduce that the analogues of Questions 3 (decay of the L∞ norm for data in L1) and 5 (solutions
arising from compactly supported data “fill the whole space” for all times t 6= 0) are false on Tn.

Correction 17. 1. If u solves (3.32), then we have û(t, ξ) = eit|ξ|
2

û0(ξ) for all t ∈ R. In particular,∫
Rn

(1 + |ξ|2)s|û(t, ξ)|2dξ =

∫
Rn

(1 + |ξ|2)s|û0(ξ)|2dξ,

and hence ‖u(t, ·)‖Hs(Rn) = ‖u0‖Hs(Rn) for all t ∈ R.

2. We have seen in Exercise 16 (see (3.31)) that

F

((
1

4πt

)n/2
e−
|x|2
4t

)
(ξ) = e−t|ξ|

2

, for all t > 0.

We now wish to formally replace t by −it in this formula using an analytic continuation argument.
To this aim, take a text function ϕ ∈ S. We write C+ = {z ∈ C,Re(z) > 0} and define the function

z 7→ fϕ(z) =

〈
F

((
1

4πz

)n/2
e−
|·|2
4z

)
, ϕ

〉
S′,S

=

(
1

4πz

)n/2〈
e−
|·|2
4z , ϕ̂

〉
S′,S

, z ∈ C+.
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in which we choose the principal determination of the logarithm (that is, taking arguments in
(−π, π)), which is holomorphic on C+. The function fϕ defines a holomorphic function on the
half plane C+ = {z ∈ C,Re(z) > 0} (use derivation under the integral). Moreover, according to
Formula (3.31), it coincides with the function

gϕ(z) =
〈
e−z|·|

2

, ϕ
〉
S′,S

,

for z = t ∈ R∗+. So, since fϕ and gϕ are two holomorphic functions on C+ that are equal on R∗+, we
have fϕ = gϕ on C+ by analytic continuation.

Moreover, the formula defining fϕ extends by continuity (using a dominated convergence argument)
to the set

C+ \ {0} = {z ∈ C,Re(z) ≥ 0, z 6= 0} .

It is also clear that gϕ extends continuously to that set; hence both functions coincide on that set.
Taking z = −it for t 6= 0 finally yields the sought formula.

3. From the above two questions, we have obtained, say, for u0 ∈ S(Rn), t 6= 0,

u(t, x) = F−1
ξ→x

(
eit|ξ|

2

û0(ξ)
)

= F−1
(
eit|·|

2
)
∗ F−1(û0)(x)

=

(
1

(−4πit)
n/2

e
|·|2
4it ∗ u0

)
(x) =

1

(−4πit)
n/2

∫
Rn
e
|x−y|2

4it u0(y)dy.

As a consequence, we have for the following estimate for t 6= 0,

‖u‖L∞(Rn) ≤
1

(4π|t|)n/2

∫
Rn

∣∣∣∣e |x−y|24it

∣∣∣∣ |u0(y)|dy =
1

(4π|t|)n/2
‖u0‖L1(Rn) .

This is a so-called dispersive estimate: although the L2 norm of the solution is preserved along time,
its maximal value decays.

4. We set

u(t, z) :=
1

(−4πit)
1/2

∫
R
e

(z−y)2

4it u0(y)dy, (3.34)

and want to understand for which z ∈ C the integral converges absolutely. Note that here, it is key
that we write (z − y)2 (usual square of a complex number) and not |z − y|2 (modulus of a complex
number) in order to obtain in the end a holomorphic function in the variable z. Writing z = a+ ib
with a = Re(z) and b = Im(z), we have∣∣∣∣e (z−y)2

4it u0(y)

∣∣∣∣ = e
Re

(
(a−y+ib)2

4it

)
|u0(y)| = e

Re

(
(a−y)2−b2+2ib(a−y)

4it

)
|u0(y)| = e

b(a−y)
2t |u0(y)|.

So the above formula for u(t, z) is well-defined whenever
∫
R e
− by2t |u0(y)|dy < +∞. Since we assume

|u0(y)| ≤ Ce−γ|y|, it is enough that
∫
R e
− by2t e−γ|y|dy < +∞, that is to say:

• if t > 0, b > 0, γ > b
2t , i.e. b < 2γt (integrability condition at −∞);

• if t < 0, b < 0, γ > b
2t , i.e. |b| = −b < 2γ(−t) = 2γ|t| (integrability condition at −∞);

• if t < 0, b > 0, γ > − b
2t , i.e. b < −2tγ = 2γ|t| (integrability condition at +∞);

• if t > 0, b < 0, γ > − b
2t , i.e. |b| = −b < 2γt (integrability condition at +∞).

That is to say, |b| < 2γ|t|. As a consequence, if we set

Γt := {z ∈ C, | Im(z)| < 2γ|t|}, for t 6= 0,
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we may differenciate under the integral (3.34) in any compact set of Γt; applying ∂ then yields
∂zu(t, z) = 0 for all z ∈ Γt and t 6= 0. Hence, we have extended u(t, ·) as a holomorphic function in
Γt, which is an open strip containing the real line.

Notice also that, for t > 0, say, the decay of u0 near +∞ dictates the width of the strip under the
real axis, whereas the decay of u0 near −∞ dictates the width of the strip above the real axis.

5. If u0 ∈ L∞comp(R), then it satisfies (3.33) for all γ > 0; hence, for all t 6= 0, we have Γt = C. As a
consequence, for all t 6= 0, the function u(t, ·) is an entire function: if it vanishes on an open set,
it then has to vanish identically, that is u(t, ·) = 0 on R. Since the Schrödinger equation (3.32) is
well-posed backward, this then implies that u0 vanishes identically on R, which prove the statement.

6. We use Fourier series on the torus: the family (ek)k∈Zn with ek(x) = (2π)n/2eik·x forms a Hilbert
basis of L2(Tn). Therefore, v ∈ L2(Tn) writes:

v(x) =
∑
k∈Zn

(v, ek)L2(Tn)ek(x) =
∑
k∈Zn

vke
ik·x, vk =

1

(2π)n/2
(v, ek)L2(Tn) =

1

(2π)n

∫
Tn
v(x)e−ik·xdx.

Moreover, We have, for j ∈ {1, · · · , n}, Djek(x) = Dje
ik·x = kie

ik·x so that

−∆ek =

n∑
j=1

D2
j ek =

( n∑
j=1

k2
j

)
ek = |k|2ek.

Therefore, the solution to the Schrödinger equation (3.32) writes:

e−it∆u0 =
∑
k∈Zn

eit|k|
2

(u0, ek)L2(Tn)ek.

We next remark that for any k ∈ Zn, we have |k|2 ∈ N and thus ei(t+2π)|k|2 = eit|k|
2

. That is to say
e−i(t+2π)∆u0 = e−it∆u0 for all u0 ∈ L2(Tn): the Schrödinger flow is 2π-periodic on the torus.

7. From this periodicity property, we deduce in particular that for any u0 ∈ L∞(Tn) ⊂ L2(Tn), we have

‖u(2π`, ·)‖L∞(Tn) = ‖u0‖L∞(Tn) , for all ` ∈ Z,

preventing any decay to zero of the L∞ norm. Note that we have conservation of the L2 norm, so
that

‖u0‖L2(Tn) = ‖u(t, ·)‖L2(Tn) ≤ (2π)n/2 ‖u(t, ·)‖L∞(Tn)

which already prevents decay of the L∞-norm (or any Lp norm). Note that this remark holds in any
domain with finite Lebesgue measure.

The property of Question 5 is slightly more subtle. Here, if u0 ∈ L∞(Tn) vanishes in some open set
ω ⊂ Tn, then we have

u(2π`, ·) = u0 = 0 a.e. on ω, for all ` ∈ Z.

This disprove the property of Question 5 for the Schrödinger flow on the torus.

Exercise 18 (Carleman estimate, part of the exam of May, 2016). ♣ uniformiser notation avec le

reste : ψ → Φ... For ε > 0 τ > 0, define the Fourier multiplier e−
ε|D|2

2τ defined by

̂(
e−

ε|D|2
2τ u

)
(ξ) = e−

ε|ξ|2
2τ û(ξ) ∀ξ ∈ Rn

for u ∈ S(Rn) (notice the slight difference with the one used in the main part of Chapter 3). Using the
Fourier transform of the Gaussian, we also have the formula

e−
ε|D|2

2τ u(x) =
( τ

2πε

)n/2 ∫
Rn
e−

τ
2ε |x−y|

2

u(y)dy.
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Here, we denote by Qψε,τ the operator defined by Qψε,τu = e−
ε|D|2

2τ (eτψu) for u ∈ S(Rn) (as opposed to the
main part of Chapter 3)).

We also let P ∈ Diffm(Rn) with principal symbol p and x0 ∈ Rn.

Let ψ be a real-valued quadratic function defined on Rn. More precisely,

ψ(x) =

n∑
k,l=1

ak,lxkxl +

n∑
k=1

bkxk + c

where ak,l, bk and c ∈ R are some constants.
Assume p(x0,∇ψ(x0)) 6= 0.

1. Denote pψ(x, ξ, τ) = p(x, ξ + iτ∇ψ). Check that for ξ = 0, pψ(x, ξ, τ) = (iτ)mp(x,∇ψ).

Prove that

ξ = 0, τ > 0⇒ |pψ(x0, ξ, τ)|2 > 0.

2. Prove that there exist some constants C1 > 0, C2 > 0 so that

|pψ(x0, ξ, τ)|2 + C1|ξ|2m ≥ C2(ξ2 + τ2)m. (3.35)

for all ξ ∈ Rn, τ ≥ 0.

3. Let l(x) =
∑n
j=1 ljxj a linear function with lj ∈ C constants. Compute the operator lε,τ so that

e−
ε|D|2

2τ (lu) = lε,τe
− ε|D|

2

2τ u.

4. Compute the operator Dψ
j,ε,τ so that Qψε,τ (Dju) = Dψ

j,ε,τQ
ψ
ε,τu. Prove that Dψ

j,ε,τ = Dj + iτ∇ψ −
ε
∑n
k=1(aj,k + ak,j)Dk.

Denote A the constant matrix with coefficients Ak,j = aj,k + ak,j . Compute the principal symbol of
Dψ
j,ε,τ ∈ Diff1

τ .

5. From now on, assume that P can be written P =
∑
|α|≤m pαD

α ∈ Diffm with pα ∈ C, that is an
operator with constant coefficients.

Denote Pψ,ε the operator so that Qψε,τ (Pu) = Pψ,εQ
ψ
ε,τu. Prove that Pψ,ε ∈ Diffmτ is a differential

operator depending on τ of order m. Prove that its principal symbol denoted pψ,ε is

pψ,ε(x, ξ, τ) =
∑
|α|=m

pα(ξ + iτ∇ψ − εAξ)α.

6. Prove that there exists ε > 0, C3, C4 > 0 so that we have

|pψ,ε(x0, ξ, τ)|2 + C3|ξ|2m ≥ C4(ξ2 + τ2)m. (3.36)

for all ξ ∈ Rn, τ ≥ 0.

7. Now, we fix ε > 0 so that (3.36) holds.

We admit the Gårding type Lemma 3.8.1, written below, for operators of order 2m.

Now, prove that there exists C5, C6 τ0, r0 so that

‖Pψ,εf‖2L2 + C5 ‖|D|mf‖2L2 ≥ C6 ‖f‖2Hmτ (3.37)

for all τ ≥ τ0, f ∈ C∞0 (B(x0, r0)).

Here |D|m is the Fourier multiplier of symbol |ξ|m.
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8. Let u ∈ C∞0 (B(x0, r0/4)). Denote v = Qψε,τu. Let χ ∈ C∞0 (B(x0, r0) so that χ = 1 on B(x0, r0/2).
Denote f = χv.
Prove that there exists C > 0, c > 0 so that

‖(1− χ)v‖Hmτ ≤ Ce−cτ
∥∥eτψu∥∥

Hmτ

‖[Pψ,ε, χ]v‖L2 ≤ Ce−cτ
∥∥eτψu∥∥

Hmτ

‖|D|mf‖L2 ≤ C ‖|D|mv‖L2 + Ce−cτ
∥∥eτψu∥∥

Hmτ

For the last one, we could consider (or not) to simplify that m = 2k is even so that |D|m = (−∆)k.

9. Conclude using (3.37) that (for some different constants C > 0), uniformly for τ ≥ τ0

‖v‖2Hmτ ≤ C ‖Pψ,εv‖
2
L2 + C ‖|D|mv‖2L2 + Ce−cτ

∥∥eτψu∥∥2

Hmτ
(3.38)

10. Prove the estimate (for some different constants C > 0), uniformly for τ ≥ τ0∥∥Qψε,τu∥∥2

Hmτ
≤ C

∥∥Qψε,τPu∥∥2

L2 + Ce−cτ
∥∥eτψu∥∥2

Hmτ
(3.39)

Lemma 3.8.1. Let N ∈ Diff2m
τ with principal symbol n(x, ξ, τ) real-valued. Assume moreover that for

x0 ∈ Rn, there is the inequality

n(x0, ξ, τ) ≥ C(ξ2 + τ2)m

for all ξ ∈ Rn, τ ≥ 0. Then, there exists r0 > 0, τ0 ≥ 0 so that

Re (Nf, f) ≥ C ‖f‖Hmτ
for all τ ≥ τ0, f ∈ C∞0 (B(x0, r0)).

Exercise 19 (Unique continuation, part of the exam of May, 2016). Let P be an operator as in the
introduction of the previous exercice. We assume to have proved the following statement: If ψ is quadratic
real and satisfies p(x0,∇ψ(x0)) 6= 0, then we have the estimates (3.39) for any u ∈ C∞0 (B(x0, r0)) and
τ ≥ τ0.

Now, let ϕ ∈ C∞(Rn) real-valued so that p(x0,∇ϕ(x0)) 6= 0.
Let Ω be an open neighborhood of x0. Let u ∈ C∞(Ω) so that Pu = 0 on Ω and u = 0 on Ω∩{ϕ(x) ≥ 0}.

1. Define ψ(x) = ∇ϕ(x0) · (x−x0)−λ|x−x0|2 for some λ > 0 to be chosen later on. Compute ∇ψ(x0).

2. Prove that there exists λ > 0 and r1 > 0 so that

ϕ(x) ≤ 0 and |x− x0| ≤ r1 =⇒ ψ(x) ≤ −|x− x0|2 (3.40)

3. Now, λ and r0, r1 are fixed so that (3.41) and (3.39) are true. Prove that there exists r2 > 0 so that

|x− x0| ≤ r2 =⇒ ψ(x) ≤ c/4 (3.41)

where c is the constant in (3.39).

4. Let r = min(r0, r1, r2). Let χ ∈ C∞0 (B(x0, r) so that χ = 1 on B(x0, r/2). Denote w = χu. Prove
that there exist some η > 0 and some new constant C > 0 so that∥∥Qψε,τPw∥∥L2 ≤ Ce−τη

e−cτ
∥∥eτψw∥∥

Hmτ
≤ Ce−τη

for all τ ≥ τ0.

5. Conclude a unique continuation property and formulate the Theorem that we proved.
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Appendix A

Appendix

A.1 The Dirichlet problem for some second order elliptic opera-
tors

♣ No taught in class. Moreover, faut changer le poids de carleman en Φ pour coherence des
notations

In this section, we shall consider a particular class of operators as described in Remark ??, that is, with
symbols the form p2(x, ξ) = Qx(ξ) where Qx is a smooth family of real quadratic forms. Assuming that
the variables xa are tangent to the boundary, and that the functions satisfy Dirichlet boundary conditions,
we prove a counterpart of the local estimate of Theorem ?? for this boundary value problem. For this, the
main goal to achieve is to prove a Carleman estimate adapted to this boundary value problem. All local,
semiglobal and global results shall then follow.

This situation is of particular interest for the wave equation for which xa is the time variable, which is
always tangent to the boundary of cylindrical domains.

For the sake of simplicity, we shall further assume that the operator principal symbol of P is independent
of the xa variable (we would otherwise need to assume the coefficients of P to be analytic with respect to
xa). This allows to avoid some additional technicalities in the (already rather technical) proofs.

A.1.1 Some notation
Here, we shall always assume that the analytic variables are tangential to the boundary, that is

x = (xa, xb) ∈ Rna × Rnb+ , with Rnb+ = Rnb−1 × R+, and xb = (x′b, x
n
b ).

When the distinction between analytic and non-analytic variables is not essential, we shall split the variables
according to

x = (x′, xn) ∈ Rn+ = Rn−1 × R+, with x′ = (xa, x
′
b) ∈ Rna+nb−1, and xn = xnb ∈ R+.

We also denote by ξ′ ∈ Rn−1 the cotangential variables and ξn the conormal variable, by D′ = 1
i (∂x′) the

associated tangential derivations and Dn = 1
i ∂xn the normal derivation.

For any r0 > 0, we define

Kr0 =
{
x ∈ Rn+; |x| ≤ r0

}
= BRn(0, r0) ∩ {xn ≥ 0}. (A.1)

We denote by C∞c (Rn+) the space of restrictions to Rn+ of functions in C∞c (Rn), and by C∞c (Kr0) the space
of functions C∞c (Rn+) supported in Kr0 . the trace of a function f ∈ C∞c (Rn+) at xn = 0 is denoted by
f|xn=0.

We denote by (f, g) =
∫
Rn+
fg, ‖f‖20,+ = (f, f) the L2(Rn+) inner product and norm. For k ∈ N, the

norm ‖·‖k,+ will denote the classical Sobolev norm on Rn+ and ‖·‖k,+,τ the associated weighted norms,
that is,

‖f‖2k,+,τ =
∑

j+|α|≤k

τ2j ‖∂αf‖20,+ , τ ≥ 1.
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We also define the tangential Sobolev norms, given by

|f |2k,τ =
∥∥(|D′|+ τ)kf

∥∥2

0,+
∼

∑
j+|α|≤k

τ2j ‖∂αx′f‖
2
0,+ , τ ≥ 1.

We shall also use, for f, g ∈ C∞c (Rn+), the notation (f, g)0 =
∫
Rn−1 f|xn=0(x′)g|xn=0(x′)dx′.

Finally, for j ∈ N, we denote by Dkτ , the space of tangential differential operators, i.e. operators of the
form

P (x,D′, τ) =
∑

j+|α|≤k

aj,α(x)τ jD′α,

and by
σ(P ) = p(x, ξ′, τ) =

∑
j+|α|=k

aj,α(x)τ jξ′α

their principal symbol.

A.1.2 The Carleman estimate
In this section, we state and prove the Carleman estimate of Theorem (2.5.2) asociated to the Dirichlet
problem . Note that it applies also to elliptic operator, but also to wave type operators.

To prove Theorem 2.5.2, we define the conjugated operator Pψ = eτψPe−τψ = P (x,D + iτψ′).
When proving the theorem, we shall drop the index + in the norms to lighten the notation; of course,

all inner norms and integrals are meant on Rn+. We first need the following proposition.

Theorem A.1.1. Under the assumptions of Theorem 2.5.2, there exist C > 0, τ0 > 0 such that for any
τ > τ0 and f ∈ C∞c (Kr0), we have

τ‖f‖21,τ ≤ C ‖Pψf‖
2
0 + τ3|f|xn=0|20 + τ |Df|xn=0|20. (A.2)

If moreover ∂xnψ > 0 for (x′, xn = 0) ∈ Kr0 , then

τ‖f‖21,τ ≤ C ‖Pψf‖
2
0 , for all f ∈ C∞c (Kr0) such that f|xn=0 = 0. (A.3)

Proof. Defining Q̃2 = 1
2 (Pψ + P ∗ψ) and Q̃1 = 1

2iτ (Pψ − P ∗ψ), we have

Pψ = Q̃2 + iτQ̃1,

and denote by q̃j the principal symbol of Q̃j , j = 1, 2. We have{
Q̃2 = D2

n +Q2

Q̃1 = Dnψ
′
xn + ψ′xnDn + 2Q1,

(A.4)

where Q2 ∈ D2
τ and Q1 ∈ D1

τ with principal symbols

q2 = −τ2(ψ′xn)2 + r(x, ξ′)− τ2r(x, ψ′x′)

q1 = r̃(xb, ξ
′, ψ′x′),

where r̃ is the bilinear form associated with the quadratic form r. Note that, even if it does not appear in
the notation, all these operators depend upon the parameter τ .

With this notation, we hence have pψ = q̃0
2 + iτ q̃0

1 , so that 1
iτ {pψ, pψ} = 2{q̃0

2 , q̃
0
1}. Assumptions (??)

and (??) then translate respectively into

{q̃0
2 , q̃

0
1}(x, ξ) > 0, if p(x, ξ) = 0, x ∈ Kr0 , τ = 0; (A.5)

{q̃0
2 , q̃

0
1}(x, ξ) > 0, if pψ(x, ξ) = 0, x ∈ Kr0 , τ > 0, (A.6)

where the second assertion is a direct consequence of (??), and the first one follows from (??) together
with the fact that, using that p is real, we have

lim
τ→0+

1

iτ
{pψ, pψ} =

∂

∂τ

1

i
{pψ, pψ}

∣∣∣∣
τ=0

= 2 {p, {p, ψ}} .
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Next, we have the integration by parts formulæ:{
(g, Q̃2f) = (Q̃2g, f)− i [(g,Dnf)0 + (Dng, f)0)0] ,

(g, Q̃1f) = (Q̃1g, f)− 2i
(
ψ′xng, f

)
0
.

(A.7)

So, we have for f ∈ C∞c (Kr0)

‖Pψf‖0 =
∥∥∥Q̃2f

∥∥∥2

0
+ τ2

∥∥∥Q̃1f
∥∥∥2

0
+ iτ

[(
Q̃1f, Q̃2f

)
−
(
Q̃2f, Q̃1f

)]
. (A.8)

So, we get, using the integration by parts formulæ (A.7)

‖Pψf‖0 =
∥∥∥Q̃2f

∥∥∥2

0
+ τ2

∥∥∥Q̃1f
∥∥∥2

0
+ iτ

(
[Q̃2, Q̃1]f, f

)
+ τB(f), (A.9)

with the boundary term

B(f) =
[
(Q̃1f,Dnf)0 + (DnQ̃1f, f)0

]
− 2

(
ψ′xnQ̃2f, f

)
0

= 2(ψ′xnDnf,Dnf)0 + (M1f,Dnf)0 + (M ′1Dnf, f)0 + (M2f, f)0, (A.10)

for some tangential operator M1 of order 1 (in ξ′, τ) (note that terms of order two in Dn cancel).
Now that we have made the exact computations, we will make some estimates on the symbols of the

interior part of the commutator. The idea is to tranfer the positivity assumption of the full symbol to
some positivity of a tangential symbol, which will then allow to apply the tangential Gårding.

The first step is to perform a factorisation of [Q̃2, Q̃1] with respect to Q̃1 and Q̃2 to have a tangential
reminder. Since [Q̃2, Q̃1] is of order 2, it can be written i[Q̃2, Q̃1] = C2 + C1Dn + C0D

2
n where Ci ∈ Diτ .

But using (A.4), and ψ′xn 6= 0 on Kr0 , we can replace Dn = 1
2ψ′xn

Q̃1 + D1
τ and D2

n = Q̃2 − Q2. So, in
particular, we can write

i[Q̃2, Q̃1] = B0Q̃2 +B1Q̃1 +B2. (A.11)

where Bi ∈ Diτ with real symbol bi. Now, we need to

• use the assumption to get some positivity of the symbol {pψ, pψ}, this is Lemma A.1.2;

• transfer this information to a tangential information on the symbol, this is Lemma A.1.3.

Lemma A.1.2. There exist C1, C2 > 0 such that for all (x, ξ) ∈ Kr0 × Rn and τ > 0, we have

(|ξ|2 + τ2) ≤ C1{q̃0
2 , q̃

0
1}(x, ξ) + C2

[
|pψ(x, ξ)|2

|ξ|2 + τ2

]
.

Proof. All the terms are homogeneous of degree 2 in (ξ, τ) and continuous on the compact (x, ξ, τ) ∈
Kr0 × {(ξ, τ) ∈ Rn ×R+, |ξ|2 + τ2 = 1}. Thus, on this set, the result is a consequence of (A.5), (A.6) and
Lemma 2.1.8 applied to f =

|pψ(x,ξ)|2
|ξ|2+τ2 ≥ 0, g = {q̃0

2 , q̃
0
1} and h = 0. The result on the whole Kr0 ×Rn×R+

follows by homogeneity.

Now, we set

µ(x, ξ′) = (q1)2 + (ψ′xn)2q2.

The symbol µ(x, ξ′) satisfies the property that µ(x, ξ′) = 0 if and only if there exists ξn real such that
pψ(x, ξ′, ξn) = 0. This is easily seen by noticing that the zero of q1 can only be with ξn = − q1

ψ′xn
.

Notice also that µ(x, ξ′) is a tangential symbol of order 2.

Lemma A.1.3. There exist C1, C2 > 0 such that for all (x, ξ′) ∈ Kr0 × Rn−1 and τ > 0, we have

(|ξ′|2 + τ2) ≤ C1b2 + C2

[
[µ(x, ξ′)]

2

|ξ′|2 + τ2

]
. (A.12)
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Proof. Note first that for any (x, ξ′, ξn) with ξn = − q1(x,ξ′)
ψ′xn

, we have q̃1(x, ξ′, ξn) = 0 and

pψ(x, ξ′, ξn) = q̃2(x, ξ′, ξn) = (ψ′xn)−2µ(x, ξ′).

Now, assume µ(x, ξ′) = 0 and ξa = 0. Setting ξn = − q1(x,ξ′)
ψ′xn

, we have pψ(x, ξ′, ξn) = 0. Using Lemma ??,
we have {q̃2, q̃1}(x, ξ′, ξn) > 0. According to the definition of B2 in (A.11), we have b2(x, ξ′, ξn) > 0. As a
consequence, we have

µ(x, ξ′) = 0 =⇒ b2(x, ξ′, ξn) > 0.

Moreover, all terms in (A.12) are homogeneous of degree 2 in the variables (ξ′, τ) and continuous on (ξ′, τ) 6=
(0, 0). Hence, applying Lemma 2.1.8 below on the compact set Kr0 ×{(ξ′, τ) ∈ Rn−1×R+, |ξ′|2 + τ2 = 1}
yields (A.12) on that set. The conclusion follows by homogeneity.

Taking the real part of (A.9) and using (A.11), we obtain

‖Pψf‖0 − τ Re (B(f)) =
∥∥∥Q̃2f

∥∥∥2

0
+ τ2

∥∥∥Q̃1f
∥∥∥2

0
+ τ Re (B2f, f) + τ Re

(
(B0Q̃2 +B1Q̃1)f, f

)
. (A.13)

Concerning the remainder term, we have

τ |Re
(

(B0Q̃2 +B1Q̃1)f, f
)
| ≤ τ‖f‖0‖Q̃2f‖0 + τ |f |1‖Q̃1f‖0

≤ τ−1/2
(
τ |f |21,τ + ‖Q̃2f‖20 + τ2‖Q̃1f‖20

)
. (A.14)

Defining now
Σ = (Q1)2 + (ψ′xn)2Q2,

with principal symbol µ, and for an operator G with principal symbol µ(x,ξ′)
|ξ′|2+τ2 , the tangential Gårding

inequality (that means with some derivatives only in the variable x′), in which symbols are allowed to
depend smoothly upon the variable xn yields, for τ sufficiently large,

|f |21,τ ≤ C Re (B2f, f) + Re (Σf,Gf) . (A.15)

Writing ψ′xnDn = 1
2 (Q̃1 − [Dn, ψ

′
xn ]) − Q1 (where ψ′xn does not vanish), this allows to estimate the full

norm ‖f‖1,τ according to

‖f‖1,τ ≤ C(‖Q̃1f‖0 + |f |1,τ ). (A.16)

Recalling the definitions of Q̃i in (A.4), we also have

Σ =

(
1

2
(Q̃1 − [Dn, ψ

′
xn ])− ψ′xnDn

)2

+(ψ′xn)2
(
Q̃2 −D2

n

)
=

(
1

2
(Q̃1 − [Dn, ψ

′
xn ])− ψ′xnDn

)
1

2
(Q̃1 − [Dn, ψ

′
xn ])

+(ψ′xn)2
(
Q̃2

)
, (A.17)

and hence
Σ ∈ (ψ′xn)2Q̃2 −

1

2
ψ′xnDnQ̃1 +D1

τ Q̃1 +D1
τ +D0

τDn.

We now want to estimate the term Re (Σf,Gf) in (A.15). For this, integrating by parts in the tangential
direction xa, we have∣∣(ψ′′xn,xa ((ψ′xn)2Dn +Q1ψ

′
xn ;Da

)
f,Gf

)∣∣ ≤ C‖ 〈Da〉 f‖‖f‖1,τ .
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This yields

| (Σf,Gf) | ≤ C‖Q̃2f‖0‖f‖0 +

∣∣∣∣( 1

2i
ψ′xnQ̃1f,Gf

)
0

∣∣∣∣
+‖Q̃1f‖0‖f‖1,τ + ‖f‖0‖f‖1,τ + C‖ 〈Da〉 f‖‖f‖1,τ

≤
∣∣∣∣( 1

2i
ψ′xnQ̃1f,Gf

)
0

∣∣∣∣+ C‖f‖1,τ
(
τ−1‖Q̃2f‖0 + +‖Q̃1f‖0 + τ−1‖f‖1,τ + ‖Daf‖0

)
(A.18)

According to (A.15) and (A.16) and (A.18), this now implies

‖f‖21,τ . Re (B2f, f) + ‖Q̃1f‖20 +

∣∣∣∣( 1

2i
ψ′xnQ̃1f,Gf

)
0

∣∣∣∣+ τ−2‖Q̃2f‖20 + ‖Daf‖20.

Coming back to (A.13), we obtain, for τ large enough,

τ‖f‖21,τ . ‖Pψf‖20 − τ Re (B(f))−
∥∥∥Q̃2f

∥∥∥2

0
− τ2

∥∥∥Q̃1f
∥∥∥2

0
+ τ

∣∣∣∣( 1

2i
ψ′xnQ̃1f,Gf

)
0

∣∣∣∣
. ‖Pψf‖20 − τ Re (B(f)) + τ

∣∣∣∣( 1

2i
ψ′xnQ̃1f,Gf

)
0

∣∣∣∣ .
Recalling te definition of Q̃1, we have ψ′xnQ̃1 = Dn +G1, where G1 ∈ D1

τ is a differential operator of order
1 (in (τ,D′)), we finally have

τ‖f‖21,τ . ‖Pψf‖20 − τ Re (B(f)) + τ |(Dnf +G1f,Gf)0| , (A.19)

where G a tangential pseudodifferential operator of order zero, Recalling the form of B(f) in (A.10) gives
the bound |B(f)| ≤ τ2|f|xn=0|20 + |Df|xn=0|20, which concludes the proof of (A.2).

Now if f|xn=0 = 0, all tangential derivatives vanish. With (A.19) and the form of B(f) in (A.10), this
yields

τ‖f‖21,τ . ‖Pψf‖20 − 2τ(ψ′xnDnf,Dnf)0,

which proves (A.3) since ψ′xn > 0 for (x′, xn = 0) ∈ K. This concludes the proof of Proposition A.1.1.
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Appendix B

Correction of (some) exercises

B.1 Exercises on Chapter 1

B.1.1 Exercice 1
Let A = aα,β(x)Dατβ . B = bα′,β′(x)Dα′τβ

′
of respective order m1 and m2 and full symbol a and b.

A ◦Bu = aα,β(x)Dατβ
[
bα′,β′(x)Dα′τβ

′
u
]

= aα,β(x)τβ+β′Dα
[
bα′,β′(x)Dα′u

]
Using Leibniz formula

∂α(fg) =
∑

γ+δ=α

(
α

γ

)
(∂γf)(∂δg),

we get

Dα
[
bα′,β′(x)Dα′u

]
=

1

i|α|

∑
γ+δ=α

(
α

γ

)
(∂γbα′,β′)(∂

δDα′u)

So, we get

A ◦Bu =
1

i|α|

∑
γ+δ=α

aα,β(x)τβ+β′
(
α

γ

)
(∂γbα′,β′)(∂

δDα′u)

Each term in the sum is a differential operator of order β + β′+ |δ|+ |α′| ≤ β + β′+ |α|+ |α′| = m1 +m2.
This maximum is reached only for the term δ = α, γ = 0,

(
α
γ

)
= 1 where we have the term

1

i|α|
aα,β(x)τβ+β′bα′,β′(x)(∂αDα′u) = aα,β(x)τβ+β′bα′,β′(x)(DαDα′u) = (ab)(x,D, τ).

Let us now see the terms of order m1 +m2− 1. They are so that β+ β′+ |δ|+ |α′| = m1 +m2− 1, that is
|δ| = m1−1 and |γ| = 1. Moreover, γ = (1, 0, 0 · · · , 0) or γ = (0, 1, 0 · · · , 0), etc... We denote these vectors
ej . The sum is amongst terms so that αj ≥ 1. In each of these cases,

(
α
ej

)
=
(
α1

0

)
· · ·
(
αj
1

)
· · ·
(
αn
0

)
= αj .

1

i|α|

n∑
j=1,αj≥1

aα,β(x)τβ+β′αj(∂
jbα′,β′)(∂

α−ejDα′u)

=
1

i

n∑
j=1,αj≥1

αjaα,β(x)τβ+β′(∂jbα′,β′)(D
α−ejDα′u).

Its symbol is

1

i

n∑
j=1,αj≥1

aα,β(x)τβ+β′(∂jbα′,β′)αjξ
α−ejξα

′
.
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We ony recognize αjξα−ej = ∂ξjξ
α. And the formula is still true and equal to zero if αj = 0. So, the term

of order m1 +m2 − 1 is therefore

1

i

n∑
j=1

aα,β(x)τβ+β′(∂jbα′,β′)(∂ξjξ
α)ξα

′
=

1

i

n∑
j=1

(∂ξja)(∂xj b).

Now, take A =
∑
|α|+β≤m1

aα,β(x)Dατβ and B = bα′,β′(x)Dα′τβ
′
. Decompose A = am1

(x,D, τ) +

am1−1(x,D, τ) + r(x,D, τ) with am1(x,D, τ) homogeneous of degree m1, am1−1(x,D, τ) homogeneous of
degree m1 − 1 and r(x,D, τ) of order at most m1 − 2.

The previous calculation shows

A ◦B = am1
(x,D, τ) ◦B + am1−1(x,D, τ) ◦B + r(x,D, τ) ◦B

= (am1b)(x,D, τ) +
1

i

n∑
j=1

[
(∂ξjam1)(∂xj b)

]
(x,D, τ) + (am1−1b)(x,D, τ) + r(x,D, τ) ◦B

= (ab)(x,D, τ) +
1

i

n∑
j=1

[
(∂ξjam1

)(∂xj b)
]

(x,D, τ)− (rb)(x,D, τ) + r(x,D, τ) ◦B

where a and b are the full symbol of A and B (actually the coefficients greater than m1 − 1 and m1 − 1
are enough). So, we can write the formula in this case

A ◦B = (ab)(x,D, τ) +
1

i

n∑
j=1

[
(∂ξjam1

)(∂xj b)
]

(x,D, τ) + C(x,D, τ) (B.1)

where C is of order at most m1 +m2 − 2.
Let us now finally get to the general case, take B = bm2(x,D, τ) + bm2−1(x,D, τ) + s(x,D, τ) with

bm1(x,D, τ) homogeneous of degree m2, bm2−1(x,D, τ) homogeneous of degree m2 − 1 and s(x,D, τ) of
order at most m2 − 2. Applying Formula (B.1) to B equal to bm2

(x,D, τ) and bm2−1(x,D, τ), we get

A ◦B = (abm2)(x,D, τ) +
1

i

n∑
j=1

[
(∂ξjam1)(∂xj bm2)

]
(x,D, τ) + C1(x,D, τ) (B.2)

+(abm2−1)(x,D, τ) +
1

i

n∑
j=1

[
(∂ξjam1)(∂xj bm2−1)

]
(x,D, τ) + C2(x,D, τ) (B.3)

where C1 is of order at most m2 − 2 and C2 m2 − 3.
In particular, since (abm2

)(x,D, τ) + (abm2−1)(x,D, τ) = (ab)(x,D, τ) + C3(x,D, τ) where C3 is of
order at most m1 +m2−2 and (∂ξjam1

)(∂xj bm2−1) is of order at most m1 +m2−2, we have the equivalent
of Formula (B.1) in the general case. This also proves Proposition 1.3.6.

Note that it means that

• the symbol of order m1 +m2 is am1
bm2

.

• the symbol of order m1 +m2 − 1 is

am1
bm2−1 + am1−1bm2−1 +

1

i

n∑
j=1

[
(∂ξjam1

)(∂xj bm2−1)
]

This directly gives that [A,B] is of order at most m1 +m2− 1 with principal symbol of order m1 +m2− 1

1

i

n∑
j=1

[
(∂ξjam1)(∂xj bm2)

]
− 1

i

n∑
j=1

[
(∂xjam1)(∂ξj bm2)

]
=

1

i
{am1 , bm2} .
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