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Abstract

We review recent results of the authors concerning quantitative unique continuation estimates
for operators with coefficients that are analytic in some (or all the) variables. We describe several
applications for wave-like equations, but also equations based on hypoelliptic operators. These
proceedings are a survey of the general results in [LL19] together with applications to wave
equations [LL16] and to hypoelliptic equations [LL17, LL20b].
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1 Introduction

In this note, we are interested in the quantification of global unique continuation results of the
following form: given a differential operator P on an open set Ω ⊂ Rn, and given a small subset U
of Ω, having

Pu = 0 in Ω, u|U = 0 =⇒ u = 0 on Ω. (1.1) e:UCP-general

More generally, in cases where (1.1) is known to hold, we are interested in proving a quantitative
version of

Pu small in Ω, u small in U =⇒ u small in Ω.

This can sometimes be expressed by a stability estimate of the form

‖u‖Ω ≤ ϕ
(
‖u‖U , ‖Pu‖Ω̃ , ‖u‖Ω̃

)
, with ϕ(a, b, c)→ 0 when (a, b)→ 0 with c bounded, (1.2) e:QUCP-phi

where U ⊂ Ω ⊂ Ω̃ are nonempty, and for appropriate norms. As we will see, both qualitative and
quantitative unique continuation properties have several applications in control theory.

A more tractable problem than (1.1) is the so called local unique continuation problem: given
x0 ∈ Rn and S an oriented local hypersurface containing x0, do we have the following implication:

There is a neighborhood Ω of x0, such that Pu = 0 in Ω, u|Ω∩S− = 0 =⇒ x0 /∈ supp(u), (1.3) e:UCP-general-local

where S− denotes one side of S. It turns out that proving (1.3) for a suitable class of hypersurfaces
(with regard to the operator P ) is in general a key step in the proof of properties of the type (1.1).
The first general unique continuation result of the form (1.3) is the Holmgren-John Theorem [Hol01,
Joh49], stating that, for operators with analytic coefficients, unique continuation holds across any
noncharacteristic hypersurface S (see e.g. [Hör90, Theorem 8.6.5] for a precise statement).

When focusing on operators with (only) smooth (C∞) coefficients, the most general result was
proved by Hörmander [Hör94, Chapter XXVIII]. Uniqueness across a hypersurface holds assuming
a strong pseudoconvexity condition (see e.g. Definition 2.1 below). This result uses as a key tool
Carleman estimates, which were introduced in [Car39] and developed at first for elliptic operators
in [Cal58].

Starting from the 70’s, and motivated by applications to the unique continuation of the wave
equation with non analytic coefficients, people tried to lower the geometric conditions (with respect
to “strong pseudoconvexity”) without imposing analyticity of all coefficients of the operator involved.
The first results of this kind were [RT73], which provides with unique continuation for the wave
operator with (only) C∞ coefficients from subsets of the form (−∞,+∞) × ω. This work was then
followed by the seminal [Rob91] proving a similar result but from a set (−T, T ) × ω with T finite
yet non optimal. Then, it was understood in [Tat95] that the right framework was that of partial
analyticity, that is analyticity with only a subset of variables (e.g. the time variable when dealing
with wave equation). This led to successive improvements [Hör97, RZ98, Tat99b] that interpolate in
a satisfying way between Holmgren and Hörmander Theorem. So far, the local unique continuation
results are summarized in the first two lines of the Table 1. The specific setting of partial analyticity
and the related pseudoconvexity property is described more precisely in the Section 2.

Roughly speaking, our work [LL19] (see [BKL16] for a related result with loss for the wave
operator, obtained simultaneously) is concerned with the last line of Table 1. It consists in giving
local and global quantification (i.e. stability estimates) related to this unique continuation result
under partial analyticity. Logarithmic or Hölder type dependence refers to the form of the function
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Theorem Holmgren,
John [Hol01, Joh49]

Tataru,
Robbiano-Zuily,
Hörmander [Tat95,
Hör97, RZ98, Tat99b]

Hörmander [Hör94,
Chapter XXVIII]

Regularity of the
coefficients needed analytic coefficients

partially analytic
coefficients in some
variable xa

C∞ (even C1)
coefficients

Geometrical
assumption of the
hypersurface

Φ non characteristic for
P : p(x,∇Φ) 6= 0

Φ pseudoconvex in
{ξa = 0}

Φ pseudoconvex
({p, {p,Φ}} > 0
sufficient if real order 2)

Stability estimates

Logarithmic type, see
John [Joh60]
and [LL19] (reviewed in
Section 2)

Logarithmic type,
see [LL19] (reviewed in
Section 2)

Hölder type,
see [Bah87, LR95], see
also [LL19] (reviewed in
Section 2)

Table 1: Panorama of the different unique continuation results for a differential operator P with
principal symbol p.

〈t:table〉

ϕ in (1.2). This allowed us to apply these results to the classical wave equation [LL19, LL16] and
equations involving hypoelliptic (sum of squares) operators [LL17, LL20b]. To summarize, the results
we obtain are as follows:

1. A general global quantification of the unique continuation property under partial analyticity
assumptions. The main result we present is Theorem 2.5, which gives a global quantification of
the unique continuation along a foliation of hypersufaces satisfying the appropriate conditions.
The general estimates obtained in this setting are described in Section 2 and were obtained
in [LL19].

〈i:desc-thm〉
2. A logarithmic stability estimate for the observation of the waves from any non empty open

subset (that is, without geometric assumptions). This is mainly Theorem 3.1 below. The
results are described in Section 3.1 and were obtained in [LL19].

3. A constructive proof of the Bardos-Lebeau-Rauch observability result of the wave equation un-
der the Geometric Control Condition (GCC) [BLR92]. We describe how the estimate described
in Item 2 is useful to obtain a constructive proof of the observability of the wave equation under
the GCC. This is useful when one wants to have estimates of the observability constants in
some regimes. These results are described in Section 3.2 and rely on [LL16].

4. Some stability estimates for the observation of hypoelliptic (sum of squares) operators and their
evolution counterparts. Namely we obtain quantitative unique continuation for eigenfunctions,
wave-type, heat-type equations related to a sum of squares operator. As usual, such estimates
can be transfered to (approximate) control results, but also to stabilization of damped equa-
tions. The results and some ideas of the proof are presented in Section 4. They were obtained
in [LL17, LL20b].
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2 Quantitative unique continuation under partial analyticity
〈sectquanti〉2.1 General results of quantitative unique continuation

In this section, we describe the setting of the general stability result we obtained and present the
class of partial differential operators we deal with. We consider domains Ω ⊂ Rn = Rna × Rnb ,
where na + nb = n. We denote by x = (xa, xb) the global variables and ξ = (ξa, ξb) the associated
dual variables. The variables xa will denote the set of variables in which the considered operator is
analytic. In the examples studied below, this will be the time variable t when we consider the classical
(Riemannian) wave equation, while it will be the full set of variables when hypoelliptic operators are
considered.

Given a bounded domain Ω ⊂ Rn = Rna × Rnb , we say that a smooth function f : Ω → C is
analytic with respect to xa if, for any point x0 = (x0

a, x
0
b) ∈ Ω, there is ε > 0 such that f extends as

a holomorphic function in the variable xa for x = (xa, xb) ∈
(
B(x0

a, ε) + iB(0, ε)
)
×B(x0

b , ε).

The unique continuation and the associated quantification is proved true under some very general
assumptions for the operators, named analytically principally normal operators by Tataru [Tat99b,
Definition 2.2]. Yet, for simplification, we will give a particular case of this condition that will be
sufficient for most of the applications we have in mind.

〈def:anal principal normal〉Assumption 2.1. Let P be a differential operator on an open set Ω ⊂ Rna × Rnb of order m ∈ N∗
with smooth coefficients and real-valued principal symbol p(xa, xb, ξa, ξb). We will assume that all
coefficients of P are real-analytic in the variable xa and that

∂xap(xa, xb, 0, ξb) = 0, for (xa, xb) ∈ Ω, ξb ∈ Rnb . (2.1) condianalyti

We now formulate the definition of strongly pseudoconvex surfaces for an operator P .

〈def: pseudoconvex-surface〉Definition 2.1 (Strongly pseudoconvex oriented surface). Let Ω ⊂ Rn, Γ be a closed conic subset
of T ∗Ω, and let P be a differential operator with principal symbol p. Let S be a C2 oriented
hypersurface of Ω and x0 ∈ S ∩Ω. We say that S is strongly pseudoconvex in Γ at x0 for P if there
exists φ ∈ C2(Ω;R) such that S = {φ = 0}, ∇φ(x0) 6= 0, satisfying:

Re {p, {p, φ}} (x0, ξ) > 0, if p(x0, ξ) = {p, φ}(x0, ξ) = 0 and ξ ∈ Γx0 , ξ 6= 0; (2.2) e:pseudo-surface-1

1

iτ
{pφ, pφ}(x0, ξ) > 0, if pφ(x0, ξ) = {pφ, φ}(x0, ξ) = 0 and ξ ∈ Γx0 , τ > 0, (2.3) e:pseudo-surface-2

where pφ(x, ξ) = p(x, ξ + iτ∇φ).

Note that this is a property of the oriented surface S solely, and not of the defining function φ
(see [Hör94], beginning of Section 28.3). If Γ = T ∗Ω, it is the usual condition of the Hörmander
Theorem (see [Hör94, Section 28.3]), that is, under which uniqueness holds for P at x0 across the
hypersurface S, i.e. from φ > 0 to φ < 0.

Below, this condition will always be used for Γ = {ξa = 0}. In this case, and using the homogeneity
of p in ξ, Assumption (2.3) may be rephrased as:

1

i
{p(x, ξ − i∇φ), p(x, ξ + i∇φ)}(x0, 0, ξb) > 0, if p(ζ) = {p, φ}(ζ) = 0, ξb ∈ Rnb ,

where ζ = (x0, i∇aφ(x0), ξb+ i∇bφ(x0)). An important feature of this definition is that it is invariant
by changes of coordinates.

Before stating our main result, let us discuss some cases of operators of particular interest.
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Remark 2.2 (Hörmander case). If na = 0, there is no analytic variable. In this case, Definition 2.1
coincides with the definition of principally normal operators [Hör94, Chapter XXVIII] and Defini-
tion 2.1 with Γ = T ∗Ω that of strictly pseudoconvex functions. The unique continuation result under
consideration is the classical Hörmander theorem [Hör94, Chapter XXVIII].

〈rkHolmgren〉Remark 2.3 (Holmgren-John case). If na = n, that is the operator is analytic in all the variables,
we have xa = x, ξa = ξ, and hence Γ = Ω×{ξa = 0} = Ω×{ξ = 0}. In this situation, Condition (2.1)
is empty (∂xap(xa, ξa) is a homogeneous polynomial of degree m ≥ 1 in ξa, where m is the order of
P ; hence it vanishes at ξa = 0).

Next, concerning the conditions on the surface {φ = 0}, notice that (2.2) is also empty since
Γx0 ∩ {ξ 6= 0} = ∅. For (2.3), if ξ ∈ Γx0 , that is ξ = 0, we have pφ(x0, ξ) = p(x0, iτ∇φ(x0)) =
(iτ)mp(x0,∇φ(x0)): any noncharacteristic surface at x0 (i.e. satisfying p(x0,∇φ(x0)) 6= 0) is a
strongly pseudoconvex oriented surface. The unique continuation result under consideration is the
classical Holmgren-John theorem.

Note that, in the case na = n, the results presented here hold under Condition (2.3), namely:

p(x0,∇φ(x0)) = {p, φ}(x0,∇φ(x0)) = 0 =⇒ 1

i
{p(x, ξ − i∇φ), p(x, ξ + i∇φ)}(x0, 0) > 0,

which is weaker than the noncharactericity condition p(x0,∇φ(x0)) 6= 0 of the Holmgren-John theo-
rem.

〈rknoncaractwave〉
Remark 2.4 (Wave type and Schrödinger type operators). Let us now consider the case of operators
P of principal symbol of the form p2(x, ξ) = Qx(ξ), where Qx is a smooth x-family of real quadratic
forms in ξ, such that Qx(0, ξb) is positive (or negative) definite on Rnb . This is the case of the wave
operator or Schrödinger type operators when xa is the time variable. Then, Assumption (2.2) holds
(uniformly with respect to x ∈ Ω) again according to the positive definiteness of Qx(0, ξb). It is indeed
empty since p2(x, (0, ξb)) does not vanish for ξb 6= 0. Moreover, we have {p2, φ}(x, ξ) = 2Q̃x(ξ,∇φ),
where Q̃x is the polar form of Qx, and

{p2, φ}(x, ξ + i∇φ) = 2Q̃x(ξ,∇φ) + 2iQx(∇φ).

As a consequence (Q being real), Im{p2, φ}(x, ξ + i∇φ) = 2Qx(∇φ) so that (2.3) is also empty (and
thus satisfied) for any noncharacteristic hypersurface.

In conclusion, for real quadratic forms which are positive (or negative) definite on Rnb at ξa = 0,
any noncharacteristic hypersurface is strongly pseudoconvex in the sense of Definition 2.1. In the
case na = 1, this includes the following operators of particular interest:

• P = D2
xa −

∑n−1
i,j=1 αij(x)D

xjb
Dxib

+ `.o.t. (wave operator) with p = ξ2
a −

∑n−1
i,j=1 αij(x)ξjbξ

i
b,

• P = Dxa −
∑n−1

i,j=1 αij(x)D
xjb
Dxib

+ `.o.t. (Schrödinger operator) with p = −
∑n−1

i,j=1 αij(x)ξjbξ
i
b,

where the quadratic form with coefficients αi,j is positive definite.

We are now prepared to formulate our main result in the general framework. We first describe
the geometric context and then state the Theorem.

Geometric setting: (see Figure 1) We first fix two splittings of Rn as Rn = Rn−1
x′ × Rxn and

Rn = Rnaxa × Rnbxb , possibly in two different bases. We let D be a bounded open subset of Rn−1 with
smooth boundary and G = G(x′, ε) a C2 function defined in a neighborhood of D × [0, 1], such that
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• For all ε ∈ (0, 1], we have {x′ ∈ Rn−1, G(x′, ε) ≥ 0} = D;

• for all x′ ∈ D, the function ε 7→ G(x′, ε) is strictly increasing;

• for all ε ∈ (0, 1], we have {x′ ∈ Rn−1, G(x′, ε) = 0} = ∂D.

We set G(x′, 0) = 0, S0 = D × {0} and, for ε ∈ (0, 1],

Sε = {(x′, xn) ∈ Rn, xn ≥ 0 and G(x′, ε) = xn}
= (D × R) ∩ {(x′, xn) ∈ Rn, G(x′, ε) = xn};

K = {x ∈ Rn, 0 ≤ xn ≤ G(x′, 1)}.

K

xa

xb

x′

xn

S1

S0

Ω

ω̃

Figure 1: Geometric setting of Theorem 2.5
〈f:geom-setting〉

〈thmsemiglobal〉Theorem 2.5. In the above geometric setting, we moreover let Ω be a bounded open neighborhood of
K, and P be a differential operator of order m, satisfying Assumption 2.1 on Ω in {ξa = 0}.

Assume also that, for any ε ∈ [0, 1 + η), the oriented surfaces Sε = {φε = 0} with φε(x′, xn) :=
G(x′, ε)−xn are strictly pseudoconvex in {ξa = 0} for P on the whole Sε, in the sense of Definition 2.1.

Then, for any open neighborhood ω̃ ⊂ Ω of S0, there exists a neighborhood U of K, and constants
κ,C, µ0 > 0 such that for all µ ≥ µ0 and u ∈ C∞0 (Rn), we have

‖u‖L2(U) ≤ Ce
κµ
(
‖u‖Hm−1

b (ω̃) + ‖Pu‖L2(Ω)

)
+

C

µm−1
‖u‖Hm−1(Ω) ,

where we have denoted ‖u‖Hm−1
b (ω̃) =

∑
|β|≤m−1

∥∥∥Dβ
b u
∥∥∥
L2(ω̃)

.

Note that in the framework of the Hörmander theorem (na = 0), we can obtain the stronger
polynomial-type dependence :

‖u‖Hm−1(U) ≤ C
(
‖u‖Hm−1(ω̃) + ‖Pu‖L2(Ω)

)δ
‖u‖1−δHm−1(Ω)

for some δ ∈ (0, 1). This result was more or less already known even if not written explicitely in this
geometric framework for general operators (see [Bah87, Rob95, LR95, LRL12]).

The formulation of the above result using a foliation by hypersurfaces is inspired by that of [Joh49,
Theorem p. 224] in the context of the Holmgren-John theorem. Most of the global Theorems for the
wave equations and hypoelliptic equations presented below are proved in the setting of Theorem 2.5,
after some suitable change of coordinates.
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2.2 Idea of the proof

As already mentioned, unique continuation theorems (e.g. the Hörmander theorem) are often proved
with Carleman estimates, that is, weighted L2 estimates of the form∥∥∥eτψu∥∥∥

L2
≤ C

∥∥∥eτψPu∥∥∥
L2
, (2.4) e:Carleman-de-base

where τ is a large parameter and ψ a weight function having levelsets appropriately situated with
respect to the surface S. Such inequalities are already quantitative, and hence furnish a good starting
point towards local quantitative unique continuation results. This strategy has already been followed
in [Rob95, LR95] in the case of elliptic operators, see also [Bah87]. Starting from the Carleman
inequality (2.4), the idea is to apply the estimates to some function χ(x)u where χ is a cutoff function
according to the levelsets of ψ. The exponential weight eτψ(x) in (2.4) (giving an exponentially
large/small strength to the large/small values of ψ) naturally leads to inequalities of the form

‖u‖V2
≤ eκµ

(
‖u‖V1

+ ‖Pu‖V3

)
+ e−κµ ‖u‖V3

, (2.5) estimRobclass

uniformly for µ ≥ µ0 and for small open sets V1 ⊂ V2 ⊂ V3 depending on the local geometry (namely,
on the cutoff function χ, the support of [P, χ], and hence on the levelsets of ψ). Optimizing in µ
(see [Rob95] or [LRL12, Lemma 5.2]) this can then be written as an interpolation estimate

‖u‖V2
≤
(
‖u‖V1

+ ‖Pu‖V3

)δ ‖u‖1−δV3
,

for some δ ∈ (0, 1). The interest of these interpolation estimates (or directly of estimates like (2.5))
is that they can be easily iterated, leading to some global ones. This procedure ends up with a
Hölder type dependence. We refer for instance to the survey article [LRL12] for a description of
these estimates in the elliptic case, with application to spectral estimates and control results for the
heat equation.

Yet, in the context of the unique continuation theorem for partially analytic operators, the Car-
leman estimates proved in [Tat95, RZ98, Hör97, Tat99b] contain a “microlocal” weight of the form
e−

ε
2τ
|Da|2eτψ(x) instead of eτψ(x). Whereas the usual eτψ is still here to give strength to the levelsets

of ψ, the additional term e−
ε

2τ
|Da|2 is now aimed at localizing in the low frequencies in the variable

xa. In this context, the proof of unique continuation proceeds with a (qualitative) complex analytic
argument (maximum principle). Here, this additional argument in the proof of unique continuation
also requires to be quantified. As in [Rob95], this procedure naturally leads to local logarithmic
(instead of Hölder) stability estimates. The main issue one then has to face when quantifying unique
continuation is that such estimate cannot be iterated (or would yield dependence estimates of the
type (1.2) with a function ϕ being a composition of as many “log” as steps needed in the iteration).

One idea to overcome this difficulty, proposed by Tataru in his unpublished lecture notes [Tat99a],
was to propagate some low frequency estimates of the form{

‖u‖Hm−1 = 1∥∥∥m(Daµ )σ( xR)Pu
∥∥∥
L2
≤ e−µ

α =⇒
∥∥∥∥m(Da

τ

)
σ(
x

r
)u

∥∥∥∥
Hm−1

≤ e−τ , ∀τ < c µα

for functions u supported in {φ < φ(x0)}, for some appropriate compactly supported cutoff func-
tions σ and m(ξ) in the Gevrey class 1/α, α < 1, and for some r < R. Such estimates could be
propagated and would lead to some global stability estimates of the form (1.2) with ϕε(a, b, c) =

c
(

log(1 + c
a+b)

)−(1−ε)
.
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The loss 1−ε in the power of log is due to the use of functions of class Gevrey α with compact sup-
port. The optimal case α = 1 would correspond to analytic functions. Yet, analytic functions cannot
have compact support, which is a key ingredient in the usual application of Carleman estimates.

Let us now explain our strategy to solve this problem.

2.2.1 Obtaining local information at low frequency

Part of the proof of the present paper is inspired by this idea of propagating only low frequency
(in the analytic variable xa) estimates. However, we replace the Gevrey cutoff functions by some
analytic “almost cutoff” functions of the form

χλ := e−
|Da|2
λ χ, (2.6) e:intro-cut-anal

where χ is smooth with the expected compact support, being convolved/regularized with a heat
kernel in the variable xa, hence analytic in this variable. It turns out that the right choice of the
regularization parameter λ is λ = Cµ where µ is the frequency where we want to measure our
solution. That such functions are not compactly supported makes all commutator estimates (e.g.
when applying the Carleman estimate to functions like χλu instead of χu, as explained above)
much more intricate and requires a careful study of the dependence with respect the regularisation
parameter λ, the local frequency µ and the parameter τ in the Carleman inequality. All estimates
are carried out up to an exponentially small remainder (in terms of these parameters).

Following this procedure, the local estimate we prove (which we are in addition able to propa-
gate) is a generalization of (2.5), but truncated at low frequencies in the analytic variable xa. In a
neighborhood of a point x0, it is of the form∥∥∥∥mµ

(
Da

βµ

)
χ2,µu

∥∥∥∥
Hm−1

≤ Ceκµ
(∥∥∥∥mµ

(
Da

µ

)
χ1,µu

∥∥∥∥
Hm−1

+ ‖Pu‖L2(B(x0,R))

)
+ Ce−κ

′µ ‖u‖Hm−1 ,(2.7) estimpropintro

uniformly for µ ≥ µ0. Here, χ1 and χ2 are some cutoff functions in the physical space that localize
respectively to the place where the information is taken (locally in {φ > 0}) and to where it is
propagated (a small neighborhood of x0). These functions respectively correspond to 1V1 and 1V2

in (2.5). The Fourier multipliers mµ cuts off (analytically) the ξa frequencies (m has to be though of
as 1BRna (0,1)). All these cutoff functions are used only with their analytic regularization according
to (2.6) with λ = µ. They never localize exactly. Using such regularized cutoff functions and Fourier
multipliers follows the spirit of analytic semiclassical analysis. However, we do not make use of that
theory and rather construct by hand the appropriate mollifiers, making the proof selfcontained in
this respect.

The proof of estimates like (2.7) mainly proceeds in three steps.
First, as in the usual proofs of unique continuation results, starting from the hypersurface {φ = 0},

one needs to construct a weight function ψ with both properties:

• to satisfy the assumptions required to apply the Carleman estimate (ψ should be a strictly
pseudoconvex function);

• to have level sets appropriately located with respect to those of φ (so that propagating unique-
ness across levelsets of ψ still corresponds to propagating zero locally from φ > 0 to φ < 0).

This corresponds to the so called “convexification process”, see [Hör94, Chapter XXVIII].
Second, we apply as a black box the Carleman estimates of [Tat95, RZ98, Hör97, Tat99b] (or

some similar ones that we prove in the presence of boundary) to χu, where χ is a particular cutoff
function (localizing near the point of interest, and according to levelsets of ψ), containing both
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rough cutoffs and mollified ones. We then need to estimate all terms arising from the commutator
e−

ε
2τ
|Da|2eτψ[P, χ], that are either well localized or yield an exponentially small contribution.
Finally, we need to transfer the information given by the Carleman inequality to some estimate

like (2.7) on the low frequencies of the function. This is done through a complex analysis argument,
the Carleman parameter τ playing the role of complex variable, as in [Tat95]. If ζ is the complex
variable, the Carleman estimates corresponds to an estimate on ζ = iτ ∈ iR+. Combined with a
priori estimates, a Phragmén-Lindelöf type theorem allows to extend this estimate to part of the
real domain, where it corresponds to estimating

∥∥∥m(Daβµ)χu∥∥∥. To obtain estimates that are uniform
with respect to the frequency (and regularization) parameter µ, we also need, following [Tat99a], to
use a scaling argument, replacing τ by τ/µ.

2.2.2 Propagating local informations to global ones

Once the local estimates are proved, we need to iterate them to obtain a global estimate. At first, we
define some tools that will allow later in an abstract way to propagate easily our local estimate (2.7).
Estimate (2.7) says essentially that, for a solution of Pu = 0, information can be transfered from
the support of χ1 to the support of χ2. We formalize that with the notion of zone of dependence.
Roughly speaking, we say that on open set O2 depends on O1 if (2.7) holds for every χ1 equals to
1 on O1 and any χ2 supported in O2. This part allows to formulate the proof of Theorem 2.5 as a
complete geometric one. Even if quite different in definition, it is close in spirit to the interpolation
theory developped in Lebeau [Leb92] to propagate globally the local information obtained by the
Cauchy-Kowalevski theorem. Moreover, it should adapt to some more general kinds of foliations.
Note that at each step of this propagation argument, we have a loss in the range of frequency: from
an information on frequencies ≤ µ, we obtain from (2.7) an information on frequencies ≤ βµ, with
β small. This is overcome by the fact that we only have a finite number of steps in this iterative
procedure.

Once this propagation result is done, we are left with a low frequency information of the solution
u. Since we have no information about the high frequency part, the only thing to do is to use some
trivial bound of the type ∥∥∥∥(1−m

(
Da

µ

))
u

∥∥∥∥
L2

≤ C

µm−1
‖u‖m−1 .

This is actually much worse than the negative exponential that we already had. But it turns out to
be the best we can do without any more information. It gives the final estimate of Theorem 2.5.

3 Applications to the observability and control of the wave equation
〈sect:applicationwave〉3.1 Logarithmic stability without geometric assumption

〈s:logwave〉 In this section, we describe the motivating applications of the results presented in Section 2, i.e. to
the wave equation with Dirichlet boundary conditions. In this very particular setting, we are also
able to tackle the boundary value problem.

When dealing with a manifold with boundaryM, we will always assume that the manifold, the
boundary and the metric are smooth. Moreover, Int(M) will denote the set of points in M which
have a neighborhood homeomorphic to an open subset of Rn. The boundary ofM, denoted by ∂M,
is the complement of Int(M) inM. All manifolds considered will be assumed to be connected. For
a subset ω ⊂ M, we will define L(M, ω) := supx∈M dist(x, ω) which is finite since M is compact
and connected.
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〈thmobserwaveintro〉
Theorem 3.1 (Quantitative unique continuation for waves). LetM be a compact Riemannian man-
ifold with (or without) boundary. For any nonempty open subset ω of M and any T > 2L(M, ω),
there exist C, κ, µ0 > 0 such that for any (u0, u1) ∈ H1

0 (M)× L2(M) and associated solution u of
∂2
t u−∆gu = 0 in (0, T )× Int(M),

u|∂M = 0 in (0, T )× ∂M,

(u, ∂tu)|t=0 = (u0, u1) in Int(M),
(3.1) e:free-wave

we have, for any µ ≥ µ0,

‖(u0, u1)‖L2×H−1 ≤ Ceκµ ‖u‖L2((0,T );H1(ω)) +
1

µ
‖(u0, u1)‖H1×L2 . (3.2) eqthmwaveint

If ∂M 6= ∅ and Γ is a non empty open subset of ∂M, for any T > 2L(M,Γ), there exist C, κ, µ0 > 0
such that for any (u0, u1) ∈ H1

0 (M)× L2(M) and associated solution u of (3.1), we have

‖(u0, u1)‖L2×H−1 ≤ Ceκµ ‖∂νu‖L2((0,T )×Γ) +
1

µ
‖(u0, u1)‖H1×L2 .

Theorem 3.1 remains valid if ∆g is perturbated by lower order terms that are analytic in time
but may have low regularity in space. In the special case where they are time independent, the
constants in the previous estimates may be chosen uniformly with respect to these perturbations (in
the appropiate norms). Note that in (3.2), the L2(0, T ;H1(ω)) norm can actually be replaced by
a L2(0, T ;L2(ω)) norm according to [LL17, Section 5.3]. This result can also be formulated in an
equivalent way, that looks more like a stability estimate. We only give the boundary observation
case, the internal observation case being similar.

〈corlogstab〉Corollary 3.2. Assume ∂M 6= ∅ and Γ is a non empty open subset of ∂M. Then, for any T >
2L(M,Γ), there exists C > 0 such that for any (u0, u1) ∈ H1

0 (M)×L2(M) \ {(0, 0)} and associated
solution u of (3.1), we have

‖(u0, u1)‖L2×H−1 ≤ C
‖(u0, u1)‖H1×L2

log

(
1 +

‖(u0,u1)‖H1×L2

‖∂νu‖L2(]0,T [×Γ)

) ,
‖(u0, u1)‖H1×L2 ≤ CeCΛ ‖∂νu‖L2((0,T )×Γ) , with Λ =

‖(u0, u1)‖H1×L2

‖(u0, u1)‖L2×H−1

.

In the first estimate, the function on the right hand-side is to be understood as being
(
log(1 + 1

x)
)−1

for x > 0 and 0 for x = 0.
In the second estimate, Λ has to be considered as the typical frequency of the initial data. So,

the estimate states a cost of observability of the order of an exponential of the typical frequency. As
an illustration, taking for initial data (u0, u1) = (ψλ, 0) with ψλ a normalized eigenfunction of the
Laplace-Dirichlet operator onM, associated to the eigenvalue λ, one has Λ ∼

√
λ and Corollary 3.2

recovers the tunneling estimate ‖∂νψλ‖L2(Γ) ≥ C−1e−C
√
λ (see [LR95]).

The minimal time 2L(M, ω) or 2L(M,Γ) in these two theorems is optimal (even for qualitative
unique continuation) in view of the finite speed of propagation for the wave equation. Moreover, as
proved by Lebeau [Leb92] in the analytic context, this exponential dependence is sharp in general.
More precisely, the form of the estimates of Theorem 3.1 and Corollary 3.2 is optimal as soon as there
is a ray of geometric optics (travelling at speed one) which does not intersect the region Γ (resp. ω
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in the internal observation case) in the time interval [0, T ] (and only has transverse intersection with
the boundary). See [Leb92, Section 2, pages 5 and 6].

The proof of Theorem 3.1 (and the variant Theorem 3.4) relies on several applications of our main
quantitative unique continuation Theorem 2.5 with some well chosen foliation of non characteristic
hypersurfaces.

As a consequence of Theorem 3.1, we obtain the following approximate controllability results,
with (optimal in general) estimate on the cost. For the sake of brevity, we only state the case of a
boundary control.

Theorem 3.3 (Cost of boundary approximate control). For any T > 2L(M,Γ), there exist C, c > 0
such that for any ε > 0 and any (u0, u1) ∈ H1

0 (M)× L2(M), there exists g ∈ L2((0, T )× Γ) with

‖g‖L2((0,T )×Γ) ≤ Ce
c
ε ‖(u0, u1)‖H1

0 (M)×L2(M) ,

such that the solution of
(∂2
t −∆)u = 0 in (0, T )× Int(M),
u|∂M = 1Γg in (0, T )× ∂M,

(u, ∂tu)|t=0 = (u0, u1), in Int(M),

satisfies
∥∥(u, ∂tu)|t=T

∥∥
L2(M)×H−1(M)

≤ ε ‖(u0, u1)‖H1
0 (M)×L2(M).

That this result is a consequence of Theorem 3.1 is proved in [Rob95, Proof of Theorem 2,
Section 3]. The solution of the nonhomogeneous boundary value problem is defined in the sense of
transposition, see [Lio88].

The estimates of Theorem 3.1 and Corollary 3.2 can actually be stated more locally, and inter-
preted in a different physical context (motivated by [RT73]). The following Theorem shows that they
are independent on the global geometry, and, in particular, do not require thatM is compact if one
only wants to recover data supported in a given compact set.

〈thmwaveshadow〉Theorem 3.4 (Penetration into shadow for waves). LetM be a complete Riemannian manifold with
(possibly empty) compact boundary ∂M. Let ω0 be an open set of M and ω1 a compact set of M.
Then, for any

T > L(ω1, ω0) := sup
x∈ω1

dist(x, ω0),

there exist C > 0 such that for any (u0, u1) ∈ H1
0 (M) × L2(M) \ {(0, 0)} supported in ω1 and

associated solution u of (3.1) (taken on the time interval (−T, T ) instead of (0, T )), we have,

‖(u0, u1)‖H1×L2 ≤ CeCΛ ‖u‖L2((−T,T );H1(ω0)) , with Λ =
‖(u0, u1)‖H1×L2

‖(u0, u1)‖L2×H−1

.

Roughly speaking, the theorem describes the following physical situation: take a noise creating
an initial data compactly supported in ω1, and take an observer located in a zone ω0. Then, by
observing during the time interval (−L(ω1, ω0)− ε,L(ω1, ω0) + ε), ε > 0, the observer will be able to
recover at least a proportion of the initial energy of the order e−CΛ where Λ is the typical frequency
of the data. This result is particularly interesting if the zone ω1 is in the “shadow” of an obstacle
when seen from ω0, that is if no rays of geometric optic starting from ω1 ever reach ω0. In that case,
the classical geometric optic approximation would predict that the observer does not receive any
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information. We refer to [RT73] for a qualitative result in infinite time; here, Theorem 3.4 provides
a quantitative result in finite time, which is optimal with respect to the time and the form of the
estimate if ω1 is indeed in the “shadow” region when observed from ω0. More precisely, [Leb92,
Section 2] implies that the eCΛ is optimal as soon as there is a ray of geometric optics (having only
transverse intersections with ∂M) starting from the interior of ω1 at time zero and not intersecting
ω0 during the time interval [−T, T ]. Such an estimate in the shadow region is reminiscent to the
tunneling effect for waves and in semiclassical analysis.

We also obtain related results for the Schrödinger equation, see [LL19, Theorem 1.5]. The latter
formulate in a similar way but hold in arbitrary small time.

Idea of proof Theorem 3.1 is proved using several applications of Theorem 2.5. According to
Remark 2.4, it is applicable under the (quite weak) assumption that the hypersurfaces are non
characteristic. Then, for each point x ∈ M, we construct a path that links x to a point x1 ∈ ω
of length less than T > L(M, ω). Then, it is possible to construct a foliation of non characteristic
hypersurfaces along which the application of Theorem 2.5 is possible. The construction of such
hypersurfaces was inspired by that of [Leb92]. This allows then to transfer the information from a
neighborhood of x1 included in ω to a neighborhood of x. Since we can do that for any x ∈ M, a
compactness argument gives a global estimate quite close to the expected one.

‖u‖L2(]−ε,ε[×M) ≤ Ce
κµ ‖u‖L2(]−T,T [×ω) +

C

µ
‖u‖H1(]−T,T [×M) .

Energy estimates finally allow to estimate by below and above the global space time norms with
related norms of the initial data.

Note also that in the case of manifold with boundary, we needed to write new Carleman estimates
with boundary for operators of order two with real valued principal symbol.

3.2 A constructive proof of the Bardos-Lebeau-Rauch theorem
〈s:contruct〉Another application of Theorem 3.1, given in [LL16] and which was at the origin of the present work,

is concerned with the exact observability/controllability problem. This property was completely
characterized (with optimal geometric conditions) in the seminal paper [BLR92].

The purpose is to prove that if (ω, T ) satisfies the Geometric Control Condition (that is, any ray
of geometric optics travelling in (0, T )×M with unit speed intersects (0, T )×ω), then, any solution
of (3.1) satisfies the observability estimate

‖(u0, u1)‖H1×L2 ≤ C0 ‖u‖L2(0,T ;H1(ω)) . (3.3) observwave

The proof in [BLR92] is non constructive, with the drawback that it does not give any information
about the constant C0 involved. The latter is of primary importance in applications since it may be
interpreted as the cost of exact controls for the controlled wave equation (via the Hilbert Uniqueness
Method, see [Lio88]). It is made in two steps, both of them being non constructive in the previously
known literature:

〈stephigh〉
1. high frequency part: proof of a weaker estimate

‖(u0, u1)‖H1×L2 ≤ C ‖u‖L2((0,T );H1(ω)) + C ‖(u0, u1)‖L2×H−1 (3.4) observwaveweak

〈steplow〉 2. low frequency part: getting rid of the lower order term by reducing to a unique continuation
type argument.
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Step 1 concerning high frequency is proved with microlocal analysis and is therefore always
performed “up to lower order terms”, which explains the presence of the remainder term in L2×H−1-
norm. It uses techniques like propagation of regularity, microlocal defect measures or Egorov theorem
that are out of the scope of this review article. We implement in [LL16] a constructive proof inspired
by [DL09] and relying on the Egorov Theorem, in case ∂M = ∅.

Step 2 was usually performed in the literature with an argument by contradiction combined with
a unique continuation theorem. Theorem 3.1 allows to give a completely constructive and direct
proof of this step as follows. Combining the high frequency estimate (3.4) with our quantitative
unique continuation result (3.2) gives directly uniformly for µ ≥ µ0,

‖(u0, u1)‖H1×L2 ≤ C ‖u‖L2((0,T );H1(ω)) + Ceκµ ‖u‖L2((0,T );H1(ω)) +
1

µ
‖(u0, u1)‖H1×L2 .

It implies (3.3) when µ is taken large enough so that to absorb the last term of the right hand side.
This methods allows us to obtain estimates of the observability constant (and therefore the cost

of the control) in two regimes. We obtain

• the dependence of the control cost (the constant C0 in (3.3)) with respect to the the addition
of a potential V (x) in the wave operator

• the dependence of control cost when the the observation time T approaches the critical time of
the Geometric Control Condition.

We refer to [LL16] for precise statements.

4 Applications to the observability and control of hypoelliptic equa-
tions

〈secthypo〉The general result stated in Theorem 2.5 actually contains a quantitative version of the classi-
cal Holmgren-John theorem, see Remark 2.3. A classical result of Bony [Bon69], relying on the
Holmgren-John Theorem, proves unique continuation for solutions to Lu = V u where L is a hy-
poelliptic operators with analytic coefficients (and V and analytic potential). In this Section, we
propose a quantitative version of this unique continuation result, together with generalizations to
eigenfunctions, solutions to wave and heat equations associated to such operators L. Most of the
results are taken from [LL17], and a few of them from [LL20b].

In Section 4.1, we first present generalities about hypoelliptic operators and their analysis.
In Section 4.2, we detail our main results concerning eigenfunctions, wave-type operators, heat-

type operators and damped equations.
In Section 4.3 we give some ideas of the proofs. The main technical part is the proof for the

sub-Riemannian wave operator in Section 4.3.1, where we apply our quantitative version of the
Holmgren-John theorem (Theorem 2.5) combined with hypoelliptic estimates. Sections 4.3.2, 4.3.3
and 4.3.4 describe the abstract functional analytic framework to deduce the results from the wave
equation to eigenfunctions, heat-like and damped equations.

4.1 Generalities about sub-Riemannian geometry and analysis in this context
〈subsectgeneralhypo〉LetM be a smooth compact connected manifold without boundary. We denote by X∞ the space of

smooth vector fields onM (with real coefficients), which we identify to derivations onM. We assume
M is endowed with a smooth positive density measure ds, so that we may integrate functions on
M. We may then define the space L2(M) = L2(M, ds) of square integrable functions with respect
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to this measure. For X ∈ X∞, we define by X∗ its formal dual operator for the duality of L2(M),
that is, ∫

M
X∗(u)(x)v(x)ds(x) =

∫
M
u(x)X(v)(x)ds(x), for any u, v ∈ C∞(M).

Given m ∈ N and m vector fields. X1, · · · , Xm ∈ X∞, we are interested in properties of the
following (non-positive) second order operator, associated to the Xi’s (namely the so-called type I
Hörmander operator).

L =

m∑
i=1

X∗iXi. (4.1) def:L

Note that this operator is formally symmetric nonnegative, when defined on functions in C∞(M),
since we have

(Lu, u)L2(M) =
m∑
i=1

‖Xiu‖2L2(M) .

Both from the geometric control and the operator theoretic points of view, it is in this context
natural to consider iterated Lie brackets of the vector fields Xi. We refer for instance to [ABB20].

Definition 4.1. For any family F of smooth vector fields onM and ` ∈ N∗, we define the subspaces
Lie`(F) of X∞ by iteration as follows:

• Lie1(F) is the space spanned by F in X∞,

• Lie`+1(F) = span
(
Lie`(F) ∪

{
[X,Y ];X ∈ F , Y ∈ Lie`(F)

})
.

For any point x ∈ M, ` ∈ N∗, we denote by Lie`(F)(x) the set of all tangent vectors X(x) with
X ∈ Lie`(F).

We shall always assume that the family (Xi) satisfies the Chow-Rashevski-Hörmander condition
(or is “bracket generating”).

〈assumLiek〉Assumption 4.1. There exists ` ≥ 1 so that for any x ∈M, Lie`(X1, · · · , Xm)(x) = TxM. Denote
then by k ∈ N∗ the minimal ` for which this holds.

The integer k will sometimes be refered to as the hypoellipticity index of L. Assumption 4.1
is central in control theory and operator theory, for it characterizes both the controllability of the
controlled ODE driven by the vector fields (Xi) and the Hypoellipticity of the operator L. Let us now
recall these two seminal results, namely the Chow-Rashevski theorem and the Hörmander theorem,
which we both use in the sequel.

〈t:chow〉Theorem 4.2 (Chow-Rashevski). Under Assumption 4.1, the following statement holds: for any
x0, x1 ∈M, any T > 0, there exist ui ∈ L1(0, T ) for i ∈ {1, · · · ,m} such that the unique solution of

γ̇(t) =
m∑
i=1

ui(t)Xi(γ(t)), γ(0) = x0

satisfies γ(T ) = x1.

This theorem motivates the following definition.
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〈d:horizontal-path〉Definition 4.3 (Horizontal path). We say that an absolutely continuous function γ : [0, T ]→M is
a horizontal path if there exist ui ∈ L1(0, T ;R) for i = 1, · · · ,m such that for almost every t ∈ [0, T ],
we have γ̇(t) =

∑m
i=1 ui(t)Xi(γ(t)).

Such a trajectory is in particular absolutely continuous and almost everywhere tangent to the
so-called horizontal distribution span(X1, · · · , Xm). The second key role played by Assumption 4.1
in analysis is summarized in the following result.

〈thmhypoestim〉Theorem 4.4 (Hörmander [Hör67], Rothschild-Stein [RS76]). Under Assumption 4.1, the operator
L in (4.1) is hypoelliptic, that is, for all u ∈ D′(M) and x0 ∈M, if Lu ∈ C∞ near x0 then u ∈ C∞
near x0.

Moreover, it is subelliptic of order 1
k , that is, the following estimates hold: there is C > 0 such

that for any u ∈ C∞(M), we have

‖u‖2
H

1
k (M)

≤ C
m∑
i=1

‖Xiu‖2L2(M) + C ‖u‖2L2(M) , (4.2) estimhypo

‖u‖2
H

2
k (M)

≤ C ‖Lu‖2L2(M) + C ‖u‖2L2(M) . (4.3) estimhypo3

The hypoellipticity was shown by Hörmander [Hör67], who also provided with a subelliptic es-
timate with loss. The optimal subelliptic estimate (4.2) with gain of 1/k derivatives is proved
by [RS76].

Since the operator L is symmetric non-negative, the hypoellipticity of L+ 1 and the compactness
of M directly imply that L is essentially selfadjoint (see e.g. Reed-Simon [RS80, Theorem X.26]).
Hence, it extends uniquely as a selfadjoint operator (its Friedrich extension)

L : D(L) ⊂ L2(M)→ L2(M),

with, according to (4.3), H2(M) ⊂ D(L) ⊂ H
2
k (M) (still under Assumption 4.1). The operator L

is hence selfadjoint on L2(M), with compact resolvent: it admits a Hilbert basis of eigenfunctions
(ϕj)j∈N, associated with the real eigenvalues (λj)j∈N, sorted increasingly, that is

Lϕi = λiϕi, (ϕi, ϕj)L2(M) = δij , 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj → +∞.

Note that a bootstrap argument in (4.3) shows that ϕj ∈ C∞(M). Also, the spectral decomposition
allows to define solutions of the hypoelliptic wave and heat equations (respectively (∂2

t + L)v = f
and (∂t + L)u = f), which we shall consider in this paper.

In addition to Assumption 4.1, we will also assume in the main part of the article that everything
is real-analytic.

〈hypoanal〉Assumption 4.2. The manifoldM, the density ds, and the vector fields Xi are real-analytic.

In particular, it implies that the operator L has analytic coefficients in any analytic coordinate
set compatible with the manifoldM.

This assumption can be lowered (and we give some examples in [LL17]), but seems hard to avoid
totally, due to some counterexamples to unique continuation [Bah86].

Finally, let us mention that hypoelliptic operators appear naturally in several physical and mathe-
matical contexts such as stochastic processes and the theory of functions of several complex variables.
We refer to [Bra14, Chapter 2] for a presentation of some of these applications. Classical examples of
operators L encompassed by this frameworks is also provided in [LL17, Section 1.1]: elliptic opertors
(k = 1, Grushin operators (k ∈ N∗), Heisenberg (k = 2), Lie Groups...
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4.2 Main results for hypoelliptic equations
〈s:results〉Our main results under Assumptions 4.1 and 4.2 are of four different types:

1. Tunneling estimates for eigenfunctions ϕj of L (Section 4.2.1);

2. Quantitative approximate observability (and associated controllability) of the hypoelliptic wave
equation (∂2

t + L)v = 0 from a subset ω ⊂M (Section 4.2.2);

3. Quantitative approximate observability (and associated controllability) of the hypoelliptic heat
equation (∂t + L)u = 0 from ω (Section 4.2.3).

4. Decay for damped hypoelliptic wave equations (∂2
t + L + 1ω∂t)v = 0, Schrödinger (i∂t + L +

i1ω∂t)v = 0 or damped plates (∂2
t + L2 + 1ω∂t)v = 0 (Section 4.2.4)

All of these results depend explicitely on the hypoellipticity index k of the operator considered,
i.e. the minimal number of iterated brackets necessary to span the whole tangent space, given by
Assumption 4.1. We finally prove with an example that the results are optimal in general.

4.2.1 Eigenfunction tunneling
〈s:tunneling〉Our first result is the following.

〈t:spec-ineq〉Theorem 4.5. Let ω be a nonempty open subset of M. Then, there is C, c > 0 such that for all
(λ, ϕ) ∈ R+ × L2(M) satisfying Lϕ = λϕ, we have

‖ϕ‖L2(M) ≤ Cecλ
k/2‖ϕ‖L2(ω). (4.4) e:eigenfunction-tunneling

This estimate may be read as ‖ϕ‖L2(ω) ≥ 1
C e
−cλk/2 for all normalized eigenfunctions ϕ, and hence

quantizes the possible vanishing rate of eigenfunctions on any subdomain ω.
In the case k = 1, i.e. when L is an elliptic operator, the analyticity assumption 4.2 is not needed

and the result follows from the Donnelly-Fefferman paper [DF88]. In this situation, it also holds
on a manifold with boundary for Dirichlet eigenfunctions [DF90, LR95] (see also [LR97] for other
boundary conditions).

We shall also deduce from estimates of [BCG14, Section 2.3] that the tunneling estimate (4.4) is
optimal in the following particular setting.

〈ex:Grushin++〉Example 4.6 (Higher order Grushin operators on the rectangle). Consider the manifold with bound-
ary M = [−1, 1] × [0, 1] or M = [−1, 1] × (R/Z), endowed with the Lebesgue measure dx, and for
γ > 0, define the operator Lγ = −

(
∂2
x1

+ x2γ
1 ∂2

x2

)
with Dirichlet conditions on ∂M. If γ ∈ N, then

the operator Lγ is hypoelliptic of order k = γ + 1 (i.e. Assumption 4.1 is fulfilled with k = γ + 1).

〈Prop:BCG〉Proposition 4.7. Consider, for γ > 0 the situation of Example 4.6. Assume that ω ∩{x1 = 0} = ∅.
Then there exists C, c0 > 0 and a sequence (λj , ϕj) of eigenvalues and associated eigenfunctions of
Lγ with λj → +∞ such that

‖ϕj‖L2(ω) ≤ Ce−c0λ
γ+1

2
j ‖ϕj‖L2(M).

We recall that if γ ∈ N∗, then Lγ is hypoelliptic of order k = γ+ 1, so that Proposition 4.7 shows
that, in general, one cannot expect a better estimate than that of Theorem 4.5.
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Note that in the analytic context, the qualitative uniqueness:(
Lϕ = λϕ onM, ϕ = 0 on ω

)
=⇒ ϕ ≡ 0 onM,

was proved by Bony [Bon69], as a consequence of the Holmgren-John theorem. Removing the ana-
lyticity assumption, even for such a qualitative unique continuation property, remains a very subtle
issue (see [Bah86]).

4.2.2 Quantitative approximate observability of the hypoelliptic wave equation
〈s:approx-control-wave〉We will need to define the Sobolev spaces related to the operators L.

HsL = {u ∈ D′(M), (1 + L)
s
2u ∈ L2(M)}, s ∈ R,

and associated norms

‖u‖HsL =
∥∥∥(1 + L)

s
2u
∥∥∥
L2(M)

, s ∈ R.

Let us now also introduce basic notions of sub-Riemannian geometry needed to formulate our
main result. We refer to [ABB20] for a comprehensive introduction to sub-Riemannian geometry, as
well as for further developments. The so-called sub-Riemannian metric associated to the vector fields
(X1, · · · , Xm) is defined, for x ∈M and v ∈ TxM, by

g(x, v) :=

 inf

{
m∑
i=1

u2
i

∣∣∣∣∣(u1, · · · , um) ∈ Rm,

m∑
i=1

uiXi(x) = v

}
if v ∈ span(Xi(x), i ∈ {1, · · · ,m}),

+∞ if not.

This defines for any x ∈M a positive definite quadratic form g(x, ·) on the horizontal space

span(X1(x), · · · , Xm(x)).

Remark that, if finite, the infimum is in fact a minimum, and is realized by a vector (u1, · · · , um) ∈ Rm.
Given γ : [0, 1]→M an absolutely continuous path, we define its length accordingly by

length(γ) :=

∫ 1

0

√
g(γ(t), γ̇(t))dt.

The fact that this quantity is finite implies that γ̇(t) ∈ span
(
X1(γ(t)), · · · , Xm(γ(t))

)
for almost all

t ∈ [0, 1]. Note also that when the vectors are linearly independent, the infinimum is among one
unique u realizing the decomposition. Also, it is always finite if γ is a horizontal path (in the sense
of Definition 4.3).

Then, this allows to define a sub-Riemannian (also called Carnot-Carathéodory) distance onM
by

dL(x0, x1) = inf {length(γ) |γ horizontal path, γ(0) = x0, γ(1) = x1 } , x0, x1 ∈M.

The Chow-Rashevski Theorem 4.2 implies that, under Assumption 4.1, the distance dL is always
finite onM×M. We also define accordingly dL(x0, E) = infx1∈E dL(x0, x1) for a point x0 ∈M and
a subset E ⊂M.

With these definitions in hand, we may now state our main result, which concerns the quantitative
unique continuation (or quantitative approximate observability) for the Hypoelliptic wave equation{

∂2
t u+ Lu = 0

(u, ∂tu)|t=0 = (u0, u1).
(4.5) hypoelliptic-wave
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〈thmwavehypo〉Theorem 4.8. Let L as above satisfying Assumptions 4.1 and 4.2. Assume that ω is a non empty
open set ofM and let T > supx∈M dL(x, ω). Then, there exist κ,C, µ0 > 0 such that we have

‖(u0, u1)‖L2×H−1
L
≤ Ceκµk ‖u‖L2(]−T,T [×ω) +

1

µ
‖(u0, u1)‖H1

L×L2 (4.6) th-estimate-k

for all µ ≥ µ0, for any (u0, u1) ∈ H1
L × L2, and associated u solution of (4.5) on ]− T, T [.

As before, this estimate could be stated equivalently rewritten under one of the following two
formulations: for all (u0, u1) ∈ H1

L × L2 \ {(0, 0)}, one has

‖(u0, u1)‖H1
L×L2 ≤ CecΛ

k ‖u‖L2(]−T,T [×ω) , with Λ =
‖(u0, u1)‖H1

L×L2

‖(u0, u1)‖L2×H−1
L

, (4.7) th-estimate-Lambda

or

‖(u0, u1)‖L2×H−1
L
≤ C

‖(u0, u1)‖H1
L×L2

log

(
‖(u0,u1)‖H1

L×L
2

‖u‖L2(]−T,T [×ω)
+ 1

) 1
k

, (4.8) th-estimate-log

where, in the last expression, the function x 7→
(
log(1 + 1

x)
)− 1

k has to be extended by zero at x = 0+.
Again, in the particular situation of Example 4.6, the sequence of eigenfunctions of Proposition 4.7

shows that the exponent eκµk in (4.6) (resp. ecΛk in (4.7) and log−
1
k in (4.8)) cannot be improved in

general.
Moreover, the assumption on the time T > supx∈M dL(x, ω) is optimal. Indeed, the hypoelliptic

wave equation (4.5) also satisfies finite speed of propagation. The formulation of this result is similar
to the one associated to the classical wave equation, but with the Riemannian distance replaced by
the sub-Riemannian distance dL.

As a corollary of this result (see [Rob95] or [LL20a, Appendix]), we obtain the approximate
controllability of the Hypoelliptic wave equation, as well as an estimate of the cost of approximate
controls. Here, we only state approximate controllability to zero, which is equivalent to approximate
controllability to the whole state space H1

L × L2 on account to the reversibility of the equation.

Corollary 4.9 (Cost of approximate control). For any T > 2 supx∈M dL(x, ω), there exist C, c > 0
such that for any ε > 0 and any (u0, u1) ∈ H1

L × L2, there exists g ∈ L2((0, T )× ω) with

‖g‖L2((0,T )×ω) ≤ Ce
c

εk ‖(u0, u1)‖H1
L×L2 ,

such that the solution of {
(∂2
t + L)u = 1ωg in (0, T )×M,

(u, ∂tu)|t=0 = (u0, u1), inM,

satisfies ‖(u, ∂tu)|t=T ‖L2×H−1
L
≤ ε ‖(u0, u1)‖H1

L×L2.

To the authors’ knowledge, these results are the first ones concerning the approximate observ-
ability/controllability of hypoelliptic waves. They furnish not only the approximate observabil-
ity/controllability but also an (optimal in general) estimate of the cost. Moreover, in this context,
even qualitative unique continuation did not seem to be known.

18



In the elliptic case k = 1, these can be obtained by the theory developed by Lebeau in [Leb92]
(even on a manifold with boundary). However, in this (elliptic) case, the analyticity assumption can
be removed, as explained in Section 3.

Finally, we shall see that we prove actually a more general statement in which the term ‖(u0, u1)‖H1
L×L2

in the right-handside of Estimate (4.6) can be changed into ‖(u0, u1)‖HsL×Hs−1
L

for any s > 0, if chang-
ing the power of µ accordingly.

4.2.3 Quantitative approximate observability of the hypoelliptic heat equation
〈s:approx-control-heat〉We now turn to the study of observability properties for solutions of the hypoelliptic heat equation{

∂ty + Ly = 0, in (0, T )×M,
y(0) = y0 inM,

(4.9) abstractheat

from a subdomain ω ⊂ M. By duality, we are equivalently concerned here with different controlla-
bility properties of the following system{

(∂t + L)u = 1ωg, in (0, T )×M,
u(0) = u0, inM.

(4.10) e:control-heat

We provide with two main results, still under Assumptions 4.1 and 4.2:

1. For any k ∈ N∗, we prove an approximate observability result in any time T > 0 with a

frequency-depending constant of order CecΛk , where Λ =
‖y0‖H1

L
‖y0‖L2

, or, equivalently, approximate

controllability with cost e
c

εk . This is Theorem 4.10 below which is the analogues of Theorem 4.8
for parabolic equations.

2. Finally, in the very particular case k = 2 (including Grushin and Heisenberg operators), we
prove an approximate observability/controllability property to trajectories in large time with a
polynomial cost. This is Theorem 4.12 below and may be interpreted as a counterpart of the
exact controllability to trajectories for the heat equation [LR95, FI96] (case k = 1). There is
no similar result if k > 2, except if we restric to more regular (Gevrey-type) data.

The first result we obtain provides the cost of approximate observability of the whole state space
L2(M). There is no restriction for the hypoellipticity index k, but the (exponential) cost depends
on this parameter.

〈t:approx-control-heat〉Theorem 4.10. For all T > 0, there exist C, c > 0 such that for any y0 ∈ H1
L and associated solution

y of (4.9), we have

‖y0‖2L2 ≤ CecΛ
k

∫ T

0

∫
ω
|y(t, x)|2 dx dt, Λ =

‖y0‖H1
L

‖y0‖L2

, (4.11) e:approx-control-heat1

and, for any µ > 0,

‖y0‖2L2 ≤ Cecµ
k

∫ T

0

∫
ω
|y(t, x)|2 dx dt+

1

µ2
‖y0‖2H1

L
. (4.12) e:approx-control-heat2

Again, in the particular situation of Example 4.6, the sequence of eigenfunctions of Proposition 4.7
shows that the exponent eκµk in (4.12) (resp. ecΛk in (4.11)) cannot be improved in general.

This theorem generalizes the results of Fernandez-Cara-Zuazua and Phung [FCZ00, Phu04] in the
elliptic case k = 1. Yet, in this framework, the analyticity was not necessary (as in all above stated
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results in the case k = 1) and the setting can be relaxed (uniform dependence of the constants with
respect to lower order terms and to the time T , boundary value problems...).

As a corollary (see [LL20a, Appendix]), we obtain, given an initial state and a target state both
belonging to the space L2(M), and given a precision ε, the existence of a control function bringing
the initial state in an ε-neighborhood of the target (in appropriate topology). We obtain as well an
estimate of the cost of the control.

Corollary 4.11 (Cost of approximate control to the state space). For any T > 0, there exist C, c > 0
such that for any ε > 0 and any u0 ∈ L2(M), u1 ∈ L2(M), there exists g ∈ L2((0, T )× ω) with

‖g‖L2((0,T )×ω) ≤ Ce
c

εk
∥∥e−TLu0 − u1

∥∥
L2(M)

,

such that the solution of (4.10) issued from u0 satisfies

‖u(T )− u1‖H−1
L
≤ ε

∥∥e−TLu0 − u1

∥∥
L2(M)

.

In this statement, e−TLu0 stands for the solution at time T to Equation (4.10) with g = 0.

Our second result concerning the hypoelliptic heat equation is, as opposed to the previous one,
concerned with final state approximate observability (or equivalently an approximate controllability
to trajectories) with a polynomial cost, and is restricted to the case k = 2.

〈thm:parabolic〉Theorem 4.12. Assume that k = 2. There exist T0 so that for T > T0, there exists C > 0 and
β > 0 such that for all η > 0 and y0 ∈ L2(M) and associated solution y to (4.9),

‖y(T )‖2L2 ≤
C

εβ

∫ T

0

∫
ω
|y(t, x)|2 dt dx+ ε ‖y0‖2L2 .

This result gives directly the following corollary concerning approximate controllability to trajec-
tories (or, equivalently, to zero) at a polynomial cost (see again [LL20a, Appendix]).

Corollary 4.13 (Cost of approximate control to trajectories if k = 2). Assume that k = 2, and let
T0 > 0 as in Theorem 4.12. For any T > T0, there exists C > 0, and β > 0 so that for all ε > 0, we
have the following statement: for any u0, ũ0 ∈ L2, there exists g ∈ L2((0, T )× ω) with

‖g‖L2((0,T )×ω) ≤
C

εβ
‖u0 − ũ0‖L2 ,

such that the associated solution u of (4.10) satisfies∥∥u(T )− e−TLũ0

∥∥
L2(M)

≤ ε ‖u0 − ũ0‖L2 .

4.2.4 Decay of damped hypoelliptic equations
〈s:decayhypo〉We finally present a result concerning the damped hypoelliptic wave equation{

(∂2
t + L+ 1ω∂t)u = 0, on (0,+∞)×M,

(u, ∂tu)|t=0 = (u0, u1), onM,
(4.13) e:damped-hypo

where ω ⊂ M is a non-empty open set. Solutions to (4.13) enjoy formally the following dissipation
identity (obtained by taking the inner product of (4.13) with ∂tu and integrating on (0, T )):

E(u(T ))− E(u(0)) = −
∫ T

0

∫
ω
|∂tu(t, x)|2ds(x) dt, E(u) =

1

2

(
m∑
i=1

‖Xiu‖2L2(M) + ‖∂tu‖2L2(M)

)
.
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An important question is then to understand at which rate the energy decays. We denote the damped

wave operator A =

(
0 Id
−L −1ω(x)

)
. In this context, we obtain a logarithmic decay rate with power

k, which can be proved to be optimal in general.

〈e:decay〉Theorem 4.14 (Decay rates for damped hypoelliptic waves). Assume Assumptions 4.1 and 4.2.
Then, for all (u0, u1) ∈ H1

L × L2, the associated solution to (4.13) satisfies E(u(t)) → 0. Moreover,
for all j ∈ N∗, there exists Cj > 0 such that for all (u0, u1) ∈ D(Aj), the associated solution to (4.13)
satisfies

E(u(t))
1
2 ≤ Cj

log(t+ 2)j/k

∥∥Aj(u0, u1)
∥∥
H1
L×L2 , for all t ≥ 0.

This result is the analogue in the hypoelliptic setting of the Lebeau theorem [Leb96] (case k = 1).
We obtain similar results for damped Schrödinger equation (i∂t+L+i1ω∂t)v = 0 and the damped

plate equation (∂2
t +L2+1ω∂t)v = 0. In order to keep the article reasonably short, we refer to [LL20b]

for these results.

4.3 Idea of the proofs
〈sectproofhypo〉4.3.1 Quantitative unique continuation for the hypoelliptic wave equation

〈s:proofwave〉The proof of Theorem 4.8 is based on the general strategy described in Section 2 for quantifying and
propagating unique continuation properties. We only use here the “Holmgren-John” case, i.e. when
the operator has analytic coefficients as described in Remark 2.3.

Here, when compared to the case of the classical wave equation described in Section 3, two addi-
tional difficulties arise: one being of geometric nature, and the other one related to the compatibility
between the energy spaces associated to L and those dealt with in [LL19].

Let us first describe the geometric difficulty. The proof is inspired by the case of the classical wave
equation explained in Section 3: the idea is, given a point x0 ∈ M, to take any path γ : [0, 1]→M
with γ(0) = x0 and γ(1) ∈ ω (observation set), of length sufficiently small, and then to construct a
family of appropriate non characteristic hypersurfaces in these coordinates near [−T, T ]× γ. There,
we apply the general Theorem 2.5, which allows to bound the solution u to (∂2

t − ∆)u = 0 in a
neighborhood of (t, x) = (0, x0) by u in [−T, T ]× ω.

Here, due to the non definiteness/ellipticity of the operator L, we are not able to construct global
coordinates near any path γ together with appropriate noncharacteristic hypersurfaces, in which to
apply the results of [LL19]. To overcome this difficulty, we do not consider any path between x0 and
ω, but rather only so called normal geodesics, that is, projections onM of hamiltonian curves of the
principal symbol of the operator L. The existence of such paths γ (minimizing the sub-Riemannian
distance) from any point x0 to ω is a well-known result in sub-Riemannian geometry, proved by
Rifford and Trélat [RT05]. Then, locally near a point of γ, the introduction of normal geodesic
coordinates allows us to define local coordinates in which to apply a local version of a slight variant
of Theorem 2.5.

Note that this single geometric construction, combined with the usual Holmgren-John theorem
would be enough to prove the qualitative uniqueness statement.

These arguments eventually allows to prove an estimate of the form

‖u‖L2(]−ε,ε[×M) ≤ Ce
κµ ‖u‖L2(]−T,T [×ω) +

C

µ
‖u‖H1(]−T,T [×M) , (4.14) e:intro-estim-partial-wave

for µ large and u solution to (∂2
t +L)u = 0. This estimate is the same as (3.2) (after energy estimates)

for the wave equation.
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This leads us to the second main difficulty we have to face in the proof of Theorem 4.8. Whereas
the left hand-side of (4.14) is bounded from below by the natural L2×H−1

L norm of the data, the right
hand-side is not directly linked to their H1

L × L2 norm. More precisely, the hypoelliptic estimates
of Rothschild and Stein [RS76] of Theorem 4.4 imply that ‖u‖H1(]−T,T [×M) ≤ C ‖(u0, u1)‖HkL×Hk−1

L
.

This provides a weaker version of Theorem 4.8 which has exactly the same form as in the case of the
wave equation (cost eκµ), but with the norm ‖(u0, u1)‖HkL×Hk−1

L
in the right hand-side. This weaker

version is however interesting for itself since the proof is much less involved.
To obtain the estimate of Theorem 4.8 (and in fact a family of such estimates with anyHsL×H

s−1
L ,

s > 0, in the right hand-side), we thus need to work with a version of (4.14) still containing frequency
cutoff localization and an e−cµ small remainder (instead of the 1/µ one). These low-frequency-
with-exponentially-small-remainder estimates are then combined with the spectral representation of
solutions to (∂2

t + L)u = 0 in order to gain back derivatives in the remainder term.

4.3.2 From waves to eigenfunction tunneling
〈s:proofeigen〉Theorems 4.5 is simply deduced from Theorem 4.8 (under the equivalent form of estimate (4.7))

by using a particular solution to the wave equation (4.5), namely u(t, x) = cos(
√
λt)ϕ(x). It only

remains to notice that the frequency functions Λ =
‖(u0,u1)‖H1

L×L
2

‖(u0,u1)‖
L2×H−1

L

is of order
√
λ for (u0, u1) = (ϕ, 0),

where Lϕ = λϕ.

4.3.3 From wave-like to heat-like equations
〈s:proofheat〉

The proofs of Theorems 4.10 and 4.12 follow the general idea that the controllability/observability
properties for hyperbolic equations implies controllability/observability properties for their parabolic
counterpart, see [Rus73, Mil06, EZ11a, EZ11b] (see also [LR95]).

This has been named as “transmutation methods” by Luc Miller [Mil06]. Here, we use the
method developed in [EZ11a] (itself relying on a Lebeau-Robbiano strategy [LR95]). In that paper,
Ervedoza and Zuazua deduced the (exact final time) observability of the heat equation (known
from [LR95, FI96]) from the approximate observability estimate for waves (namely the analogue of
Theorem 4.8) as proved in [Phu10] (with loss) or above Theorem 3.1 (without loss). They prove the
following result.

〈propoEZ〉Proposition 4.15 ([EZ11a, EZ11b]). Let T, S > 0 and α > 2S2. Then, there exists some kernel
function kT (t, s) such that if y is solution of the heat equation (4.9), then u(s) =

∫ T
0 kT (t, s)y(t)dt is

solution of{
∂2
su+ Lu = 0, for s ∈]− S, S[,

(u, ∂su)|s=0 =
(

0,
∫ T

0 ∂skT (t, 0)y(t)dt
)

=
(

0,
∫ T

0 e−α( 1
t
+ 1
T−t)y(t)dt

)
;

The authors also provide with useful estimates on this kernel.

Both proofs of Theorems 4.10 and 4.12, follow a similar strategy and apply Theorem 4.8 to a
solution u of the wave equation constructed with Proposition 4.15. Yet, one important difference
between Theorems 4.10 and 4.12 is that the first one is an estimate of the solution at initial time
while the second one is at final time. The proofs therefore differ slightly depending on whether or
not they use the natural decay of the heat equation. In the first case, Proposition 4.15 is applied
directly to the solution of the heat equation that we want to observe. In the second case, Proposition
4.15 is applied to the low frequency part of the solution, more in the spirit of the “Lebeau-Robbiano”
strategy [LR95]. Let us now give a few more details in each situation.
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The proof of Theorem 4.10 relies on the transmutation technique of Proposition 4.15 apply-
ing directly the transmutation kernel kT (t, s) to the full solution y to the heat equation: u(t) =∫ T

0 kT (t, s)y(s)ds is a solution to the wave equation. We then prove a fine asymptotic analysis of∫ T
0 kT (0, s)e−λsds for high frequencies together with convexity estimates to bound the “frequency

function” of u(0), namely
‖u(0)‖H1

L
‖u(0)‖L2

by the frequency function of y(0). The proof of this result via
a direct transmutation method seems to be new, even for the classical heat equation. The usual
proofs [FCZ00, Phu04] rather rely on the exact final time observability estimate, which does not hold
here in general.

The proof of Theorems 4.12 is very close to that of [EZ11a]. Using again the transmutation result
together with our estimate (4.7) for the wave equation, we obtain a “Lebeau-Robbiano-like” estimate,
that is a low frequency observability with a good estimates of the cost with respect to the frequency.
More precisely, defining the low frequency spaces Eλ = span {ϕj , λj ≤ λ}, we obtain the following
low-frequency observability estimate, with a precise estimation of the observability constant with
respect to the cutoff frequency.

?〈l:estim-heat-BF〉?Lemma 4.16 (“Lebeau-Robbiano-like” estimates). There exist C, γ > 0 such that for any T > 0, λ ≥
0, for every y0 ∈ Eλ and associated solution y to (4.9), we have

‖y(T )‖2L2 ≤
C

T
e(2γλk/2+C

T )
∫ T

0

∫
ω
|y(t, x)|2 dt dx. (4.15) estimLFheat

Moreover, there exists c0 > 0 such that for any T > 0 there exists C = CT > 0 such that for any
λ ≥ 0, any y0 ∈ Eλ and associated solution y to (4.9), we have

‖y0‖2L2 ≤ Ce2c0λk/2
∫ T

0

∫
ω
|y(t, x)|2 dt dx. (4.16) estimLFheat-y0

Note the difference between (4.15) and (4.16): the former estimates the final data at time T
(with explicit dependence with respect to time) whereas the latter estimates the initial data. Es-
timate (4.16) is used in the proof of Theorem 4.10 whereas Estimate (4.15) is used in the proof of
Theorem 4.12.

The cost e2c0λk/2 in these low-frequency observability estimates has to be compared to the dissi-
pation for high frequencies

√
λj ≥

√
λ, namely e−tλ. Hence, we see that the cases k = 1 (classical

heat equation, already discussed), k = 2 (Grushin, Heisenberg...), and k > 2 display very different
features:

1. In case k = 2, the cost of observation of low frequencies ecλ and the parabolic dissipation for
high frequencies e−tλ have the same strength: in this case, we need to wait a time long enough
so that the dissipation “beats” the cost of the observability (essentially t > c). Moreover,
the iterative procedure devised in [LR95] in order to control/observe all frequencies in finite
time cannot converge here: each step would need a time t > c. Yet, it allows to obtain the
approximate controllability result of Theorem 4.12.

2. In case k > 2, the dissipation for high frequencies e−tλ has no chance to compete with the cost
of observation of low frequencies ecλk/2 . The only chance to obtain some positive result is to
assume that the initial data are in some Gevrey-type space that allows to compensate for the
cost of low frequencies ecλk/2 . This leads to approximate control results in Gevrey-type spaces
(with polynomial cost) that we have chosen not to state here for simplicity. We refer to [LL17,
Theorem 1.18] for more details.
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4.3.4 From waves to resolvent estimates and decay for damped equations
〈secproofdecayhypo〉The proof of Theorem 4.14 consists in several reductions to resolvent type estimates. First, we relate

in an abstract setting decay of damped equations to resolvent estimates according to [BD08]. More
precisely, in the proof of Theorem 4.14, it suffices show an estimate of the form

∥∥(is−A)−1
∥∥
L(H1

L×L2)
≤

Ceκ|s|
k for all |s| ≥ 1. We then prove that the latter is a consequence of the following estimate:

‖v‖L2(M) ≤ Ce
κλk
(
‖v‖L2(ω) +

∥∥(L − λ2)v
∥∥
L2(M)

)
, for all v ∈ H2

L, λ ≥ λ0. (4.17) resolvobs

To obtain (4.17), for v ∈ H2
L with (L−λ2)v = f , we construct, as in Section 4.3.2 a particular solution

to the wave equation with source term, namely u(t, x) = cos(
√
λt)ϕ(x) solution of (∂2

t + L)u =
cos(
√
λt)f . A slight variant of Theorem 4.8 with source term applied to u allows us to obtain (4.17).
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