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GLOBAL CONTROLLABILITY AND STABILIZATION FOR THE
NONLINEAR SCHRÖDINGER EQUATION ON SOME COMPACT

MANIFOLDS OF DIMENSION 3∗

CAMILLE LAURENT†

Abstract. We prove global internal controllability in large time for the nonlinear Schrödinger
equation on some compact manifolds of dimension 3. The result is proved under some geometrical
assumptions: geometric control and unique continuation. We give some examples where they are
fulfilled on T3, S3, and S2×S1. We prove this by two different methods, both inherently interesting.
The first one combines stabilization and local controllability near 0. The second one uses successive
controls near some trajectories. We also get a regularity result about the control if the data are
assumed smoother. If the H1 norm is bounded, it gives a local control in H1 with a smallness
assumption only in L2. We use Bourgain spaces to solve the equation in H1.
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Introduction. In this article, we study the internal stabilization and exact con-
trollability for the defocusing nonlinear Schrödinger equation (NLS) on some compact
manifolds of dimension 3:{

i∂tu+Δu = |u|2u on [0,+∞[×M,
u(0) = u0 ∈ H1(M),

(0.1)

where Δ is the Laplace–Beltrami operator onM . The solution displays two conserved
energies: the L2 energy ‖u‖L2 and the nonlinear energy, or H1 energy,

E(t) =
1

2

∫
M

|∇u|2 + 1

4

∫
M

|u|4 .

This equation arises in nonlinear optics, where it is obtained as an asymptotic regime
of the Maxwell equations in a nonlinear medium (see, e.g., Sulem and Sulem [42]). In
this context, the metric g can be interpreted as an inhomogeneity of the optical index.
A more physically relevant situation could be to consider this equation on a domain.
However, for the moment, this equation is not known to be globally well posed on an
open set of dimension 3 (see [2], [6] for the two-dimensional case and [1] for the radial
solutions on a ball). A compact manifold makes a good framework to understand the
effect of geometry.

For the study of controllability, some similar results were obtained in dimension
2 in the article of Dehman, Gérard, and Lebeau [16], where exact controllability in
H1 is proved for the defocusing NLS on compact surfaces. Yet, the proof is based on
Strichartz estimates which provide uniform well-posedness in dimension 3 only in Hs

for s > 1. In [11], Burq, Gérard, and Tzvetkov managed to prove global existence
and uniqueness in H1 but failed to prove uniform well-posedness, which appears to
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be of great importance in control problems. However, for certain specific manifolds,
the strategy of Xs,b spaces of Bourgain, extended to some other manifolds by Burq,
Gérard, and Tzvetkov, succeeded in proving uniform well-posedness in Hs for some
lower regularities. So, to our knowledge, this paper is the first one dealing with global
controllability for the cubic NLS in three dimensions.

For control results, the Xs,b spaces have already been used in dimension 1 at L2

regularity: first Rosier and Zhang [41] obtained local results, and, independently, we
proved global controllability in large time in [32]. We also quote the recent paper
[40] about the control of the NLS on rectangles but still with local results. The Xs,b

spaces will also be our framework in this paper.
Under some specific assumptions that will be made precise later, we prove global

controllability in large time two different ways, both inherently interesting: by sta-
bilization and control near 0 or by some successive controls near some trajectories.
This will provide global controllability towards 0, and the general result will follow by
reversing time. The first strategy is very classical in control theory and has been used
innumerable times (see, for example, Lee and Markus [34, p. 397] in finite dimension).
The second strategy seems less classical, at least in this framework.

Our assumptions are fulfilled in the following cases (ω ⊂M is the support of the
control):

– T3 with ω =
{
x ∈ R3/(θ1Z× θ2Z× θ3Z) |∃i ∈ {1, 2, 3}, xi ∈]− ε, ε[+θiZ

}
(that

is, a neighborhood of each face of the “cube,” fundamental volume of T3) with θi ∈ R.
Moreover, we can easily extend this result to a cuboid with Dirichlet or Neumann
boundary conditions; see [32] or [41].

– S3 with ω a neighborhood of {x4 = 0} in S3 ⊂ R4.
– S2 × S1 with ω = (ω1 × S1) ∪ (S2×]0, ε[), where ω1 is a neighborhood of the

equator of S2.

Theorem 0.1. For any open set ω ⊂M satisfying Assumptions 1, 2, and 3 (see
below) and R0 > 0, there exist T > 0 and C > 0 such that for every u0 and u1 in
H1(M) with

‖u0‖H1(M) ≤ R0 and ‖u1‖H1(M) ≤ R0

there exists a control g ∈ C([0, T ], H1) with ‖g‖L∞([0,T ],H1) ≤ C supported in [0, T ]×ω
such that the unique solution u in X1,b

T of the Cauchy problem{
i∂tu+Δu = |u|2u+ g on [0, T ]×M,

u(0) = u0 ∈ H1(M)
(0.2)

satisfies u(T ) = u1.
In the rest of this article, ω will be related to a cut-off function a = a(x) ∈ C∞(M)

(whose existence is guaranteed by the Whitney theorem) taking real values and such
that

ω = {x ∈M : a(x) 
= 0} .(0.3)

The stabilization system we consider is{
i∂tu+Δu− a(x)(1 −Δ)−1a(x)∂tu = (1 + |u|2)u on [0, T ]×M,

u(0) = u0 ∈ H1(M).
(0.4)

The link with the original equation can be made by the change of variable w =
e−itu. A more physically relevant damping term would be ia(x)u, as used in the
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one-dimensional case in [32]. Yet, the damping term in (0.4) is especially fitted to the
H1 energy which is the regularity at which we solve the equation. The well-posedness
of system (0.4) will be proved in section 2.1, and we can check that it satisfies the
energy decay

E(u(t))− E(u(0)) = −
∫ t

0

∥∥∥(1−Δ)−1/2a(x)∂tu
∥∥∥2
L2
.(0.5)

Our theorem states that, under some geometrical hypotheses, this yields an exponen-
tial decay.

Theorem 0.2. Let (M , ω) satisfy Assumptions 1, 2, and 3. Let a ∈ C∞(M),
as in (0.3). There exists γ > 0 such that for every R0 > 0 there is a constant C > 0
such that inequality

‖u(t)‖H1 ≤ Ce−γt ‖u0‖H1 , t > 0,

holds for every solution u of system (0.4) with initial data u0 such that ‖u0‖H1 ≤ R0.
The independence of C and of the time of control T on the bound R0 is an open

problem. The fact that γ is independent of the size lies in the fact that it describes
only the behavior near 0. However, it is unknown whether there is really a minimal
time of controllability. This is in strong contrast with the linear case where exact
controllability occurs in arbitrary small time and the conditions are geometric only
for the open set ω. Moreover, some recent studies have analyzed the explosion of the
control cost when T tends to 0: Phung [38] by reducing to the heat or wave equation,
Miller [36] with resolvent estimates, and Tenenbaum and Tucsnak [43] with number
theoretic arguments.

Let us now describe our assumptions. The first two deal with classical geometrical
assumptions in control theory.

Assumption 1. Geometric control: There exists T0 > 0 such that every geodesic
of M , travelling with speed 1 and issued at t = 0, enters the set ω in a time t < T0.

This condition is known to be sufficient for linear controllability; see Lebeau [33].
In section 9, we prove that it is necessary on S3 for the nonlinear stabilization. How-
ever, there are some geometrical situations (especially when there are some unstable
geodesics) in which it is not necessary. For example, we have linear controllability for
any open set ω of T3; see Jaffard [26] and Komornik and Loreti [28] (see also [14]).
This also holds for M = S2 × S1 with ω = S2×]0, ε[ or ω = ω1 × S1, where ω1 is a
neighborhood of the equator. In that case, our method fails to prove global results
and we can prove only local controllability by perturbation (see Theorem 0.4).

Assumption 2. Unique continuation: For every T > 0, the only solution in
C∞([0, T ]×M) to the system{

i∂tu+Δu+ b1(t, x)u + b2(t, x)u = 0 on [0, T ]×M,
u = 0 on [0, T ]× ω,

(0.6)

where b1(t, x) and b2(t, x) ∈ C∞([0, T ]×M), is the trivial one u ≡ 0.
We do not know if there exists a link between these two assumptions. In our

three particular cases, this can be proved using Carleman estimates. There are some
existing results about this, such as the one of Isakov [25] (for general anisotropic
PDEs), Baudouin and Puel [4] (for global Carleman estimates), or Mercado, Osses,
and Rosier [35] (in the special case of Schrödinger with flat metric but weaker geo-
metrical assumptions). In the case of a Riemannian manifold with boundary, some
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Carleman estimates were obtained by Triggiani and Xu [46] (see also an interesting
discussion in section 10 about the existence of convex weights). Note also that these
Carleman estimates can be used to treat some controllability problems directly; see,
for instance, Lasiecka and Triggiani [29], Lasiecka, Triggiani, and Zhang [31], [30],
and Triggiani [45]. For the convenience of the reader, we have chosen to give a proof
of Carleman estimates on a compact manifold. It is given in Appendix B. They are
quite similar to those of [46] but simpler because they are without boundary terms.
We also believe that these estimates are of independent interest if the weight is weakly
convex (as in [35] but with a metric).

The last assumption is a technical assumption that ensures that the Cauchy prob-
lem is well posed in H1. It yields a bilinear loss of s0 < 1.

Assumption 3. There existC > 0 and 0 ≤ s0 < 1 such that for any f1, f2 ∈ L2(M)
satisfying

fj = 1√
1−Δ∈[Nj,2Nj[

(fj), j = 1, 2,

one has the following bilinear estimates:

‖u1u2‖L2([0,T ]×M) ≤ Cmin(N1, N2)
s0 ‖f1‖L2(M) ‖f2‖L2(M) ,(0.7)

uj(t) = eitΔfj , j = 1, 2.

It is known to be true in the following examples (1/2+ means any s > 1/2):
– T3 with s0 = 1/2+; see [7].
– The irrational torus R3/(θ1Z × θ2Z × θ3Z) with θi ∈ R for which an estimate

with s0 = 2/3+ has recently been obtained in [8]. An easier proof for s0 = 3/4+ can
also be found in the beginning of [8] and in [15].

– S3 with s0 = 1/2+; see [13].
– S2 × S1 with s0 = 3/4+; see [13].
It yields some trilinear estimates in Bourgain spaces (see the definition below).

For the control near a trajectory, we still have some particular assumptions that
are again fulfilled in the particular geometries described above. Our result reads as
follows.

Theorem 0.3. Let T > 0, and let (M , ω) be such that Assumptions 1, 3, 4, and

5 are fulfilled (see below). Let 1 ≥ s > s0, and let w ∈ X1,b
T be a solution of{

i∂tw +Δw ± |w|2w = g,
w(x, 0) = w0(x)

(0.8)

with g ∈ C([0, T ], H1) supported in [0, T ]× ω.
Then, there exists ε > 0 such that for every u0 ∈ Hs with ‖u0 − w0‖Hs < ε there

exists g1 ∈ C([0, T ], Hs) supported in [0, T ] × ω such that the unique solution u in

Xs,b
T of (0.8) with u(0) = u0 and g replaced by g1 fulfills u(T ) = w(T ).
Moreover, for any u0 ∈ H1 with ‖u0 − w0‖Hs < ε, the same conclusion holds with

g ∈ C([0, T ], H1).

An interesting fact is that the smallness assumption concerns only the Hs norm,
even if we want a control in H1. For example, as in [17], if we assume ‖u0‖H1 ≤ R0,
we can find N ∈ N large enough such that the smallness assumption concerns only
the N first frequencies (see Corollary 8.3). Of course, this result remains true in a
lower dimension, where it was known only for the trajectory w = 0 (see [16]).

Let us describe the new hypothesis. Assumption 4 is a unique continuation result
at weaker regularity.
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Assumption 4. Unique continuation in H1: For every T > 0, the only solution in
C([0, T ], H1) to the system{

i∂tu+Δu+ b1(t, x)u + b2(t, x)u = 0 on [0, T ]×M,
u = 0 on [0, T ]× ω,

(0.9)

where b1(t, x) and b2(t, x) ∈ L∞([0, T ], L3), is the trivial one u ≡ 0.
We do not know if it is really stronger than Assumption 2, but, for the moment,

there are some examples where we are able to prove Assumption 2 but not Assumption
4 using some weak Carleman estimates (see Appendix B). For instance, on T3, we are
able to prove Assumption 2 for ω =

{
x ∈ R3/Z3 |x1 ∈]0, ε[+Z

}
but not Assumption

4. Yet, for the moment, we do not manage to deduce a controllability result from this
statement.

The other new assumption is technical and yields quadrilinear estimates for a
commutator.

Assumption 5. There exists 0 ≤ s0 < 1 so that for any ε ∈ [0, 1] we can find one
constant C > 0 such that for any f1, f2, f3, f4 ∈ L2(M) satisfying

fj = 1√
1−Δ∈[Nj,2Nj[

(fj), j = 1, 2, 3, 4,

one has the following quadrilinear estimate:

sup
τ∈R

∣∣∣∣
∫
R

∫
M

χ(t)eitτu1u2

(
(−Δ)ε/2u3u4 − u3(−Δ)ε/2u4

)
dxdt

∣∣∣∣(0.10)

≤ C(Nε
1 +Nε

2 ) (m(N1, . . . , N4))
s0 ‖f1‖L2(M) ‖f2‖L2(M) ‖f3‖L2(M) ‖f4‖L2(M) ,

uj(t) = eitΔfj , j = 1, 2, 3, 4,

where χ ∈ C∞
0 (R) is arbitrary and m(N1, . . . , N4) is the product of the smallest two

numbers among N1, N2, N3, N4.
Moreover, the same result holds with ui replaced by ui for i in a subset of

{1, 2, 3, 4}.
For the three treated examples, we prove in Appendix A that Assumption 5 holds

true with the same s0 as in Assumption 3. We believe that it is the case for any
manifold, but we did not manage to prove it.

As explained before, there are some examples for which we know that a geometric
control assumption is not necessary. For instance, for any pair of manifolds M1, M2

and ω1 ⊂ M1 such that ω1 satisfies an observability estimate, ω1 ×M2 satisfies the
observability estimate for the linear Schrödinger equation. We can then use this
remark and the work of Jaffard [26] and Komornik and Loreti [28] for the linear
equation on Tn to get some local nonlinear results . Since Theorem 0.3 is proved by a
perturbative argument, we can also deduce controllability near 0 from these already
known linear control results.

Theorem 0.4. If w ≡ 0 and (M,ω) is either
–(T3,any open set),
–(S2 × S1, ω1 × S1), where ω1 is a neighborhood of the equator of S2, or
–(S2 × S1, S2×]0, ε[),
then the same conclusion as in Theorem 0.3 is true.
Rosier and Zhang [40] simultaneously obtained the same result for T3.
The proof of stabilization and of linear control with potential follows the same

scheme as [16]. In a contradiction argument, we are led to prove the strong con-

vergence to zero in Xs,b
T of some weakly convergent sequence (un) solution to the

damped NLS or Schrödinger with potential. Since the equation is subcritical, we use
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some linearizability properties of the NLS in H1 (see the work of Gérard [22] for the
wave equation).

We first establish the strong convergence by some propagation of compactness.
We adapt the argument of [16] inspired by Bardos and Masrour [3]. We use microlocal
defect measures introduced by Gérard [21]. For a sequence (un) weakly convergent to

0 in Xs,b
T satisfying {

i∂tun +Δun → 0 in Xs−1+b,−b
T ,

a(x)un → 0 in L2([0, T ], Hs),

we prove that un → 0 in L2
loc([0, T ], H

s).
Once we know that the convergence is strong, we infer that the limit u is the

solution to the NLS. We would like to use Assumption 2 or 4 of unique continuation
to prove that it is 0. However, more regularity is needed to apply them. Again, we
adapt the proof for Xs,b spaces of propagation results of microlocal regularity coming
from [16].

The rest of this article is organized as follows. The first section states and recalls
some properties of the Bourgain spaces that will be used throughout this paper. The
second section proves the well-posedness of the nonlinear equation with source and
damping terms and its associated linearization near trajectories. In section 3, we
prove that the equation is linearizable, namely, that at high frequency the nonlinear
equation behaves as the linear one. Sections 4 and 5 are devoted to the propagation
of regularity and compactness along the bicharacteristics which will be the essential
tools for the proofs of stabilization and controllability. The main results of this article
are proved in the last sections. The stabilization result is proved in section 6. In
section 7, we prove the controllability of the linear equation that is obtained by
linearization of the nonlinear one. This permits us to prove control near trajectories
in section 8. In section 9, we prove that on S3 our geometrical assumption is nearly
optimal. In Appendix A, we prove some commutator estimates used in the proof of
the regularity result of the control constructed in section 7. Appendix B is used to
prove the assumption of unique continuation in our specific geometries thanks to some
Carleman estimates.

In this article, b′ will be a constant such that estimates of Lemma 1.1 hold.
Actually, each of the trilinear estimates (with different s) that will be done will yield
one b′ < 1/2 but remains true if we choose a greater one. So we take b′ < 1/2 as the
largest of these constants. This allows us to choose one b > 1/2 with 1 > b+ b′.

In the rest of this paper, C will denote any constant whose value could change
throughout this article.

1. Some properties of Xs,b spaces. Since M is compact, Δ has a compact
resolvent, and thus the spectrum of Δ is discrete. We choose ek ∈ L2(M), k ∈M , as
an orthonormal basis of eigenfunctions of −Δ associated with eigenvalues λk. Denote
Pk the orthogonal projector on ek. We equip the Sobolev space Hs(M) with the norm
(with 〈x〉 =√1 + |x|2)

‖u‖2Hs(M) =
∑
k

〈λk〉s ‖Pku‖2L2(M) .

The Bourgain space Xs,b is equipped with the norm

‖u‖2Xs,b =
∑
k

〈λk〉s
∥∥∥〈τ + λk〉b P̂k(τ)u

∥∥∥2
L2(Rτ×M)

=
∥∥u#∥∥2

Hb(R,Hs(M))
,
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where u = u(t, x), t ∈ R, x ∈ M , u#(t) = e−itΔu(t), and P̂ku(τ) denotes the Fourier
transform of Pku with respect to the time variable.

Xs,b
T is the associated restriction space with the norm

‖u‖Xs,b
T

= inf {‖ũ‖Xs,b |ũ = u on ]0, T [×M } .

We also write ‖u‖Xs,b
I

if the infimum is taken on functions ũ equalling u on an interval

I. The following properties of Xs,b
T spaces are easily verified:

1. Xs,b and Xs,b
T are Hilbert spaces.

2. If s1 ≤ s2, b1 ≤ b2, we have Xs2,b2 ⊂ Xs1,b1 with continuous embedding.
3. For every s1 < s2, b1 < b2, and T > 0, we have Xs2,b2

T ⊂ Xs1,b1
T with compact

imbedding.
4. For 0 < θ < 1, the complex interpolation space

(
Xs1,b1 , Xs2,b2

)
[θ]

is as follows:

X(1−θ)s1+θs2,(1−θ)b1+θb2 .
Property 4 can be proved with the interpolation theorem of Stein and Weiss for
weighted Lp spaces (see [5, p. 114]).

Then, we list some additional trilinear estimates that will be used throughout
this paper.

Lemma 1.1. If Assumption 3 is fulfilled, for every r ≥ s > s0, there exist
0 < b′ < 1/2 and C > 0 such that for any u and ũ ∈ Xr,b′

∥∥|u|2u∥∥
Xr,−b′ ≤ C ‖u‖2Xs,b′ ‖u‖Xr,b′ ,(1.1) ∥∥|u|2ũ∥∥
Xr,−b′ ≤ C ‖u‖Xs,b′ ‖u‖Xr,b′ ‖ũ‖Xr,b′ ,(1.2) ∥∥|u|2u− |ũ|2ũ∥∥
Xs,−b′ ≤ C

(
‖u‖2Xs,b′ + ‖ũ‖2Xs,b′

)
‖u− ũ‖Xs,b′ .(1.3)

Moreover, the same estimates hold with z1z2z3 replaced by any R-trilinear form on
C.

The proof of the previous lemma can be found in [9], [12], or [23]. Yet, in Ap-
pendix A, we prove some slightly different estimates, but the proof gives an idea of
how Lemma 1.1 is established. We also give some variants that will be used in the
linearized version of our equations.

Lemma 1.2. If Assumption 3 is fulfilled, for every −1 ≤ s ≤ 1 and any s0 < r ≤
1, there exist 0 < b′ < 1/2 and C > 0 such that for any u ∈ Xs,b′ and a1, a2 ∈ X1,b′

‖a1a2u‖Xs,−b′ ≤ C ‖a1‖X1,b′ ‖a2‖X1,b′ ‖u‖Xs,b′ ,(1.4) ∥∥|a1|2u∥∥Xs,−b′ ≤ C ‖a1‖X1,b′ ‖a1‖Xr,b′ ‖u‖Xs,b′ .(1.5)

Moreover, the same estimates hold with z1z2z3 replaced by any R-trilinear form on
C.

Proof. We first prove (1.5). Estimate (1.2) of Lemma 1.1 implies that the operator
of multiplication by |a1|2 maps X1,b′ into X1,−b′ with norm ‖a1‖X1,b′ ‖a1‖Xr,b′ . By

duality, it maps X−1,b′ into X−1,−b′ with the same norm. We get the same result for
−1 ≤ s ≤ 1 by interpolation, which yields (1.5). For (1.4), we observe that estimate

‖a1a2u‖X1,−b′ ≤ C ‖a1‖X1,b′ ‖a2‖X1,b′ ‖u‖X1,b′

holds regardless of the position of the conjugate operator, and we get the result
similarly.
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Let us study the stability of the Xs,b spaces with respect to some particular
operations.

Lemma 1.3. Let ϕ ∈ C∞
0 (R) and u ∈ Xs,b; then ϕ(t)u ∈ Xs,b. If u ∈ Xs,b

T , then

we have ϕ(t)u ∈ Xs,b
T .

Proof. We write

‖ϕu‖Xs,b =
∥∥e−itΔϕ(t)u(t)

∥∥
Hb(R,Hs)

=
∥∥(ϕu)#∥∥

Hb(R,Hs)
≤ C
∥∥u#∥∥

Hb(R,Hs)
≤ C ‖u‖Xs,b .

We get the second result by applying the first one on any extension of u and taking
the infimum.

In the case of pseudodifferential operators in the space variable, we have to deal
with a loss in Xs,b regularity compared to what we could expect. Some regularity in
the index b is lost, due to the fact that a pseudodifferential operator does not keep
the structure in time of the harmonics.

This loss is unavoidable, as we can see, for simplicity, on the torus T1: we take
un = ψ(t)einxei|n

2|t (where ψ ∈ C∞
0 equal to 1 on [−1, 1]), which is uniformly bounded

in X0,b for every b ≥ 0. However, if we consider the operator B of order 0 of mul-
tiplication by eix, we get

∥∥eixun∥∥X0,b ≈ nb. Yet, we do not have such a loss for the

operator of the form (−Δ)r which acts from any Xs,b to Xs−2r,b. But if we do not
make any further assumption on the pseudodifferential operator, we can show that
our example is the worst one.

Lemma 1.4. Let −1 ≤ b ≤ 1, and let B be a pseudodifferential operator in the
space variable of order ρ. For any u ∈ Xs,b we have Bu ∈ Xs−ρ−|b|,b. Similarly, B

maps Xs,b
T into X

s−ρ−|b|,b
T .

Proof. We first deal with the two cases b = 0 and b = 1, and we will conclude by
interpolation and duality.

For b = 0, Xs,0 = L2(R, Hs), and the result is obvious.
For b = 1, we have u ∈ Xs,1 if and only if

u ∈ L2(R, Hs) and i∂tu+Δu ∈ L2(R, Hs)

with the norm

‖u‖2Xs,1 = ‖u‖2L2(R,Hs) + ‖i∂tu+Δu‖2L2(R,Hs) .

Then, we have

‖Bu‖2Xs−ρ−1,1 = ‖Bu‖2L2(R,Hs−ρ−1) + ‖i∂tBu+ΔBu‖2L2(R,Hs−ρ−1)

≤ C
(
‖u‖2L2(R,Hs−1) + ‖B (i∂tu+Δu)‖2L2(R,Hs−ρ−1)

+ ‖[B,Δ]u‖2L2(R,Hs−ρ−1)

)
≤ C
(
‖u‖2L2(R,Hs−1) + ‖i∂tu+Δu‖2L2(R,Hs−1) + ‖u‖2L2(R,Hs)

)
≤ C ‖u‖2Xs,1 .

Hence, B maps Xs,0 into Xs−ρ,0 and Xs,1 into Xs−ρ−1,1. Then, we conclude by inter-
polation that B maps Xs,b =

(
Xs,0, Xs,1

)
[b]

into
(
Xs−ρ,0, Xs−ρ−1,1

)
[b]

= Xs−ρ−b,b,

which yields the b loss of regularity as announced.
By duality, this also implies that for 0 ≤ b ≤ 1, B∗ maps X−s+ρ+b,−b into X−s,−b.

As there is no assumption on s ∈ R, we also have the result for −1 ≤ b ≤ 0 with a
loss −b = |b|.
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To get the same result for the restriction spaces Xs,b
T , we write the inequality for

an extension ũ of u, which yields

‖Bu‖
X
s−ρ−|b|,b
T

≤ ‖Bũ‖Xs−ρ−|b|,b ≤ C ‖ũ‖Xs,b .

Taking the infimum on all the ũ, we get the claimed result.

We will also use the following elementary estimate (see, e.g., [24] or [7]).

Lemma 1.5. Let (b, b′) satisfy

0 < b′ <
1

2
< b, b+ b′ ≤ 1.(1.6)

If f ∈ H−b′(R) and we note that F (t) = Ψ
(

t
T

) ∫ t
0
f(t′)dt′, we have for T ≤ 1

‖F‖Hb(R) ≤ CT 1−b−b′ ‖f‖H−b′ (R) .

In the future aim of using a bootstrap argument, we will need some continuity in
T of the Xs,b

T norm of a fixed function.

Lemma 1.6. Let 0 < b < 1 and u ∈ Xs,b; then the function{
f : ]0, T ] −→ R,

t �−→ ‖u‖Xs,b
t

is continuous. Moreover, if b > 1/2, there exists Cb such that

lim
t→0

f(t) ≤ Cb ‖u(0)‖Hs .

Proof. By reasoning on each component on the basis, we are led to prove the
result in Hb(R). The most difficult case is the limit near 0. It suffices to prove that
if u ∈ Hb(R), with b > 1/2, satisfies u(0) = 0, and Ψ ∈ C∞

0 (R) with Ψ(0) = 1, then

Ψ

(
t

T

)
u −→

T→0
0 in Hb.

Such a function u can be written
∫ t
0 f with f ∈ Hb−1. Then, Lemma 1.5 gives the

result we want if u ∈ Hb+ε. Nevertheless, if we have only u ∈ Hb, Ψ( t
T )u is uniformly

bounded. We conclude by a density argument.

The following lemma will be useful to control solutions on large intervals that will
be obtained by piecing together solutions on smaller ones. We state it without proof.

Lemma 1.7. Let 0 < b < 1. If
⋃
]ak, bk[ is a finite covering of [0, 1], then there

exists a constant C depending only on the covering such that for every u ∈ Xs,b

‖u‖Xs,b
[0,1]

≤ C
∑
k

‖u‖Xs,b
[ak,bk]

.

2. Existence of a solution to the NLS with source and damping terms.

2.1. Nonlinear equation. Let a ∈ C∞(M) taking real values fixed. We will
prove the existence of defocusing nonlinearities of degree 3: they will have the form
αu+ β|u|2u, with α, β ≥ 0.
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Proposition 2.1. Let T > 0 and s ≥ 1. Assume that M satisfies Assumption
3. Then, for every g ∈ L2([0, T ], Hs) and u0 ∈ Hs, there exists a unique solution u

on [0, T ] in Xs,b
T to the Cauchy problem{

i∂tu+Δu− αu− β|u|2u = a(x)(1 −Δ)−1a(x)∂tu+ g on [0, T ]×M,
u(0) = u0 ∈ Hs.

(2.1)

Moreover, the flow map

F : Hs(M)× L2([0, T ], Hs(M)) → Xs,b
T ,

(u0, g) �→ u

is Lipschitz on every bounded subset.
Proof. It is strongly inspired by the one of Bourgain [7] and Dehman, Gérard,

and Lebeau [16] for the stabilization term. The proof is mainly based on estimates of
Lemma 1.1.

First, we establish that the operator J defined by Jv = (1+ ia(x)(1−Δ)−1a(x))v
is an isomorphism of Hs and Xs,b (s ∈ R and −1 ≤ b ≤ 1 ).

J is an isomorphism of L2 because of its decomposition in identity plus an antiself-
adjoint part J = 1+A. It is then an isomorphism of Hs with s ≥ 0 by ellipticity and
for every s ∈ R by duality. Using Lemma 1.4, we infer that if −1 ≤ b ≤ 1, A maps
Xs,b into itself. Moreover, J−1 (considered, for example, acting on L2([0, T ]×M)) is a
pseudodifferential operator of order 0 and satisfies J−1 = 1−AJ−1. Then, using again
Lemma 1.4, we get that AJ−1 maps Xs,b into Xs−|b|+2,b and J is an isomorphism of
Xs,b.

In the remainder of the proof, v will denote Ju. Hence, we can write system (2.1)
as ⎧⎨

⎩
∂tv − iΔv −R0v + iβ|u|2u = −ig on [0, T ]×M,

v = Ju,
v(0) = v0 = Ju0 ∈ Hs,

(2.2)

where R0 = −iΔAJ−1 + iαJ−1 is a pseudodifferential operator of order 0.

First, we notice that if g ∈ L2([0, T ], Hs), it also belongs to Xs,−b′
T as b′ ≥ 0.

We consider the functional

Φ(v)(t) = eitΔv0 +

∫ t

0

ei(t−τ)Δ
[
R0v − iβ |u|2 u− ig

]
(τ)dτ.

We will apply a fixed point argument on the Banach space Xs,b
T . Let ψ ∈ C∞

0 (R) be
equal to 1 on [−1, 1]. Then by construction (see [24])∥∥ψ(t)eitΔv0∥∥Xs,b = ‖ψ‖Hb(R) ‖v0‖Hs .

Thus, for T ≤ 1 we have∥∥eitΔv0∥∥Xs,b
T

≤ C ‖v0‖Hs ≤ C ‖u0‖Hs .

For T ≤ 1, the one-dimensional estimate of Lemma 1.5 implies∥∥∥∥ψ(t/T )
∫ t

0

ei(t−τ)ΔF (τ)

∥∥∥∥
Xs,b

≤ CT 1−b−b′ ‖F‖Xs−b′ ,
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and then ∥∥∥∥
∫ t

0

ei(t−τ)Δ
[
R0v − iβ |u|2 u− ig

]
(τ)dτ

∥∥∥∥
Xs,b
T

(2.3)

≤ CT 1−b−b′
∥∥∥R0v − βi |u|2 u− ig

∥∥∥
Xs,−b′
T

≤ CT 1−b−b′ ‖R0v‖Xs,0
T

+
∥∥∥|u|2 u∥∥∥

Xs,−b′
T

+ ‖g‖
Xs,−b′
T

≤ CT 1−b−b′ ‖v‖Xs,b
T

(
1 + ‖v‖2X1,b

T

)
+ ‖g‖

Xs,−b′
T

.(2.4)

Thus

‖Φ(v)‖Xs,b
T

≤ C ‖u0‖Hs + ‖g‖
Xs,−b′
T

+ CT 1−b−b′ ‖v‖Xs,b
T

(
1 + ‖v‖2X1,b

T

)
(2.5)

and, similarly,

‖Φ(v) − Φ(ṽ)‖Xs,b
T

≤ CT 1−b−b′ ‖v − ṽ‖Xs,b
T

(
1 + ‖v‖2Xs,b

T
+ ‖ṽ‖2Xs,b

T

)
.(2.6)

These estimates imply that if T is chosen small enough, Φ is a contraction on a
suitable ball of Xs,b

T . Moreover, we have uniqueness in the class Xs,b
T for the Duhamel

equation and therefore for the Schrödinger equation.
We also prove propagation of regularity. If u0 ∈ Hs, with s > 1, we have an

existence time T for the solution in X1,b
T and another time T̃ for the existence in

Xs,b

T̃
. By uniqueness in X1,b

T , the two solutions are the same on [0, T̃ ]. Assume

T̃ < T . Then, ‖u(t, .)‖Hs explodes as t tends to T̃ whereas ‖u(t, .)‖H1 remains
bounded. Using local existence in H1 and Lemma 1.7, we get that ‖u‖X1,b

T̃

is finite.

Applying tame estimate (2.5) on a subinterval [T − ε, T ], with ε small enough such

that Cε1−b−b′(1 + ‖v‖2X1,b
T

) < 1/2, we obtain

‖v‖Xs,b
T

≤ C ‖u(T − ε)‖Hs + ‖g‖
Xs,−b′
T

.

Therefore, u ∈ Xs,b

T̃
, and this contradicts the explosion of ‖u(t, .)‖Hs near T̃ .

Next, we use energy estimates to get global existence. First, we will consider the
energy

E(t) =
1

2

∫
M

|∇u|2 + 1

2
α

∫
M

|u|2 + β
1

4

∫
M

|u|4 .

The energy is conserved if g = 0 and a = 0. It is nonincreasing if g = 0. In general,
multiplying our equation by ∂tū, we have the relation

E(t)− E(0) = −
∫ t

0

∥∥∥(1 −Δ)−1/2a(x)∂tu
∥∥∥2
L2

−�
∫ t

0

∫
M

g∂tu

= −
∫ t

0

∥∥∥(1 −Δ)−1/2a(x)∂tu
∥∥∥2
L2

−�
∫ t

0

∫
M

(J−1∗g)∂tv

= −
∫ t

0

∥∥∥(1 −Δ)−1/2a(x)∂tu
∥∥∥2
L2

− �
∫ t

0

∫
M

(J−1∗g)iΔv +R0v − iβ|u|2u− ig.
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If 0 ≤ t ≤ T (for this equation, there is not global existence in negative time) and
β > 0, we get

E(t) ≤ E(0) + C

∫ t

0

∥∥∇(J−1∗g)
∥∥
L2 ‖∇u‖L2 +

∫ t

0

‖g‖L2 ‖u‖L2

+

∫ t

0

‖g‖L4 ‖u‖3L4 + ‖g‖2L2([0,T ]×M)

≤ E(0) + C

∫ t

0

‖g(τ)‖H1

√
E(τ) + C

∫ t

0

‖g(τ)‖L2 (E(τ))
1/4

+ C

∫ t

0

‖g(τ)‖H1 (E(τ))
3/4

+ ‖g‖2L2([0,T ]×M)

≤ E(0) + C

∫ t

0

‖g(τ)‖H1

[
1 + (E(τ))

3/4
]
+ ‖g‖2L2([0,T ]×M) .

Therefore

max
0≤τ≤t

E(τ) ≤ E(0) + C

[
1 + max

0≤τ≤t
E(τ)3/4

]
‖g‖L1([0,T ],H1) + ‖g‖2L2([0,T ]×M) .

So we have finally

E(t) ≤ C
(
1 + E(0)4 + ‖g‖8L2([0,T ]×M) + ‖g‖4L1([0,T ],H1)

)
.(2.7)

This implies that the energy is bounded if g ∈ L2([0, T ], H1) and yields global exis-

tence in X1,b
T for every T > 0. The fact that the flow is locally Lipschitz follows from

estimate (2.6).
Remark 2.1. If g = 0, the solution of (2.1) satisfies the energy decay

E(t)− E(0) = −
∫ t

0

∥∥∥(1−Δ)−1/2a(x)∂tu
∥∥∥2
L2
.

This is obtained for initial data in H2 by multiplying the equation by ∂tū and can be
extended to initial data in H1 by approximation.

Remark 2.2. We have also proved that for any u0, g with ‖u0‖H1+‖g‖L2([0,T ],H1)

≤ A the solution u of (2.1) satisfies

‖u‖X1,b
T

≤ C(T,A).

Remark 2.3. If we look carefully at inequality (2.3), we see that we have for
0 < ε < 1− b− b′∥∥∥∥

∫ t

0

e(t−τ)Δ
[
R0v − i |u|2 u− iJg

]
(τ)dτ

∥∥∥∥
X1,b+ε

≤ CT 1−b−b′−ε
∥∥∥R0v − i |u|2 u− iJg

∥∥∥
X1,−b′
T

≤ CT 1−b−b′−ε ‖v‖X1,b
T

(
1 + ‖v‖2X1,b

T

)
+ ‖g‖L2([0,T ],H1)(2.8)

and we can then conclude that u is bounded in X1,b+ε
T .
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Remark 2.4. We notice that for a solution of the equation the term of stabiliza-
tion a(x)(1 − Δ)−1a(x)∂tu belongs to L∞([0, T ], H1(M)) as expected. Actually, for
a solution, this term acts as an operator of order 0. This is more visible using the
equation fulfilled by v = Ju.

Then, in the aim of obtaining controllability near trajectories, we prove an ap-
propriate existence theorem.

Proposition 2.2. Suppose that Assumption 3 is fulfilled. Let T > 0, and let w
be a solution in X1,b

T of{
i∂tw +Δw = ±|w|2w + g1 on [0, T ]×M,

w(0) = w0 ∈ H1(2.9)

with g1 ∈ L2([0, T ], H1). Then, for any s ∈]s0, 1], there exists ε > 0 such that for
any u0 ∈ Hs and g ∈ L2([0, T ], Hs) with ‖u0 − w0‖Hs + ‖g1 − g‖L2([0,T ],Hs) ≤ ε there

exists a unique solution u in Xs,b
T of (2.9). Moreover, for any 1 ≥ r ≥ s there exists

C = C(r, ‖w‖X1,b
T
, T ) > 0 such that, if u0 ∈ Hr and g ∈ L2([0, T ], Hr), we have

u ∈ Xr,b
T and

‖u− w‖Xr,b
T

≤ C
(
‖u0 − w0‖Hr + ‖g1 − g‖L2([0,T ],Hr)

)
.(2.10)

Remark 2.5. In the focusing case, the existence of w is not guaranteed for any
w0, g1, and T , and the result we prove assumes this existence.

Remark 2.6. Here, we emphasize the fact that the assumption of smallness
concerns only the Hs norm and not Hr. This is a consequence of the subcritical
behavior.

Proof. We want to linearize the equation. If u = w + r and g = g1 + gr, then

|w + r|2 (w + r) = |w|2 w + 2 |w|2 r + w2r̄ + 2 |r|2 w + r2w̄ + |r|2 r
= |w|2 w + 2 |w|2 r + w2r̄ + F (w, r).

We are looking for the r solution of{
i∂tr +Δr = 2 |w|2 r + w2r̄ + F (w, r) + gr,

r(x, 0) = r0(x).
(2.11)

We make a proof similar to that of Proposition 2.1. We write only the necessary
estimates. Inequalities (1.1) and (1.2) yield

‖r‖Xr,b
T

≤ C
(
‖r0‖Hr + ‖gr‖L2([0,T ],Hr)

)
+ CT 1−b−b′ ‖w‖2X1,b

T
‖r‖Xr,b

T

+ CT 1−b−b′
(
‖w‖X1,b

T
‖r‖Xr,b

T
‖r‖Xs,b

T
+ ‖r‖Xr,b

T
‖r‖2Xs,b

T

)
.

With T such that CT 1−b−b′ ‖w‖2X1,b
T

< 1/2, it yields

‖r‖Xr,b
T

≤ C
(
‖r0‖Hr + ‖gr‖L2([0,T ],Hr)

)
+ CT 1−b−b′

(
‖w‖X1,b

T
‖r‖Xr,b

T
‖r‖Xs,b

T
+ ‖r‖Xr,b

T
‖r‖2Xs,b

T

)
.(2.12)

First, we apply this with r = s. As we have proved in Lemma 1.6 the continuity
with respect to T of ‖r‖Xs,b

T
, we are in position to apply a bootstrap argument: for

‖r0‖Hs + ‖gr‖L2([0,T ],Hs) small enough (depending only on ‖w‖X1,b
T

), we obtain

‖r‖Xs,b
T

≤ C ‖r0‖Hs + ‖gr‖L2([0,T ],Hs) .
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Repeating the argument on every small interval, using that ‖r‖Xs,b
T

controls L∞(Hs)

and matching solutions with Lemma 1.7, we get the same result for every large interval,
with a smaller constant ε, depending only on s, T , and ‖w‖X1,b

T
.

Then, we return to the general case r ≥ s and CT 1−b−b′ ‖w‖2X1,b
T

< 1/2. For T

small enough (depending only on r, ε, and ‖w‖X1,b
T

), estimate (2.12) becomes

‖r‖Xr,b
T

≤ C
(
‖r0‖Hr + ‖gr‖L2([0,T ],Hr)

)
.

Again, we obtain the desired result by piecing solutions together.

2.2. Linear equation with rough potential. The control near trajectories
will be obtained by a perturbation of control of the linear Schrödinger equation with
rough potential. The equations considered are the linearization of nonlinear equations
and its dual version. We establish here the necessary estimates.

Proposition 2.3. Suppose Assumption 3. Let T > 0, s ∈ [−1, 1], A > 0, and

w ∈ X1,b
T with ‖w‖X1,b

T
≤ A. For every u0 ∈ Hs and g ∈ Xs,−b′

T there exists a unique

solution u in Xs,b
T of equation{
i∂tu+Δu = ±2|w|2u± w2u+ g on [0, T ]×M,

u(0) = u0 ∈ Hs.
(2.13)

Moreover, there exists C = C(s, A, T ) > 0 such that

‖u‖Xs,b
T

≤ C (‖u0‖Hs + ‖g‖Xs,−b′ ) .(2.14)

Proof. We make the same arguments as those above using estimates of Lemma
1.2.

3. Linearization in H1. The following result shows that any sequence of solu-
tions with Cauchy data weakly convergent to 0 asymptotically behave as solutions of
the linear equation. These types of results were first introduced by Gérard in [22] for
the wave equation and are typical of subcritical situations.

Proposition 3.1. Suppose Assumption 3 is fulfilled. Let (un) ∈ X1,b
T be a

sequence of solutions of{
i∂tun +Δun − un − |un|2un = a(x)(1 −Δ)−1a(x)∂tun on [0, T ]×M,

un(0) = un,0 ∈ H1(M)
(3.1)

such that

un,0 ⇀
H1(M)

0.

Then

|un|2un −→
X1,−b′
T

0.

Proof. We prove that any subsequence (still denoted un) admits another subse-

quence converging to 0. The main point is the tame Xs,b
T estimate of Lemma 1.1. For

one s0 < s < 1 we have∥∥|un|2un∥∥X1,−b′
T

≤ C ‖un‖2Xs,b
T

‖un‖X1,b
T
.(3.2)
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First, using Remark 2.2, we conclude that un is bounded in X1,b
T , and actually by

Remark 2.3, un is bounded in X1,b+ε
T for some ε > 0. By compact embedding of

X1,b+ε
T into Xs,b

T we obtain that un admits a subsequence converging weakly in X1,b
T

and strongly in Xs,b
T to a function u ∈ Xs,b

T with u(0) = 0. un(0) strongly converges
to 0 in Hs and, by continuity of the nonlinear flow in Hs, un strongly converges to 0
in Xs,b

T . This yields the desired result thanks to (3.2).

4. Propagation of compactness. In this section, we adapt some theorems of
Dehman, Gérard, and Lebeau [16] in the case of Xs,b spaces. We recall that S∗M
denotes the cosphere bundle of the Riemannian manifold M :

S∗M = {(x, ξ) ∈ T ∗M : |ξ|x = 1} .

Proposition 4.1. Let r ∈ R. Let un be a sequence of solutions to

i∂tun +Δun = fn

such that for one 0 ≤ b ≤ 1 we have

‖un‖Xr,b
T

≤ C, ‖un‖Xr−1+b,−b
T

→ 0, and ‖fn‖Xr−1+b,−b
T

→ 0.

Then, there exists a subsequence (un′) of (un) and a positive measure μ on ]0, T [×S∗M
such that for every tangential (that is, without time derivative) pseudodifferential op-
erator A = A(t, x,Dx) of order 2r and of principal symbol σ(A) = a2r(t, x, ξ)

(A(t, x,Dx)un′ , un′)L2(]0,T [×M) →
∫
]0,T [×S∗M

a2r(t, x, ξ) dμ(t, x, ξ).

Moreover, if Gs denotes the geodesic flow on S∗M , one has for every s ∈ R

Gs(μ) = μ.

Proof. Existence of the measure: it is based on the G̊arding inequality; see [21]
for an introduction.

Propagation. Denote L the operator L = i∂t + Δ. Let ϕ = ϕ(t) ∈ C∞
0 (]0, T [),

and let B(x,Dx) be a pseudodifferential operator of order 1, with principal symbol
b2r−1, A(t, x,Dx) = ϕ(t)B(x,Dx). For ε > 0, we denote Aε = ϕBε = AeεΔ for the
regularization.

As Aεun and A∗
εun are C∞, we can write

(Lun, A
∗
εun)L2(]0,T [×M) = (fn, A

∗
εun)L2(]0,T [×M)

and

(Aεun, Lun)L2(]0,T [×M) = (Aεun, fn)L2(]0,T [×M).

We write by a classical way

αn,ε = (Lun, A
∗
εun)L2(]0,T [×M) − (Aεun, Lun, )L2(]0,T [×M)

= ([Aε,Δ]un, un)− i(∂t(Aε)un, un).

We will strongly use Lemmas 1.3 and 1.4 without citing them.
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∂t(Aε) is of order 2r − 1 uniformly in ε; then,

sup
ε
(∂t(Aε)un, un)L2(]0,T [×M) ≤ C‖∂t(Aε)un‖X−r+1−b,b

T
‖un‖Xr−1+b,−b

T

≤ C‖un‖Xr,b
T

‖un‖Xr−1+b,−b
T

,

which tends to 0 if n→ ∞.

But we also have

αn,ε = (fn, A
∗
εun)L2(]0,T [×M) − (Aεun, fn)L2(]0,T [×M),∣∣(fn, A∗

εun)L2(]0,T [×M)

∣∣ ≤ ‖fn‖Xr−1+b,−b
T

‖A∗
εun‖X−r+1−b,b

T

≤ ‖fn‖Xr−1+b,−b
T

‖un‖Xr,b
T
.

Then, supε
∣∣(fn, A∗

εun)L2(]0,T [×M)

∣∣→ 0 when n→ ∞. The same estimate for the
other terms gives supε αn,ε → 0.

Finally, taking the supremum on ε tending to 0, we get

(ϕ[B,Δ]un, un)L2(]0,T [×M) → 0 when n→ ∞,

which means, in terms of measure,∫
]0,T [×S∗M

ϕ(t) {σ2(Δ), b2r−1} dμ(t, x, ξ) = 0.

This is precisely the propagation along the geodesic flow.

Corollary 4.2. Let r ∈ R. Assume that ω ⊂ M satisfies Assumption 1 and

a ∈ C∞(M), as in (0.3). Let un be a sequence bounded in Xr,b′
T with 0 < b′ < 1/2,

weakly convergent to 0 and satisfying{
i∂tun +Δun → 0 in Xr,−b′

T ,
a(x)un → 0 in L2([0, T ], Hr).

(4.1)

Then, we have un → 0 in Xr,1−b′ .

Proof. Let (unk) be any subsequence of (un). The assumption on b′ and compact
embedding allow us to apply Proposition 4.1. We can attach to (unk) a microlocal
defect measure in L2([0, T ], Hr) that propagates along the geodesics with infinite
speed. The second assumption of (4.1) gives a(x)μ = 0. By Assumption 1 and
the fact that a is elliptic on ω, we have μ = 0 on ]0, T [×S∗M ; i.e., (un′) → 0 in
L2([0, T ], Hr), and un → u in L2([0, T ], Hr).

Then, we can pick t0 such that un(t0) → 0 in Hr. Using Lemma 1.5 and assump-
tions on b′, we get for T ≤ 1∥∥∥∥

∫ t

0

ei(t−τ)Δfn(τ)dτ

∥∥∥∥
Xr,1−b′
T

≤ C ‖fn‖Xr,−b′
T

.

Using the Duhamel formula, we conclude that un → 0 in Xr,1−b′
T .

Then, the hypothesis T ≤ 1 is easily removed by piecing solutions together as in
Lemma 1.7.



CONTROL OF NLS ON 3D MANIFOLDS 801

5. Propagation of regularity. We write Proposition 13 of [16] with some Xs,b

assumptions on the second term of the equation.

Proposition 5.1. Let T > 0, let 0 ≤ b < 1, and let u ∈ Xr,b
T , r ∈ R, be a

solution of

i∂tu+Δu = f ∈ Xr,−b
T .

Given γ0 = (x0, ξ0) ∈ T ∗M \ 0, we assume that there exists a zeroth order pseudo-
differential operator χ(x,Dx), elliptic in γ0 such that

χ(x,Dx)u ∈ L2
loc(]0, T [, H

r+ρ)

for some ρ ≤ 1−b
2 . Then, for every γ1 ∈ Γγ0 , the geodesic ray starting at γ0, there

exists a pseudodifferential operator Ψ(x,Dx), elliptic in γ1 such that

Ψ(x,Dx)u ∈ L2
loc(]0, T [, H

r+ρ).

Corollary 5.2. With the notations of the proposition, if an open set ω satisfies
Assumption 1 and a(x)u ∈ L2

loc(]0, T [, H
r+ρ), with a ∈ C∞(M), as in (0.3), then

u ∈ L2
loc(]0, T [, H

r+ρ(M).

Proof of Proposition 5.1. We first regularize un = e
1
nΔu with ‖un‖Xr,b

T
≤ C.

Set s = r + ρ. Let B(x,Dx) be a pseudodifferential operator of order 2s − 1 =
2r + 2ρ− 1 that will be chosen later, and let A = A(t, x,Dx) = ϕ(t)B(x,Dx), where
ϕ ∈ C∞

0 (]0, T [).

If L = i∂t +Δ, we write

(Lun, A
∗un)L2(]0,T [×M) − (Aun, Lun, )L2(]0,T [×M)

= ([A,Δ]un, un)L2(]0,T [×M) − (iϕ′Bun, un)L2(]0,T [×M),

|(Aun, fn)L2(]0,T [×M)| ≤ ‖Aun‖X−r,b
T

‖fn‖Xr,−b
T

≤ ‖un‖Xr+2ρ−1+b,b
T

‖fn‖Xr,−b
T

.

As we have chosen ρ ≤ 1−b
2 , we have r + 2ρ− 1 + b ≤ r and so

|(Aun, fn)L2(]0,T [×M)| ≤ C‖un‖Xr,b
T

‖fn‖Xr,−b
T

≤ C.

Similarly

|(ϕ′Bun, un)L2(]0,T [×M)| ≤ C‖un‖Xr,b
T

‖un‖Xr,−b
T

≤ C.

Then,

([A,Δ]un, un)L2(]0,T [×M) =

∫ T

0

ϕ(t)([B,Δ]un(t), un(t))L2(M)dt

is uniformly bounded. Then, we select B by means of symplectic geometry. Take
γ1 ∈ Γγ0 ; U and V are two small conical neighborhoods, respectively, of γ1 and γ0.
For every symbol c(x, ξ), of order s, supported in U , one can find a symbol b(x, ξ) of
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order 2s− 1 such that

1

i
{σ2(Δ), b(x, ξ)} = |c(x, ξ)|2 + r(x, ξ)

with r(x, ξ) of order 2s and supported in V . We take B a pseudodifferential operator
with principal symbol b so that [B,Δ] is a pseudodifferential operator of principal

symbol |c(x, ξ)|2 + r(x, ξ). Then, if we choose c(x, ξ) elliptic at γ1, we conclude that∫ t

0

ϕ(t) ‖c(x,Dx)un(t, x)‖2L2 dt ≤ C.

This ends the proof of Proposition 5.1.
Corollary 5.3. Here dim M ≤ 3 and b > 1/2. Let u ∈ X1,b

T be a solution of{
i∂tu+Δu = |u|2u+ u on [0, T ]×M,

∂tu = 0 on ]0, T [×ω,(5.1)

where ω satisfies Assumption 1. Then u ∈ C∞(]0, T [×M).
Proof. We have u ∈ L∞([0, T ], H1) and so in L∞([0, T ], L6) by Sobolev embed-

ding. Then, we infer that |u|2u ∈ L∞([0, T ], L2(M)).
On ]0, T [×ω, we have

Δu = |u|2 u+ u.

Therefore, Δu ∈ L2([0, T ], L2(ω)) and u ∈ L2(]0, T [, H2(ω)). Since H2(ω) is an
algebra, we can go on the same reasoning to conclude that u ∈ C∞(]0, T [×ω).

By applying once Corollary 5.2, we get u ∈ L2
loc([0, T ], H

1+ 1−b
2 ). Then we can

pick t0 such that u(t0) ∈ H1+ 1−b
2 . We can then solve in X1+ 1−b

2 ,b our NLS equation

with initial data u(t0). By uniqueness in X1,b
T , we can conclude that u ∈ X

1+ 1−b
2 ,b

T .
By iteration, we get that u ∈ L2(]0, T [, Hr) for every r ∈ R and u ∈ C∞([0, T ]×

M).
Corollary 5.4. If, in addition to Corollary 5.3, ω satisfies Assumption 2, then

u = 0.
Proof. Using Corollary 5.3, we infer that u ∈ C∞(]0, T [×M). Taking the time

derivative of (5.1), v = ∂tu satisfies{
i∂tv +Δv + f1 v + f2 v̄ = 0,

v = 0 on ]0, T [×ω(5.2)

for some f1, f2 ∈ C∞(]0, T [×M). Assumption 2 gives v = ∂tu = 0. Multiplying (5.1)
by ū and integrating, we get∫

M

|∇u|2 +
∫
M

|u|4 +
∫
M

|u|2 = 0,

and so u = 0.
Remark 5.1. We have the same conclusion for the u ∈ X1,b

T solution of{
i∂tu+Δu = u on [0, T ]×M,

∂tu = 0 on ]0, T [×ω.(5.3)
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6. Stabilization. Theorem 0.2 is a consequence of the following proposition.
Proposition 6.1. Let a ∈ C∞(M), as in (0.3). Under Assumptions 1, 2, and 3,

for every T > 0 and every R0 > 0, there exists a constant C > 0 such that inequality

E(0) ≤ C

∫ T

0

∥∥∥(1−Δ)−1/2a(x)∂tu
∥∥∥2
L2
dt

holds for every solution u of the damped equation{
i∂tu+Δu− (1 + |u|2)u = a(x)(1 −Δ)−1a(x)∂t on [0, T ]×M,

u(0) = u0 ∈ H1(6.1)

and ‖u0‖H1 ≤ R0.
Proof of Proposition 6.1 ⇒ Theorem 0.2. For any f ∈ H1(M), Sobolev embed-

dings yield

E(f) ≤ C
(
‖f‖2H1 + ‖f‖4H1

)
,

‖f‖H1 ≤ C (E(f))
1/2

.

As the energy is decreasing, if ‖u0‖H1 ≤ R0, we can find another R̃0 such that

‖u(t)‖H1 ≤ R̃0 for any t > 0. For this range of values, we have

C−1 (E(f))
1/2 ≤ ‖f‖H1 ≤ C (E(f))

1/2
(6.2)

for one C > 0 depending on R0.
We apply Proposition 6.1 with this bound and obtain E(t) ≤ Ce−γ(R0)tE(0).

Then, for t > t(R0), we have ‖u(t)‖H1 ≤ 1.
We take γ(1) to be the decay rate corresponding to the bound 1. Therefore, for

t > t(R0), we get that ‖u(t)‖H1 ≤ Ce−γ(1)(t−t(R0)) ‖u(t(R0))‖H1 . This yields a decay
rate independent of R0 as announced, while the coefficient C may strongly depend on
R0.

Remark 6.1. If we make the change of unknown w = e−itu, w is the solution of
the new damped equation{

i∂tw +Δw − |w|2w = a(x)(1 −Δ)−1a(x)(∂tw − iw) on [0, T ]×M,
w(0) = u0 ∈ H1.

This modification is necessary because there is no exponential decay for the damped
equation (6.1) with |u|2u instead of (1+ |u|2)u. We check, for example, that for a = 1
the solution u(t) with constant Cauchy data u0 is

|u(t)|2 =
|u0|2

1 + |u0|2t .

This can be seen by working in polar coordinates u(t) = ρ(t)eiθ(t) so that the solution
satisfies ρ̇ + iρθ̇ = 1

i−1ρ
3 and d

dt(
1
ρ2 ) = 1 by taking the real part. Moreover, it also

proves that the solution is global in time only on R+ (this restriction remains with the
nonlinearity (1 + |u|2)u).

Proof of Proposition 6.1. We argue by contradiction; we suppose the existence
of a sequence (un) of solutions of (6.1) such that

‖un(0)‖H1 ≤ R0
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and ∫ T

0

∥∥∥(1−Δ)−1/2a(x)∂tun

∥∥∥2
L2
dt ≤ 1

n
E(un(0)).(6.3)

We note that αn = E(un(0))
1/2. By the Sobolev embedding for the L4 norm, we have

αn ≤ C(R0). So, up to extraction, we can suppose that αn −→ α. We will distinguish
two cases: α > 0 and α = 0.

First case: αn −→ α > 0. By decreasing the energy, (un) is bounded in

L∞([0, T ], H1) and so in X1,b
T . Then, as X1,b

T is a separable Hilbert we can extract a

subsequence such that un ⇀ u weakly in X1,b
T ans strongly in Xs,b′

T for one u ∈ X1,b
T

and s > s0. Therefore, |un|2un converges to |u|2u in Xs,−b′
T .

Using (6.3) and passing to the limit in the equation verified by un, we get{
i∂tu+Δu = |u|2u+ u on [0, T ]×M,

∂tu = 0 on ]0, T [×ω.
Using Corollary 5.4, we infer that u = 0. Therefore, we have, up to new extraction,
un(0) ⇀ 0 in H1. Using Proposition 3.1 of linearization, we infer that |un|2un → 0

in X1,−b′
T . Moreover, by (6.3) we have

a(x)(1 −Δ)−1a(x)∂tun −→
L2([0,T ],H1)

0

and the convergence is also in X1,−b′
T .

Then, estimate (6.3) also implies a(x)∂tun −→
L2([0,T ],H−1)

0. Using (6.1), we obtain

a(x)
[
Δun − un − |un|2un − a(x)(1 −Δ)−1a(x)∂tun

] −→
L2([0,T ],H−1)

0.

By Sobolev embedding, un tends to 0 in L∞([0, T ], Lp) for any p < 6. Therefore,
|un|2un converges to 0 in L∞([0, T ], Lq) for q < 2 and so in L2([0, T ], H−1). Thus, we
get

a(x)(Δ − 1)un −→
L2([0,T ],H−1)

0.

Therefore, (1−Δ)1/2a(x)un = (1−Δ)−1/2a(x)(1−Δ)un+(1−Δ)−1/2[(1−Δ), a(x)]un
converges to 0 in L2([0, T ], L2).

In conclusion, we have⎧⎪⎨
⎪⎩

un ⇀ 0 in X1,b′
T ,

a(x)un → 0 in L2([0, T ], H1),

i∂tun +Δun − un −→ 0 in X1,−b′
T .

Thus, changing un into eitun and using that the multiplication by eit is continuous
on any Xs,b

T (see Lemma 1.3), we are in position to apply Corollary 4.2. Hence, as we
have 1− b′ > 1/2, it yields

un(0) −→
H1

0.

In particular, E(un(0)) → 0, which is a contradiction to our hypothesis α > 0.
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Second case: αn −→ 0. Let us make the change of unknown vn = un/αn. vn is
the solution of the system

i∂tvn +Δvn − a(x)(1 −Δ)−1a(x)∂tvn = vn + α2
n|vn|2vn

and ∫ T

0

∥∥∥(1−Δ)−1/2a(x)∂tvn

∥∥∥2
L2
dt ≤ 1

n
.(6.4)

For a constant depending on R0, we still have (6.2). Therefore, we write

‖vn(t)‖H1 =
‖un(t)‖H1

E(un(0))1/2
≤ C

E(un(t))
1/2

E(un(0))1/2
≤ C.

Therefore

‖vn(0)‖H1 =
‖un(0)‖H1

E(un(0))1/2
≥ C > 0.(6.5)

Thus, we have ‖vn(0)‖H1 ≈ 1 and vn is bounded in L∞([0, T ], H1).
By the same estimates we made in the proof of Proposition 2.1, we obtain

‖vn‖X1,b
T

≤ C ‖vn(0)‖H1 + CT 1−b−b′
(
‖vn‖X1,b

T
+ α2

n ‖vn‖3X1,b
T

)
.

Then, if we take CT 1−b−b′ < 1/2, independent of vn, we have

‖vn‖X1,b
T

≤ C(1 + α2
n ‖vn‖3X1,b

T
).

By a bootstrap argument, we conclude that ‖vn‖X1,b
T

is uniformly bounded. Using

Lemma 1.7, we conclude that it is bounded on X1,b
T for some large T , and then

α2
n|vn|2vn tends to 0 in X1,−b′

T .

Then, we can extract a subsequence such that vn ⇀ v in X1,b
T , where v is the

solution of {
i∂tv +Δv = v on [0, T ]×M,

∂tv = 0 on ]0, T [×ω.

It implies v = 0 by Remark 5.1. Estimate (6.4) yields that a(x)(1 − Δ)−1a(x)∂tvn

converges to 0 in L2([0, T ], H1) and so in X1,−b′
T .

We finish the proof as in the first case to conclude the convergence of vn to 0 in
X1,b

T . This contradicts (6.5).

7. Controllability of the linear equation.

7.1. Observability estimate.
Proposition 7.1. Assume that (M,ω) satisfies Assumptions 1, 3, and 4. Let

a ∈ C∞(M), as in (0.3), taking real values. Then, for every −1 ≤ s ≤ 1, T > 0, and
A > 0, there exists C such that estimate

‖u0‖2Hs ≤ C

∫ T

0

‖au(t)‖2Hs dt
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holds for every solution u(t, x) ∈ Xs,b
T of the system{

i∂tu+Δu = ±2|w|2u± w2ū on [0, T ]×M,
u(0) = u0 ∈ Hs(7.1)

with one w satisfying ‖w‖X1,b
T

≤ A.

Proof. We treat only the case with 2|w|2u + w2ū. The others are similar. We

argue by contradiction. Let un ∈ Xs,b
T be a sequence of solutions to (7.1) with some

associated wn such that

‖un(0)‖Hs = 1,

∫ T

0

‖aun‖2Hs → 0(7.2)

and

‖wn‖X1,b
T

≤ A.

Proposition 2.3 of existence yields that un is bounded in Xs,b
T , and we can extract

a subsequence such that un converges strongly in Xs−1+b,−b
T to some u ∈ Xs,b

T (b <
1− b′ < 1).

Then, using Lemma 1.2, we infer that 2|wn|2un + w2
nūn is bounded in Xs,−b′

T .

We can extract another subsequence such that it converges strongly in Xs−1+b,−b
T

(here we use −b < −1/2 < −b′) to some Ψ ∈ Xs,−b′
T . Denoting rn = un − u

and fn = 2|wn|2un + w2
nūn − Ψ, we can apply Proposition 4.1 of propagation of

compactness. As ω satisfies geometric control and aun → 0 in L2([0, T ], Hs), we

obtain that rn → 0 in L2
loc([0, T ], H

s). rn is also bounded in Xs,b
T , and we deduce, by

interpolation, that rn tends to 0 in Xs,b′
I for every I ⊂⊂]0, T [.

Now, we want to prove that u ≡ 0 using unique continuation. As wn is bounded
in X1,b

T , we can extract a subsequence such that it converges weakly to some w ∈ X1,b
T .

We have to prove that u is the solution of a linear Schrödinger equation with potential.
But the fact that |wn|2un converges weakly to |w|2u is not guaranteed and actually
uses the fact that the regularityH1 is subcritical (see the article of Molinet [37], where
the limit of the product is not the expected one).

We decompose

un|wn|2 − u|w|2 = (un − u)|wn|2 + u
[|wn − w|2 − w(w − wn)− w(w − wn)

]
= I + II + III + IV.

Term I converges strongly to 0 in Xs,−b′
T because un − u tends to 0 in Xs,b′

T and wn

is bounded in X1,b
T . For term II, we use the tame estimate for ε such that 1− ε > s0:∥∥u|wn − w|2∥∥

Xs,−b′
T

≤ ‖u‖Xs,b
T

‖wn − w‖
X1−ε,b′
T

‖wn − w‖
X1,b′
T

.

By compact embedding, wn −w converges, up to extraction, strongly to 0 in X1−ε,b′
T

and term II converges strongly in Xs,−b′
T . Terms III and IV converge weakly to 0 in

X−1,−b
T and so in the distributional sense.
Finally, we conclude that the limit of un|wn|2 is u|w|2. We obtain similarly that

w2
nun converges in the distributional sense to w2ū. Therefore, u is the solution of{

i∂tu+Δu = 2|w|2u+ w2ū,
u = 0 on [0, T ]× ω.
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Using Corollary 5.2, we infer that u ∈ L2
loc([0, T ], H

s+ 1−b
2 ), and the existence propo-

sition (Proposition 2.3) yields that it actually belongs to X
s+ 1−b

2 ,b

T . By iteration, we

obtain that u ∈ X1,b
T . Then, we can apply Assumption 4 and we in fact have u = 0.

We pick t0 ∈ [0, T ] such that un(t0) converges strongly to 0 in Hs. Estimate
(2.14) of the existence proposition (Proposition 2.3) yields strong convergence to 0 of

un in Xs,b
T . Therefore, ‖un(0)‖Hs tends to 0, which contradicts (7.2).

7.2. Linear control.
Proposition 7.2. Assume that (M,ω) satisfies Assumptions 1, 3, and 4. Let

−1 ≤ s ≤ 1, T > 0, and w ∈ X1,b
T . For every u0 ∈ Hs(M) there exists a control

g ∈ C([0, T ], Hs) supported in [0, T ]×ω such that the unique solution u in Xs,b
T of the

Cauchy problem{
i∂tu+Δu = ±2|w|2u± w2u+ g on [0, T ]×M,

u(0) = u0 ∈ Hs(M)
(7.3)

satisfies u(T ) = 0.
Proof. We treat only the case with 2|w|2u + w2ū. Let a(x) ∈ C∞(M) be real

valued, as in (0.3). We apply the HUM method of Lions. We consider the system{
i∂tu+Δu = 2|w|2u+ w2u+ g, g ∈ L2([0, T ], Hs), u(T ) = 0,
i∂tv +Δv = 2|w|2v − w2v, v(0) = v0 ∈ H−s.

These equations are well posed in Xs,b
T and X−s,b

T thanks to Proposition 2.3. The
equation verified by v is the dual of the one of u for the real duality (the equation is
not C linear). Then, multiplying the first system by iv, integrating, and taking the
real part, we get (the computation is true for w, g, and v0 smooth; we extend it by
approximation)

�(u0, v0)L2 = �
∫ T

0

(ig, v)L2dt,

where (·, ·)L2 is the complex duality on L2(M). We define the continuous map S :
H−s → Hs by Sv0 = u0 with the choice

g = Av = −ia(x)(1−Δ)−sa(x).

This yields

�(Sv0, v0)L2 = �
∫ T

0

(a(x)(1 −Δ)−sa(x)v, v) =

∫ T

0

∥∥∥(1−Δ)−s/2a(x)v
∥∥∥2
L2

=

∫ T

0

‖a(x)v‖2H−s .

Thus, S is self-adjoint and positive definite thanks to the observability estimate of
Proposition 7.1. It therefore defines an isomorphism from H−s into Hs. Moreover,
we notice that the norms of S and S−1 are uniformly bounded as w is bounded in
X1,b

T .
Proposition 7.3. Assume 0 ≤ s ≤ 1, w = 0, and (M,ω) is either
–(T3, any open set),
–(S2 × S1) (a neighborhood of the equator) × S1),
–(S2 × S1, S2 × (any open set of S1)).
Then, the same conclusion as in Proposition 7.2 holds.
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Proof. By following the proof of Proposition 7.2, we are reduced to proving an
observability estimate:

‖u0‖2H−s ≤ C

∫ T

0

∥∥a(x)eitΔu0∥∥2H−s dt.

These results are already known for s = 0:
–For T3, this was first proved by Jaffard [26] in dimension 2 and generalized to

any dimension by Komornik and Loreti [28].
–The others example are of the form (M1 ×M2, ω1 ×M2), where ω1 satisfies the

observability estimate.
We can extend them to any s, with 0 ≤ s ≤ 1, by writing

‖u0‖H−s =
∥∥∥(1−Δ)−s/2u0

∥∥∥
L2

We conclude using the observability estimate in L2 and commutator estimates.
Actually, Proposition 7.4 of the next section proves that controllability in L2

implies controllability in Hs, 0 ≤ s ≤ 1, with the HUM operator constructed on L2.
This yields the observability estimate in H−s, and, for that reason, we do not detail
the previous argument.

7.3. Regularity of the control. This section is strongly inspired by the work of
Dehman and Lebeau [17]. It expresses the fact that the HUM operator constructed on
a spaceHs propagates some better regularity. We extend this result to the Schrödinger
equation with some rough potentials.

Let T > 0, s ∈ [−1, 1], and w ∈ X1,b
T . As in the the proof of Proposition 7.2, we

denote S = Ss,T,w,a : H−s → Hs the HUM operator of control associated with the
trajectory w by SΦ0 = u0, where{

i∂tΦ+ΔΦ = 2|w|2Φ− w2Φ,
Φ(x, 0) = Φ0(x) ∈ H−s

and u is the solution of{
i∂tu+Δu = 2|w|2u+ w2u+AΦ,

u(T ) = 0,

where A = −ia(x)(1−Δ)−sa(x).
Proposition 7.4. Suppose Assumptions 3 and 5 are fulfilled. Let 0 ≤ s0 < s,≤

1, ε = 1 − s, and w ∈ X1,b
T . Denote S = Ss,T,w,a the operator defined above. We

assume that S is an isomorphism from H−s into Hs. Then, S is also an isomorphism
from H−s+ε into Hs+ε = H1.

Proof. First, we show that S maps H−s+ε into Hs+ε.
Let Φ0 ∈ H−s+ε. By the existence proposition (Proposition 2.3), we have Φ ∈

X−s+ε,b
T ; then AΦ ∈ L2([0, T ], Hs+ε), and the existence proposition (Proposition 2.3)

gives again u ∈ Xs+ε,b
T and u(0) = SΦ0 ∈ Hs+ε.

To finish, we have to prove only that SΦ0 = u0 ∈ Hs+ε implies Φ0 ∈ H−s+ε. As
we already know that Φ0 ∈ H−s, we need to prove that (−Δ)ε/2Φ0 ∈ H−s. We use
the fact that S is an isomorphism from H−s into Hs. Denote Dε = (−Δ)ε/2:

‖DεΦ0‖H−s ≤ C ‖SDεΦ0‖Hs ≤ C ‖SDεΦ0 −DεSΦ0‖Hs + C ‖DεSΦ0‖Hs

≤ C ‖SDεΦ0 −Dεu0‖Hs + C ‖u0‖Hs+ε .
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Let ϕ be the solution of {
i∂tϕ+Δϕ = 2|w|2ϕ− w2ϕ,

ϕ(x, 0) = DεΦ0(x)

and v the solution of {
i∂tv +Δv = 2|w|2v + w2v +Aϕ,

v(T ) = 0

so that v(0) = SDεΦ0. We need to estimate ‖v(0)−Dεu0‖Hs . But r = v −Dεu is
the solution of{
i∂tr +Δr = 2|w|2r + w2r − 2[Dε, |w|2]u − [Dε, w2]u+A(ϕ−DεΦ)− [Dε, A]Φ,

r(T ) = 0.

Then, using Proposition 2.3 we obtain

‖r0‖Hs ≤ C ‖r‖Xs,b
T

≤ C
(∥∥[Dε, |w|2]u∥∥

Xs,−b′
T

+
∥∥[Dε, w2]

∥∥
Xs,−b′
T

+ ‖A(ϕ −DεΦ)‖
Xs,−b′
T

+ ‖[Dε, A]Φ‖
Xs,−b′
T

)
.

Lemma A.3 of Appendix A gives us some estimates about the commutators. For the
last term, we notice that [Dε, A] is a pseudodifferential operator of order ε− 2s− 1 ≤
−2s:

‖r0‖Hs ≤ C
(
‖w‖2

Xs+ε,b′
T

‖u‖
Xs,b′
T

+ ‖A(ϕ−DεΦ)‖
Xs,−b′
T

+ ‖Φ‖L2([0,T ],H−s)

)
.

We already know that u ∈ Xs,b′
T , w ∈ Xs+ε,b′

T , and Φ ∈ X−s,b
T . We have only to

estimate ‖A(ϕ−DεΦ)‖
Xs,−b′
T

≤ C ‖ϕ−DεΦ‖L2([0,T ],H−s). But d = ϕ −DεΦ is the

solution of {
i∂td+Δd = 2|w|2d− w2d− 2[Dε, |w|2]Φ + [Dε, w2]Φ,

d(x, 0) = 0.

Thus, using Proposition 2.3, we get

‖ϕ−DεΦ‖L2(H−s) ≤ C ‖d‖X−s,b
T

≤ C
(∥∥[Dε, |w|2]Φ∥∥

X−s,−b′
T

+
∥∥[Dε, w2]Φ

∥∥
X−s,−b′
T

)
.

The second part of Lemma A.3 allows us to conclude.

8. Control near a trajectory. Theorems 0.3 and 0.4 are consequences of the
following proposition.

Proposition 8.1. Suppose Assumptions 3 and 5 are fulfilled. Let T > 0, and let
w ∈ X1,b

T be a controlled trajectory, i.e., a solution of

i∂tw +Δw = ±|w|2w + g1 on [0, T ]×M

with g1 ∈ L2([0, T ], H1(M)), supported in ω. Let 1 ≥ s > s0 ≥ 0. Assume that the
HUM operator S = Ss,T,w,a, defined in section 7.3, is an isomorphism from H−s into
Hs.
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There exists ε > 0 such that for every u0 ∈ Hs with ‖u0 − w(0)‖Hs < ε there

exists g ∈ C([0, T ], Hs) supported in [0, T ]×ω such that the unique solution u in Xs,b
T

of {
i∂tu+Δu = ±|u|2u+ g,

u(x, 0) = u0(x)
(8.1)

fulfills u(T ) = w(T ). Moreover, we can find another ε > 0 depending only on T , s, ω,
and ‖w‖X1,b

T
such that for any u0 ∈ H1 with ‖u0 − w(0)‖Hs < ε the same conclusion

holds with g ∈ C([0, T ], H1).
Proof. In the demonstration, we denote C some constants that could actually

depend on T , ‖w‖X1,b
T

, and s. The final ε will have the same dependence. We make

the proof for the defocusing case, but since there is no energy estimate, it is the same
in the other situation.

We linearize the equation as in Proposition 2.2. If u = w+r, then r is the solution
of {

i∂tr +Δr = 2 |w|2 r + w2r̄ + F (w, r) + g − g1,
r(x, 0) = r0(x)

with F (w, r) = 2 |r|2 w+ r2w̄+ |r|2 r. We seek g under the form g1 +AΦ, where Φ is
the solution of the dual linear equation and A = −ia(x)(1−Δ)−sa(x), as in the linear
control. The purpose is then to choose the adequate Φ0, and the system is completely
determined.

With ‖r0‖Hs small enough, we are looking for a control such that r(T ) = 0. More
precisely, we consider the two systems{

i∂tΦ+ΔΦ = 2|w|2Φ− w2Φ,
Φ(x, 0) = Φ0(x) ∈ H−s

and {
i∂tr +Δr = 2 |w|2 r + w2r̄ + F (w, r) +AΦ,
r(x, T ) = 0.

Let us define the operator

L : H−s(M) → Hs(M),
Φ0 �→ LΦ0 = r(0).

We split r = v +Ψ with Ψ the solution of{
i∂tΨ+ΔΨ = 2|w|2Ψ+ w2Ψ+AΦ,

Ψ(T ) = 0.

This corresponds to the linear control, and so Ψ(0) = SΦ0. v is the solution of{
i∂tv +Δv = 2|w|2v + w2v + F (w, r),

v(T ) = 0.
(8.2)

Then, r, v, Ψ belong to Xs,b
T and r(0) = v(0) + Ψ(0), which we can write as

LΦ0 = KΦ0 + SΦ0,
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where KΦ0 = v(0). LΦ0 = r0 is equivalent to Φ0 = −S−1KΦ0+S−1r0. Defining the
operator B : H−s → H−s by

BΦ0 = −S−1KΦ0 + S−1r0,

the problem LΦ0 = r0 is now to find a fixed point of B near the origin of H−s. We
will prove that B is contracting on a small ball BH−s(0, η) provided that ‖r0‖Hs is
small enough.

We may assume T < 1 and fix it for the rest of the proof (actually the norm of
S−1 depends on T and even explodes when T tends to 0; see [36] and [43]). We have

‖BΦ0‖H−s ≤ C (‖KΦ0‖Hs + ‖r0‖Hs) .

So, we are led to estimate ‖KΦ0‖Hs = ‖v(0)‖Hs .
If we apply to (8.2) the estimate of Proposition 2.3, we get

‖v(0)‖Hs ≤ ‖v‖Xs,b
T

≤ C ‖F (w, r)‖
Xs,−b′
T

≤ C ‖w‖X1,b
T

‖r‖2Xs,b
T

+ ‖r‖3Xs,b
T
.

Then, we use the linear behavior near a trajectory of Proposition 2.2. We conclude
that for ‖AΦ‖L2([0,T ],Hs) ≤ ‖Φ‖X−s,b

T
≤ C ‖Φ0‖H−s < Cη (see Proposition 2.3) small

enough, we have

‖r‖Xs,b
T

≤ C ‖Φ0‖H−s .

This yields

‖BΦ0‖H−s ≤ C
(
‖Φ0‖2H−s + ‖Φ0‖3H−s + ‖r0‖Hs

)
.

Choosing η small enough and ‖r0‖Hs ≤ η/2C, we obtain ‖BΦ0‖H−s ≤ η and B
reproduces the ball BH−s(0, η).

If u0 ∈ H1, we want one g in C([0, T ], H1), that is, Φ0 ∈ H1−2s. We prove that
B reproduces BH−s(0, η) ∩BH1−2s (0, R) for R large enough.

Proposition 7.4 yields that S is an isomorphism from H1−2s into H1. Then, we
have by the same arguments as above:

‖BΦ0‖H1−2s ≤ C (‖KΦ0‖H1 + ‖r0‖H1) ,

‖v(0)‖H1 ≤ C ‖v‖X1,b
T

≤ C ‖F (w, r)‖
X1,−b′
T

≤ C ‖w‖X1,b
T

‖r‖Xs,b
T

‖r‖X1,b
T

+ ‖r‖2Xs,b
T

‖r‖X1,b
T
,

and

‖r‖X1,b
T

≤ C ‖Φ0‖H1−2s .

Then,

‖BΦ0‖H1−2s ≤ C
(
Rη +Rη2 + ‖r0‖H1

)
.



812 CAMILLE LAURENT

Choosing η such that C(η+ η2) < 1/2 (it is important to notice here that this bound
does not depend on the size of r0 in H1) and R large enough, we obtain that B
reproduces BH−s(0, η) ∩BH1−2s(0, R).

Let us prove that it is contracting for the H−s norm. For that, we examine the
systems ⎧⎨

⎩
i∂t(r − r̃) + Δ(r − r̃) = 2|w|2(r − r̃) + w2(r − r̃)

+ F (w, r) − F (w, r̃) +A(Φ− Φ̃),
(r − r̃)(T ) = 0,

(8.3)

{
i∂t(v − ṽ) + Δ(v − ṽ) = 2|w|2(v − ṽ) + w2(v − ṽ) + F (w, r) − F (w, r̃),

(v − ṽ)(T ) = 0.

We obtain∥∥∥BΦ0 −BΦ̃0

∥∥∥
H−s

≤ C ‖(v − ṽ)(0)‖Hs ≤ C ‖F (w, r) − F (w, r̃)‖
Xs,−b′
T

≤ C
(
‖r‖Xs,b

T
+ ‖r̃‖Xs,b

T
+ ‖r‖2Xs,b

T
+ ‖r̃‖2Xs,b

T

)
‖r − r̃‖Xs,b

T

≤ C(η + η2) ‖r − r̃‖Xs,b
T

≤ Cη ‖r − r̃‖Xs,b
T
.(8.4)

Considering (8.3), we deduce that

‖r − r̃‖Xs,b
T

≤ C ‖F (w, r) − F (w, r̃)‖
Xs,−b′
T

+ C
∥∥∥A(Φ− Φ̃)

∥∥∥
L2([0,T ],Hs)

≤ Cη ‖r − r̃‖Xs,b
T

+ C
∥∥∥Φ0 − Φ̃0

∥∥∥
H−s

.

If η is taken small enough, it yields

‖r − r̃‖Xs,b
T

≤ C
∥∥∥Φ0 − Φ̃0

∥∥∥
H−s

.(8.5)

Combining (8.5) with (8.4) we finally get∥∥∥BΦ0 −BΦ̃0

∥∥∥
H−s

≤ Cη
∥∥∥Φ0 − Φ̃0

∥∥∥
H−s

.

This yields that B is a contraction on a small ball BH−s(0, η), which completes the
proof of Proposition 8.1.

Corollary 8.2. Let T > 0, and let (M,ω) be such that Assumptions 1, 3, 4,
and 5 are fulfilled. Then, the set of reachable states is open in Hs for s0 < s ≤ 1.

In the next corollary, f̂(k) denotes the coordinates of a function f in the basis of
eigenfunction of M .

Corollary 8.3. Suppose the same assumptions as in Proposition 8.1. Let E0 >
‖w0‖H1 . Then, there exist N and ε such that for every u0 and u1 ∈ H1 with

‖u0‖H1 ≤ E0, ‖u1‖H1 ≤ E0,(8.6) ∑
|k|≤N

|û0(k)− ŵ0(k)|2 ≤ ε,
∑

|k|≤N

|û1(k)− ŵT (k)|2 ≤ ε(8.7)

we can find a control g ∈ L∞([0, T ], H1) supported in [0, T ]× ω such that the unique
solution of (8.1) with control g and u(0) = u0 satisfies u(T ) = u1.
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Proof. We build the control in two steps: the first brings the system from u0 to
w(T/2) and the second from w(T/2) to u1. Actually, the second step is the same by
reversing time, and we describe only the first one.

Let s0 < s < 1. We first check that the first part of the conclusion of Proposition
8.1 is true without Assumption 5. It gives one ε̃ > 0 such that if ‖u0 − w0‖Hs ≤ ε̃, we
have a control to w(T/2) in time T/2 with g ∈ C([0, T/2], H1). We check only that
once E0 is chosen we can find N and ε such that assumptions (8.6) and (8.7) imply
‖u0 − w0‖Hs ≤ ε̃.

We also obtain a first proof of global controllability. The assumptions we make
are stronger than those in Theorem 0.1, which will be proved using stabilization.
However, in the examples we treat, the assumptions are fulfilled.

Corollary 8.4. Theorem 0.1 is true under the stronger assumptions (Assump-
tions 1, 3, and 4).

Proof. We will make successive controls near some free nonlinear trajectory so that
the energy decreases. The main argument is that the ε of Theorem 0.3 depends only
on ‖w‖X1,b

T
and if the trajectory is a free nonlinear trajectory, then the ε depends

only on ‖w0‖H1 . We just have to be careful that each new free trajectory fulfills
‖w‖X1,b

T
≤ A for one fixed constant A.

Fix T > 0. There exists C1 such that

‖f‖H1 ≤ C1

(
E(f) +

√
E(f)

)1/2
∀f ∈ H1(M).

Denote A = C1(E(w0) +
√
E(w0). There exists a constant such that ‖w0‖H1 ≤ A

implies ‖w‖X1,b
T

≤ B for w the solution of{
i∂tw +Δw = |w|2w on [0, T ]×M,

w(0) = w0.

Let ε be the constant so that Theorem 0.3 is true for any w with ‖w‖X1,b
T

≤ B. We

choose the arrival point uT = (1− ε/A)wT such that

‖uT − wT ‖H1 = ε/A ‖wT ‖H1 ≤ C1

(
E(wT ) +

√
E(wT )

)
ε/A = ε.

We have a control g supported in [0, T ]× ω such that the solution u of{
i∂tu+Δu = |u|2u+ g on [0, T ]×M,

u(0) = w0

satisfies u(T ) = uT . If 1− ε/A ∈ [0, 1], we have

E(uT ) =
1

2

∫
M

∣∣∣(1− ε

A

)
∇wT

∣∣∣2 + 1

4

∫
M

∣∣∣(1− ε

A

)
wT

∣∣∣4 ≤
(
1− ε

A

)2
E(wT ).

Moreover, we still have

‖uT ‖H1 ≤ C1

(
E(uT ) +

√
E(uT )

)1/2
≤ A.

Then, we can reiterate this process with the same ε. We construct a sequence of
solutions un ∈ X1,b

[nT,(n+1)T ] and of controls gn ∈ C([nT, (n+ 1)T ], H1) such that{
i∂tun +Δun = |un|2un + gn on [nT, (n+ 1)T ]×M,

un(nT ) = un−1(nT )
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and

E(un(nT )) ≤ (1− ε/A)2nE(w0) ≤ C(1 − ε/A)2n
(
‖w0‖2H1 + ‖w0‖4H1

)
.

But, we have

‖un(nT )‖2H1 ≤ C1

(
E(un(nT )) +

√
E(un(nT ))

)1/2
.

Therefore, it can be made arbitrarily small for large n. This allows us to use local
controllability near the trajectory 0. We obtain global controllability making the same
proof in negative time.

9. Necessity of geometric control assumption on S3. In this section, we
prove that on S3 the geometric control is necessary for stabilization to occur. The
argument uses some concentration of eigenfunctions. This concentration was also used
by Burq, Gérard, and Tzvetkov [10] to prove some ill-posedness results.

Proposition 9.1. Let Γ be a geodesic of S3, and let a ∈ C∞(S3) such that
Supp(a) ∩ Γ = ∅. Then, for every R0 > 0, C, and γ > 0 there exist T > 0 and
u0 ∈ H1(S3) with ‖u0‖H1 ≤ R0 such that

‖u(T )‖H1 > Ce−γT ‖u‖H1

for u the solution of equation{
i∂tu+Δu− (1 + |u|2)u = a(x)(1 −Δ)−1a(x)∂tu on [0, T ]× S3,

u(0) = u0 ∈ H1.
(9.1)

Proof. Let T be such that Ce−γT ≤ 1/2. By changes of coordinates, we can
assume that Γ = {x3 = x4 = 0}. We will use the eigenfunctions Φn = cn(x1 + ix2)

n

that concentrate on the subset {x3 = x4 = 0}. cn is chosen such that ‖Φn‖H1 = R0,
and so cn ≈ n1/2−1. We have −ΔΦn = λnΦn with λn = n(n + 2). Let un be the
solution of (9.1) with un(0) = Φn. Let vn = ei(λn−1)tΦn be the solution of the linear
equation {

i∂tvn +Δvn − vn = 0 on [0, T ]× S3,
vn(0) = Φn.

Then, rn = un − vn is the solution of{
i∂trn +Δrn − rn = a(x)(1 −Δ)−1a(x)∂trn +Rn on [0, T ]× S3,

rn(0) = 0

with Rn = |un|2un + a(x)(1 −Δ)−1a(x)∂tvn.

Proposition 3.1 about linearization yields that |un|2un −→ 0 in X1,−b′
T . For the

other term in Rn, we use the concentration of the Φn:∥∥a(x)(1 −Δ)−1a(x)∂tvn
∥∥
X1,−b′
T

≤ ∥∥a(x)(1 −Δ)−1a(x)∂tvn
∥∥
L2([0,T ],H1)

≤ ‖a(x)∂tvn‖L2([0,T ],H−1) ≤ (λn + 1) ‖a(x)Φn‖L∞(S3) .

Let δ > 0 such that we have x23 + x24 > δ on Supp a. Hence, we have |(x1 + ix2)|2 =
x21 + x22 = 1− x23 − x24 < 1− δ:

(λn + 1) ‖a(x)Φn‖L∞(S3) ≤ C(λn + 1)cn(1− δ)n/2.
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Since λn and cn are at most polynomial in n, we deduce that Rn tends to 0 in

X1,−b′
T . By some arguments similar to the proof of the continuity of the flow map of

Proposition 2.1, we infer that rn tends to 0 in X1,b
T . Then, ‖un(T )‖H1 tends to R0

and, for n large enough, we have ‖un(T )‖H1 > R0/2.
With a similar proof, we could show the same result on S2×S1 if Supp(a)∩ (Γ×

S1) = ∅ for some geodesic Γ of S2. Yet, it does not imply geometric control.
The construction of Ralston [39] proves that, actually, a necessary condition for

stabilization is that the support of a(x) intersects any stable closed geodesic (see also
the work of Thomann [44], where this concentration is used to prove ill-posedness).
In the case of S3, we use the geometric fact that every closed geodesic is stable.

Appendix A. Some commutator estimates. This section is devoted to the
proof of some commutator estimates used in Proposition 7.4. More precisely, we study
the action of [(−Δ)ε/2, a1a2] on X

s,b where ai are rough. We first give a simple proof
for T3 (rational or not) and then a general one under Assumption 5. Then, we show
that this assumption is fulfilled for S3 and S2 × S1. We will need an elementary
lemma.

Lemma A.1. If 0 ≤ ε ≤ 1, we have for any norm ||k|ε − |k3|ε| ≤ |k − k3|ε.
Proof. Using the triangular inequality, we get ||k| − |k3||ε ≤ |k − k3|ε . Then, we

are reduced to the case of R+∗: we prove that for z, t ∈ R+∗ we have (z+t)ε−zε ≤ tε,
which is an easy consequence of the Minkowski inequality for 1 ≤ 1/ε ≤ +∞.

A.1. An easier proof for T3.
Lemma A.2. Let M = R3/(θxZ × θyZ × θzZ) with (θx, θy, θz) ∈ R3. Denote

s0 the constant taken from Assumption 3. Let s > s0 and 0 ≤ ε ≤ 1. Then, there
exists b′ < 1/2 such that u3 �→ [Δε/2, u1u2]u3 maps any Xs,b′ into Xs,−b′ , where u1u2
denotes the operator of multiplication by u1u2 with ui ∈ Xs+ε,b′ for i ∈ {1, 2}. This
function [Δε/2, u1u2] also maps X−s,b′ into X−s,−b′ . Moreover, the same result holds
with ui replaced by ui for i in a subset of {1, 2, 3}.

Proof. We choose the norm |k| =√(θxkx)2 + (θyky)2 + (θzkz)2 so that

−̂Δu(k) = |k|2û(k).
By duality, it is equivalent to prove∫

R×M

[(−Δ)ε/2, u1u2]u v ≤ C ‖u1‖Xs+ε,b′ ‖u2‖Xs+ε,b′ ‖u‖Xs,b′ ‖v‖X−s,b′ .

Using the Parseval theorem and denoting k = k1 + k2 + k3, τ = τ1 + τ2 + τ3,∫
R×M

[(−Δ)ε/2, u1u2]u v

=

∫
τ1,τ2,τ3

∑
k1,k2,k3

û1(k1, τ1)û2(k2, τ2)(|k|ε − |k3|ε)û(k3, τ2)v̂(k, τ)

≤
∫
τ1,τ2,τ3

∑
k1,k2,k3

||k|ε − |k3|ε|
∣∣∣û1(k1, τ1)û2(k2, τ2)û(k3, τ3)v̂(k, τ)∣∣∣ .

Lemma A.1 and k − k3 = k1 + k2 yield∣∣∣∣
∫
R×M

[(−Δ)ε/2, u1u2]u v

∣∣∣∣
≤ C

∫
τ1,τ2,τ3

∑
k1,k2,k3

(|k1|ε + |k2|ε) |û1(k1, τ1)| |û2(k2, τ2) || û(k3, τ3)| |v̂(k, τ)| .
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Denoting u1 the function with Fourier transform |û1(k1, τ1)| we obtain∣∣∣∣
∫
R×M

[(−Δ)ε/2, u1u2]u v

∣∣∣∣ ≤ C

∫
R×M

(
Δε/2u1

)
u2u v +

∫
R×M

u1

(
Δε/2u2

)
u v

≤ C ‖u1‖Xs+ε,b′ ‖u2‖Xs+ε,b′ ‖u‖Xs,b′ ‖v‖X−s,b′ .

Here, we have finished the proof using the trilinear Bourgain estimate because s > s0.
If we estimate this integral using the trilinear estimate at the negative level H−s, we
obtain the second result.

A.2. General proof under Assumption 5.
Lemma A.3. Denote s0 the constant taken from Assumption 5. Let s > s0 and

0 ≤ ε ≤ 1. Then, there exists b′ < 1/2 such that u3 �→ [(−Δ)ε/2, u1u2]u3 maps
any Xs,b′ into Xs,−b′ , where u1u2 denotes the operator of multiplication by u1u2 with
ui ∈ Xs+ε,b′ for i ∈ {1, 2}. This function [Δε/2, u1u2] also maps X−s,b′ into X−s,−b′ .
Moreover, the same result holds with ui replaced by ui for i in a subset of {1, 2, 3}.

Proof. The proof follows the techniques of Bourgain and Burq, Gérard, and
Tzvetkov. Here, we were inspired more precisely by [23]. We recall the notations
u# = e−itΔu(t), uN = 1√

1−Δ∈[N,2N [u, where N is a dyadic number and û(τ) is the
Fourier transform of u with respect to the time variable. First, with some dyadic
integers Ni fixed, we estimate the integral

I(N1, . . . , N4) =

∫
R×M

uN1
1 uN2

2

[
((−Δ)ε/2uN3

3 ) u4
N − uN3

3 (−Δ)ε/2u4
N
]
dtdx

=
1

(2π)4

∫
Rt×Mx

∫∫∫∫
R4
τ1,τ2,τ3,τ4

eit(τ1+τ2+τ3−τ)eitΔ
̂
uN1#
1 (τ1)e

itΔ ̂
uN2#
2 (τ2)

×
[
((−Δ)ε/2eitΔ

̂
uN3#
3 (τ3))eitΔû

N#
4 (τ) − eitΔ

̂
uN3#
3 (τ3)(−Δ)ε/2eitΔ

̂
uN4#
4 (τ)

]
.

By near orthogonality in Hb and partition of unity, uj =
∑

n∈Z
ϕ(t − n/2)uj(t), we

are led to the special case where the uj are supported in time in the interval ]0, 1[.
Select χ ∈ C∞

0 (R) such that χ = 1 on [0, 1]. Thus, estimates (0.10), applied with τj
fixed, and the Cauchy–Schwarz inequality in (τ1, τ2, τ3, τ4) give for any b > 1/2

|I(N1, . . . , N4)| ≤ C(Nε
1 +Nε

2 ) (m(N1, . . . , N4))
s0

4∏
j=1

∫
τj

∥∥∥∥̂uNj#j (τj)

∥∥∥∥
L2(M)

≤ C(Nε
1 +Nε

2 ) (m(N1, . . . , N4))
s0

4∏
j=1

∥∥∥uNjj

∥∥∥
X0,b(R×M)

.(A.1)

This estimate is very satisfactory for the space regularity. Yet, for the regularity in
time, it requires b > 1/2, which is too much for our purpose. We will interpolate with
some crude estimates in space but better in time.

For the case where N1 is large, we estimate |I(N1, . . . , N)| using Sobolev embed-
dings H1/4(R) ⊂ L4(R):

|I(N1, . . . , N4)| ≤ C(Nε
3 +Nε

4 ) (m(N1, · · ·, N4))
3/2

4∏
j=1

∥∥∥uNjj

∥∥∥
X0,1/4(R×M)

.(A.2)

In another case where the frequency N3 is large, we will use an argument close to the
one in [18]. In that case, we cannot afford a loss in the frequency N3. We use the fact
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that [uN1
1 uN2

2 ,Δε/2] is a pseudodifferential operator of order less than 0 (if ε ≤ 1).
Then,

|I(N1, . . . , N4)| =
∣∣∣∣
∫
R×M

[uN1
1 uN2

2 ,Δε/2]uN3
3 uN4

4

∣∣∣∣
≤ C

∫
R

∥∥∥[u1(t)N1u2(t)
N2 ,Δε/2]

∥∥∥
L2→L2

‖u3(t)‖L2(M) ‖u4(t)‖L2(M) dt

≤
∫
R

m∑
α=0

‖∂αu1u2(t)‖L∞(M) ‖u3(t)‖L2(M) ‖u4(t)‖L2(M) dt

≤ Cmax (N1, N2)
μ

4∏
j=1

∥∥∥uNjj

∥∥∥
X0,1/4(R×M)

,(A.3)

where μ depends on the dimension and on ε.
Let us now begin the summation of the harmonics. As in [23], we decompose each

function

u =
∑
K

uK , uK = 1K≤〈i∂t+Δ〉<2K(u),

where K denotes the sequence of dyadic integers. Notice that

‖u‖2X0,b ≈
∑
K

K2b ‖uK‖2L2(R×M) ≈
∑
K

‖uK‖2X0,b .

Then, we decompose the integral in the sum of the following elementary integrals:

I(N1, . . . , N4,K1, . . . ,K4)

=

∫
R×M

aN1,K1

1 aN2,K2

2

[
((−Δε/2)uN3,K3)vN,K − uN3,K3(−Δε/2)vN,K

]
dtdx.

Estimate (A.1) leads to (for every b > 1/2)

|I(N1, . . . , N4,K1, . . . ,K4)|

≤ (Nε
1 +Nε

2 )m(N1, . . . , N4)
s0(K1K2K3K4)

b
4∏

j=1

∥∥∥uNj,Kj

j

∥∥∥
L2
.

We will interpolate this estimate with different inequalities. We distinguish three
cases: N4 ≤ C(N1 + N2 + N3) with N3 < max(N1, N2) or max(N1, N2) ≤ N3, and
N4 > C(N1 + N2 + N3) with C large enough. Without loss of generality, we can
assume N1 ≥ N2.

First case: N3 < max(N1, N2) = N1 and N4 ≤ C(N1 +N2+N3). Estimate (A.2)
gives

|I(N1, . . . , N4,K1, . . . ,K4)| ≤ (Nε
3 +Nε

4 )m(N1, . . . , N4)
3/2

× (K1K2K3K4)
1/4

4∏
j=1

∥∥∥uNj ,Kj

j

∥∥∥
L2
.

Then, for every θ ∈ [0, 1]

|I(N1, . . . , N4,K1, . . . ,K4)| ≤ C(Nε
1 +Nε

2 )
1−θ(Nε

3 +Nε
4 )

θm(N1, . . . , N4)
(1−θ)s0+3θ/2

× (K1K2K3K)b(1−θ)+θ/4
4∏

j=1

∥∥∥uNj,Kj

j

∥∥∥
L2
.
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We denote s(θ) = (1− θ)s0 + 3θ/2 and b(θ) = b(1− θ) + θ/4:

|I(N1, . . . , N,K1, . . . )| ≤ C(Nε
1 +Nε

2 )
1−θ(Nε

3 +Nε
4 )

θm(N1, . . . , N4)
s(θ)

× (K1K2K3K4)
b(θ)−b′

4∏
j=1

∥∥∥uNjj

∥∥∥
X0,b′

.

By choosing some appropriate θ and b′ < 1/2 < b, we can make the series in K
convergent if b(θ)− b′ < 0. This yields

|I(N1, . . . , N4)| ≤ C(Nε
1 +Nε

2 )
1−θ(Nε

3 +Nε
4 )

θm(N1, . . . , N4)
s(θ)

4∏
j=1

∥∥∥uNjj

∥∥∥
X0,b′

≤ CN
(1−θ)ε−s−ε
1 Ns+θε

4 N
s(θ)−s−ε
2 N

s(θ)+θε−s
3

2∏
j=1

‖uj‖Xs+ε,b′ ‖u3‖Xs,b′ ‖u4‖X−s,b′

≤
(
N4

N1

)s+θε

N
s(θ)−s−ε
2 N

s(θ)+θε−s
3

2∏
j=1

‖uj‖Xs+ε,b′ ‖u3‖Xs,b′ ‖u4‖X−s,b′ .

The series is convergent thanks to N4 ≤ CN1 and after choosing θ small enough such
that s(θ) + θε− s < 0 with b(θ)− b′ < 0.

Second case: N1 = max(N1, N2) ≤ N3, and so N4 ≤ CN3. This time, N3 is a
large frequency and we cannot have any loss Nθε

3 from the interpolation. We proceed
with the same interpolation procedure but between (A.1) and (A.3). After summation
in K and a good choice of b′ < 1/2 < b,

|I(N1, . . . , N4)|

≤ CN
(1−θ)(s0+ε)+θμ−s−ε
1 Ns

4N
(1−θ)s0−s−ε
2 N−s

3

2∏
j=1

‖uj‖Xs+ε,b′ ‖u3‖Xs,b′ ‖u4‖X−s,b′

≤
(
N4

N3

)s

N
(1−θ)(s0+ε)+θμ−s−ε
1 N

(1−θ)s0−s−ε
2

2∏
j=1

‖uj‖Xs+ε,b′ ‖u3‖Xs,b′ ‖u4‖X−s,b′ .

We choose θ small enough such that (1 − θ)(s0 + ε) + θμ − s − ε ≤ s0 + θμ − s < 0
and b(θ)− b′ < 0. And we conclude by the same summation as in the first case.

Last case: N4 ≥ C(N1 + N2 + N3). This case is trivial in the particular case of
T3, S3, or S2 × S1 since this integral is zero for C large enough. In the general case,
we apply the following lemma, which is a variant of Lemma 2.6 in [9].

Lemma A.4. There exists C > 0 such that if, for any j = 1, 2, 3, Cμkj ≤ μk4 ,
then for every p > 0 there exists Cp > 0 such that for every wj ∈ L2(M), j = 1, 2, 3, 4,

∫
M

Πk1w1Πk2w2

[
(−Δ)

ε
2Πk3w3 Πk4w4 −Πk3w3 (−Δ)

ε
2Πk4w4

] ≤ Cpμ
−p
k4

4∏
j=1

‖wj‖L2 ,

where Πk denotes the orthogonal projection on the eigenfunction ek associated with
the eigenvalue μk.

This ends the proof of the fist statement of Lemma A.3. The second one is
obtained by duality.
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A.3. S3 and S2 × S1 fulfill Assumption 5.
Lemma A.5. Assumption 5 holds true with any s0 > 1/2 on S3 and any s0 > 3/4

on S2 × S1.
Proof. We first treat the case of S3 and follow the scheme of Proposition 3 of [23].

We write

fj =
∑
nj

H(j)
nj ,

where H
(j)
nj are spherical harmonics of degree nj , and where the sum on nj bears on

the domain

Nj ≤
√
1 + nj(nj + 2) < 2Nj.(A.4)

Then, the solution uj is given by

uj(t) = eitΔfj =
∑
nj

e−itnj(nj+2)H(j)
nj

and we have to estimate

Q(f1, . . . , f4, τ) =

∫
R

∫
S3

χ(t)eitτu1u2

[
(−Δ)ε/2u3u4 − u3(−Δ)ε/2u4

]
dxdt

=
∑

n1,...,n4

χ̂

⎛
⎝ 4∑

j=1

εjnj(nj + 2)− τ

⎞
⎠ I(H(1)

n1
, . . . , H(4)

n4
),

with εj = −1 or 1 depending on the position of conjugates and

I(H(1)
n1
, . . . , H(4)

n4
) = (
√
n3(n3 + 2)

ε −
√
n4(n4 + 2)

ε
)

∫
S3

H(1)
n1
H(2)

n2
H(3)

n3
H

(4)

n4
dx.

We notice that
∫
Hn1Hn2Hn3Hn4 
= 0 implies n4 ≤ n1+n2+n3 and n3 ≤ n1+n2+n4,

that is, |n4 − n3| ≤ n1 + n2. Then, using Lemma A.1 and, the fundamental theorem
of calculus, we have∣∣∣√n3(n3 + 2)

ε −
√
n4(n4 + 2)

ε
∣∣∣ ≤ ∣∣∣√n3(n3 + 2)−

√
n4(n4 + 2)

∣∣∣ε
≤ C |n4 − n3|ε ≤ C(Nε

1 +Nε
2 ).(A.5)

Moreover, bilinear eigenfunction estimates (see Theorem 2 of [13] or Theorem 2.5 of
[12]) yield∣∣∣I(H(1)

n1
, . . . , H(4)

n4
)
∣∣∣ ≤ C(Nε

1 +Nε
2 )

∣∣∣∣
∫
S3

H(1)
n1
H(2)

n2
H(3)

n3
H

(4)

n4
dx

∣∣∣∣
≤ C(Nε

1 +Nε
2 )m(N1, . . . , N4)

1/2+
4∏

j=1

∥∥∥H(j)
nj

∥∥∥
L2
.

Using the fast decay of χ̂ at infinity, we infer that

|Q(f1, . . . , f4, τ)| ≤ C(Nε
1 +Nε

2 )m(N1, . . . , N4)
1
2+
∑
l∈Z

(1 + |l|2)−1
∑

Λ([τ ]+l)

4∏
j=1

∥∥∥H(j)
nj

∥∥∥
L2

≤ C(Nε
1 +Nε

2 )m(N1, . . . , N4)
1/2+ sup

k∈Z

∑
Λ(k)

4∏
j=1

∥∥∥H(j)
nj

∥∥∥
L2
,
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where Λ(k) denotes the set of (n1, . . . , n4) satisfying (A.4) for j = 1, 2, 3, 4 and

4∑
j=1

εjnj(nj + 2) = k.

Now, we write

{1, 2, 3, 4} = {α, β, γ, δ}

with m(N1, . . . , N4) = NαNβ and we split the sum on Λ(k) as

|Q(f1, . . . , f4, τ)| ≤ C(Nε
1 +Nε

2 )m(N1, . . . , N4)
1/2+ sup

k∈Z

∑
a∈Z

S(a)S′(k − a),

where

S(a) =
∑
Γ(a)

∥∥∥H(α)
nα

∥∥∥
L2

∥∥∥H(γ)
nγ

∥∥∥
L2
, S′(a′) =

∑
Γ′(a′)

∥∥∥H(β)
nβ

∥∥∥
L2

∥∥∥H(δ)
nδ

∥∥∥
L2
,

Γ(a) =

⎧⎨
⎩(nα, nγ) : (A.4) holds for j = α, γ,

∑
j=α,γ

εjnj(nj + 2) = a

⎫⎬
⎭ ,

Γ′(a′) =

⎧⎨
⎩(nβ , nδ) : (A.4) holds for j = β, δ,

∑
j=β,δ

εjnj(nj + 2) = a′

⎫⎬
⎭ .

Then, we use a number theoretic result involving the ring of Gauss integers (see
Lemma 3.2 of [9]).

Lemma A.6. Let σ ∈ {±1}. For every η > 0, there exists Cη such that, given
M ∈ Z and a positive integer N ,

#{(k1, k2) ∈ N2 : N ≤ k1 ≤ 2N, k21 + σk22 =M} ≤ CηN
η.

Noticing that nj(nj + 2) = (nj + 1)2 − 1, we get

sup
a

#Γ(a) ≤ CηN
η
α, sup

a′
#Γ′(a′) ≤ CηN

η
β ,

and, consequently, by the Cauchy–Schwarz inequality and the orthogonality of the

H
(j)
nj ∑

a∈Z

S(a)S′(k − a) ≤ Cη(NαNβ)
η/2

×
⎛
⎝∑

a

∑
Γ(a)

∥∥∥H(α)
nα

∥∥∥2
L2

∥∥∥H(γ)
nγ

∥∥∥2
L2

⎞
⎠

1/2⎛
⎝∑

a

∑
Γ′(k−a)

∥∥∥H(β)
nβ

∥∥∥2
L2

∥∥∥H(δ)
nδ

∥∥∥2
L2

⎞
⎠

1/2

≤ Cη(NαNβ)
η/2

4∏
j=1

‖fj‖L2 .

This completes the proof for S3.
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For S2 × S1, we adapt this argument with some slight modifications. First, the
formulae should be changed to

uj(t)(x, y) = eitΔfj =
∑
nj ,pj

e−itnj(nj+1)−ip2
j tH(j)

nj ,pj (x)e
ipjy,

where H
(j)
nj ,pj are spherical harmonics on S2 of degree nj . Estimate (A.5) becomes∣∣∣∣

√
n3(n3 + 1) + p23

ε

−
√
n4(n4 + 2) + p24

ε
∣∣∣∣

≤
∣∣∣∣
√
n3(n3 + 1) + p23 −

√
n4(n4 + 1) + p24

∣∣∣∣ε

≤
∣∣∣∣[√n3(n3 + 1)−

√
n4(n4 + 1)

]2
+ (p3 − p4)

2

∣∣∣∣ε/2
≤ ∣∣C(n3 − n4)

2 + (p3 − p4)
2
∣∣ε/2

≤ C
∣∣(n1 + n2)

2 + (p1 + p2)
2
∣∣ε/2 ≤ C(Nε

1 +Nε
2 ),

where we have used |n3 − n4| ≤ |n1 + n2| and |p3 − p4| ≤ |p1| + |p2| for the integral
to be nonzero. Bilinear eigenfunction estimates for S2 yield

∣∣∣I(H(1)
n1,p1

, . . . , H(4)
n4,p4

)
∣∣∣ ≤ C(Nε

1 +Nε
2 )m(N1, . . . , N4)

1/4
4∏

j=1

∥∥∥H(j)
nj ,pj

∥∥∥
L2
.

We finish the proof similarly, replacing the formula for Γ(a) by

Γ(a) =

{
(nα, pα, nγ , pγ) : Nj ≤

√
1 + nj(nj + 2) + p2j ≤ 2Nj, j = α, γ,

and
∑

j=α,γ

εj [nj(nj + 2) + p2j ] = a

}
.

In that case, the same number theoretic arguments yield supa #Γ(a) ≤ CηN
1+η
α and,

finally, after the Cauchy–Schwarz inequality, we obtain

|Q(f1, . . . , f4, τ)| ≤ C(Nε
1 +Nε

2 )m(N1, . . . , N4)
1/4+(1+η)/2

4∏
j=1

‖fj‖L2 .

Appendix B. Unique continuation.

B.1. Carleman estimates. This section is only a variant in the Riemannian
setting of some results of Mercado, Osses, and Rosier [35]. We follow their proof very
closely, sometimes line by line.

For the sake of simplicity, we will assume that u is supported in a fixed compact
K of a Riemannian manifold Ω. Yet, the same reasoning as in [35] would allow us to
handle the case of Dirichlet boundary conditions for u. We have changed the notation
of the manifold fromM to Ω because the Carleman estimates will not be used on the
whole compact manifold M but only on some open set Ω.

D denotes the Levi–Civita connection associated with the metric g. Then, it is
torsion-free and the Hessians of the functions are symmetrics.
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· , | |, ∇, and Δ denote the scalar product, the norm, the gradient, and the
Laplacian with respect to the metric g. Moreover, the scalar product will be the real
one: if X = a + ib and Y = c + id, then X.Y = a · c − b · d + i(b · c + a · d) and
|X |2 = X ·X.

vg denotes the Riemannian volume form, and all the integrals are defined with
this (even if it will often be omitted).

First, we list a few formulae that will be used throughout the proof. For any
functions f, h ∈ C∞(Ω) with h compactly supported and any vector fields X , Y , and
Z, we have

DZ(X · Y ) = (DZX) · Y +X · (DZY ),

∇f · Z = DZf,

(DX∇f) · Y = Hess(f)(X,Y ),∫
Ω

(Δf)h dvg = −
∫
Ω

∇f · ∇h dvg,
∇(fh) = (∇f)h+ f(∇h),

div(fX) = fdiv(X) +X · ∇f.

For brevity,
∫∫

will denote the integral over ]−T, T [×Ω and
∫∫

ω
the integral over

]− T, T [×ω, where ω is an open subset of Ω.
Let Ψ ∈ C4(Ω) real valued . We assume that Ψ satisfies the following properties:

∇Ψ 
= 0 in Ω\ ω,(B.1)

Ψ(x) ≥ 2/3 ‖Ψ‖L∞ .(B.2)

Inequality (B.2) is technical and is easily fulfilled by replacing Ψ by Ψ+C with C large
enough. We distinguish two cases: strong pseudoconvexity and weak pseudoconvexity.

The case of strong pseudoconvexity can be found in Isakov [25] but with local in
time estimates; it reads as

Hess(Ψ(x))(ξ, ξ) + |∇Ψ(x) · ξ|2 > 0 ∀(x, ξ) ∈ TΩ\ Tω,(B.3)

which implies since the support is compact that

Hess(Ψ(x))(ξ, ξ) + |∇Ψ(x) · ξ|2 > C |ξ|2 ∀(x, ξ) ∈ TΩ\ Tω, x ∈ K.(B.4)

Weak pseudoconvexity is defined by

Hess(Ψ(x))(ξ, ξ) + |∇Ψ(x) · ξ|2 ≥ 0 ∀(x, ξ) ∈ TΩ\ Tω.(B.5)

Set CΨ = 2 ‖Ψ‖L∞(Ω) and

θ(t, x) :=
eλΨ(x)

(T − t)(T + t)
, ϕ(t, x) :=

eλCΨ − eλΨ(x)

(T − t)(T + t)
∀(t, x) ∈]− T, T [×Ω.

Denote by L(q) = i∂tq +Δq the linear Schrödinger operator.
Proposition B.1. Let T > 0. Let Ω be a Riemannian manifold and K a compact

subset of Ω. Assume that there exists a function Ψ ∈ C4(Ω) such that (B.1), (B.2),
and (B.4) hold for some open set ω ⊂ Ω. Then, there exist constants λ0, s0, and C
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such that for all λ ≥ λ0, all s ≥ s0, and q ∈ L2(] − T, T [, H1(Ω)), supported in K,
with L(q) ∈ L2(]− T, T [×Ω) we have∫∫ [

s3λ4θ3|q|2 + sλθ |∇q|2
]
e−2sϕ(B.6)

≤ C

∫∫
|L(q)|2 e−2sϕ + C

∫∫
ω

[
s3λ4θ3|q|2 + sλθ |∇q|2

]
e−2sϕ.

Proposition B.2. If in Proposition B.1 we replace assumption (B.4) by (B.5),
we obtain the same result with∫∫ [

s3λ4θ3|q|2 + sλ2θ |∇Ψ · ∇q|2
]
e−2sϕ(B.7)

≤ C

∫∫
|L(q)|2 e−2sϕ + C

∫∫
ω

[
s3λ4θ3|q|2 + sλθ |∇q|2

]
e−2sϕ.

Proof. Using regularization in a standard way, we are reduced to considering
q ∈ C∞(] − T, T [×Ω). Denote u = e−sϕq and w = e−sϕL(q) = e−sϕL(esϕu). We
notice that u and all its time derivatives vanish at t = −T and t = T . Thus, all the
integrations by parts in time do not create any boundary term. We compute

w = Pu = iut + isϕtu+Δu+ 2s∇ϕ · ∇u+ s(Δϕ)u + s2|∇ϕ|2u.

We decompose P = P1 + P2 with

P1u := isϕtu+ 2s∇ϕ · ∇u+ s(Δϕ)u,

P2u := iut +Δu + s2|∇ϕ|2u,

‖w‖2L2(−T,T [×Ω) = ‖P1u+ P2u‖2 = ‖P1u‖2 + ‖P2u‖2 + 2�(P1u, P2u).

As usual in Carleman estimates, we use only

2�(P1u, P2u) ≤ ‖w‖2L2(−T,T [×Ω) .

We also decompose 2�(P1u, P2u) = I1 + I2 + I3 with

I1 := 2�
∫∫

(2s∇ϕ · ∇u+ s(Δϕ)u)(−iut +Δu+ s2|∇ϕ|2u),

I2 := 2�
∫∫

isϕtu(−iut +Δu),

I3 := 2�
∫∫

isϕtu(s
2|∇ϕ|2u) = 0.

We first deal with I1:

I1 = 2�
∫∫

(2s∇ϕ · ∇u + s(Δϕ)u)(Δu + s2|∇ϕ|2u)

− 2�
∫∫

i(2s∇ϕ · ∇u + s(Δϕ)u)ut

= I11 + I21 .
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Set J =
∫∫

(∇ϕ · ∇u)Δu = − ∫∫ ∇u · ∇(∇ϕ · ∇u). We have

∇u · ∇(∇ϕ · ∇u) = D∇u(∇ϕ · ∇u) = (D∇u∇ϕ) · ∇u+∇ϕ · (D∇u∇u)
= Hess(ϕ)(∇u,∇u) +Hess(u)(∇u,∇ϕ).

Actually

∇ϕ · ∇|∇u|2 = D∇ϕ(∇u · ∇u) = (D∇ϕ∇u) · ∇u+∇u · (D∇ϕ∇u)
= 2�(D∇ϕ∇u) · ∇u = 2�Hess(u)(∇ϕ,∇u).

Therefore,

2�J = −2

∫∫
Hess(ϕ)(∇u,∇u) +

∫∫
Δϕ |∇u|2 .

Expanding I11 , we obtain

I11 = 2�
{
2sJ +

∫∫
s(Δϕ)uΔu +

∫∫
2s3(∇ϕ · ∇u)|∇ϕ|2u+

∫∫
s3(Δϕ)|u|2|∇ϕ|2

}

= 4s�J − 2s�
∫∫

((∇Δϕ)u +Δϕ∇u) · ∇u

+

∫∫
2s3|∇ϕ|2∇ϕ · ∇|u|2 + 2

∫∫
s3(Δϕ)|u|2|∇ϕ|2,

where we have used ∇|u|2 = 2�(u∇u). Then, we remark that

−2s�
∫∫

(∇Δϕ)u · ∇u = −s
∫∫

(∇Δϕ) · ∇|u|2

= s

∫∫
(Δ2ϕ)|u|2,

2

∫∫
s3(Δϕ)|u|2|∇ϕ|2 = −2s3

∫∫
∇ϕ · (|∇ϕ|2∇|u|2 + |u|2∇|∇ϕ|2).

We simplify to

I11 = −4s�
∫∫

Hess(ϕ)(∇u,∇u) + 2s

∫∫
Δϕ |∇u|2

+ s

∫∫
(Δ2ϕ)|u|2 − 2s

∫∫
Δϕ|∇u|2 − 2s3

∫∫
|u|2∇ϕ · ∇|∇ϕ|2

= −4s

∫∫
Hess(ϕ)(∇u,∇u) + s

∫∫
(Δ2ϕ)|u|2 − 2s3

∫∫
(∇ϕ · ∇|∇ϕ|2)|u|2.

Expanding 2�a = a + a for I21 and performing integration by parts in t for the first
term, we get

−I21 =

∫∫
i(2s∇ϕ · ∇u+ s(Δϕ)u)ut − i

∫∫
(2s∇ϕ · ∇u+ s(Δϕ)u)ut

=

∫∫
−i [2s∇ϕt · ∇u+ 2s∇ϕ · ∇ut + s(Δϕt)u+ s(Δϕ)ut]u

− i

∫∫
2s(∇ϕ · ∇u)ut − i

∫∫
s(Δϕ)uut.



CONTROL OF NLS ON 3D MANIFOLDS 825

Integration by parts in x yields

−i
∫∫

2s(∇ϕ · ∇u)ut = 2is

∫∫
(Δϕ)uut + 2is

∫∫
(∇ϕ · ∇ut)u.

As a consequence,

−I21 =

∫∫
−i2s(∇ϕt · ∇u)u− is

∫∫
(Δϕt)|u|2

=

∫∫
−i2s(∇ϕt · ∇u)u+ is

∫∫
∇ϕt · ∇|u|2

= i

∫∫
s∇ϕt · (u∇u− u∇u) = 2s�i

∫∫
∇ϕt · (u∇u).

Finally,

I1 = −4s�
∫∫

Hess(ϕ)(∇u,∇u) + s

∫∫
(Δ2ϕ)|u|2

− 2s3
∫∫

∇ϕ · ∇|∇ϕ|2|u|2 − 2s�i
∫∫

∇ϕt · (u∇u).

On the other hand, we have

∇ϕ · ∇|∇ϕ|2 = D∇ϕ(∇ϕ · ∇ϕ) = 2D∇ϕ∇ϕ · ∇ϕ = 2Hess(ϕ)(∇ϕ,∇ϕ).
We now turn to the other term I2:

I2 = 2�
∫∫

isϕtu(−iut +Δu) = s

∫∫
ϕt∂t|u|2 + 2s�i

∫∫
ϕtuΔu

= −s
∫∫

ϕtt|u|2 − 2s�i
∫∫

(∇ϕtu+ ϕt∇u) · ∇u

= −s
∫∫

ϕtt|u|2 − 2s�
∫∫

i(∇ϕt · ∇u)u.

Consequently, our final result is

2�(M1u,M2u) =

∫∫ [−4s3Hess(ϕ)(∇ϕ,∇ϕ) − sϕtt + s(Δ2ϕ)
] |u|2(B.8)

− 4s�
∫∫

Hess(ϕ)(∇u,∇u)(B.9)

− 4s�
∫∫

iu∇ϕt · ∇u.(B.10)

Equations (B.8) and (B.9) are the main parts in |u|2 and |∇u|2, respectively. Equation
(B.10) is a remainder term that will be estimated from above.

In what follows, ε > 0 denotes small constants (used in estimates from below)
and C large ones (used for estimates from above). We observe the following identities,
which will be used throughout the proof:

∇ϕ = −λθ∇Ψ,

Hess(ϕ)(X,Y ) = (DX∇ϕ) · Y
= −λDX(θ∇Ψ) · Y = −λθ(DX∇Ψ) · Y − λdθ(X)∇Ψ · Y
= −λθHess(Ψ)(X,Y )− λ2θ(∇Ψ ·X)(∇Ψ · Y )

= −θλ [Hess(Ψ)(X,Y ) + λ(∇Ψ ·X)(∇Ψ · Y )] .
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First, we estimate term (B.10):

|(B.10)| ≤ Cs

∫∫
|∇ϕt · ∇u||u| ≤ Cs

∫∫
tλeλΨ

(T 2 − t2)2
|∇Ψ · ∇u||u|

≤ Cs

∫∫
eλΨ

(T 2 − t2)
|∇Ψ · ∇u|2 + Cs

∫∫
(Tλ)2eλΨ

(T 2 − t2)3
|u|2

≤ Cs

∫∫
θ |∇Ψ · ∇u|2 + Csλ−1

∫∫
|∇ϕ|3 |u|2 + Cs

∫∫
ω

λ2θ3|u|2.(B.11)

Then, we estimate term (B.8) using assumptions (B.1) and (B.5) (or (B.4)). On
(Ω\ω) ∩K, we have

−4s3Hess(ϕ)(∇ϕ,∇ϕ) = 4s3λθ
[
Hess(Ψ)(∇ϕ,∇ϕ) + λ |∇Ψ · ∇ϕ|2

]
≥ 4s3λθ(λ − 1) |∇Ψ · ∇ϕ|2 ≥ s3λ4θ3 |∇Ψ|4 ≥ εs3λ |∇ϕ|3 .

Assumption (B.2) gives Ψ(x) ≤ CΨ ≤ 3Ψ(x), and then we have on (Ω\ω) ∩K

|sϕtt| ≤ Cs
eλCΨ

((T 2 − t2))3
≤ Cs

e3λΨ(x)

((T 2 − t2))3
≤ Cs |∇ϕ|3 .

Moreover, on (Ω\ω) ∩K we have

∣∣sΔ2ϕ
∣∣ ≤ Csθλ4 ≤ Csλ |∇ϕ|3 .

Finally, for λ and s large enough∫∫
Ω\ω

[−4s3Hess(ϕ)(∇ϕ,∇ϕ) − sϕtt + s(Δ2ϕ)
] |u|2 ≥

∫∫
Ω\ω

εs3λ |∇ϕ|3 |u|2.

For the domain ω, we have the estimate∣∣∣∣
∫∫

ω

[−4s3Hess(ϕ)(∇ϕ,∇ϕ) − sϕtt + s(Δ2ϕ)
] |u|2∣∣∣∣ ≤ C

∫∫
ω

s3λ4θ3|u|2.

The final estimate for (B.8) is

(B.8) ≥
∫∫

Ω\ω
εs3λ |∇ϕ|3 |u|2 − C

∫∫
ω

s3λ4θ3|u|2.(B.12)

Now, let us estimate (B.9). We begin with the integral on ω:

−4s�
∫∫

ω

Hess(ϕ)(∇u,∇u) = 4s�
∫∫

ω

θλ
[
Hess(Ψ)(∇u,∇u) + λ |∇Ψ · ∇u|2

]
≥ −Csλ

∫∫
ω

θ |∇u|2 + 4s

∫∫
ω

θλ2 |∇Ψ · ∇u|2

≥ −Csλ
∫∫

ω

θ |∇u|2 .

Now, for the integral on Ω\ω, we distinguish the two cases described above.
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Strong pseudoconvexity: End of the proof of Proposition B.1. Using
assumption (B.4), we can estimate the part of (B.9) on Ω\ω by

−4s�
∫∫

Ω\ω
Hess(ϕ)(∇u,∇u) = 4s�

∫∫
Ω\ω

θλ
[
Hess(Ψ)(∇u,∇u) + λ |∇Ψ · ∇u|2

]

≥ εsλ

∫∫
Ω\ω

θ |∇u|2 .

The final estimate for (B.9) is

(B.9) ≥ εsλ

∫∫
Ω\ω

θ |∇u|2 − Csλ

∫∫
ω

θ |∇u|2 .(B.13)

Putting together (B.11), (B.12), and (B.13), we get for s, λ large enough

(B.8) + (B.9) + (B.10) ≥ ε

∫∫
Ω\ω

s3λ |∇ϕ|3 |u|2 − C

∫∫
ω

s3λ4θ3|u|2 − Csλ

∫∫
ω

θ |∇u|2

+ εsλ

∫∫
Ω\ω

θ |∇u|2 − Cs

∫∫
θ |∇Ψ · ∇u|2

−Csλ−1

∫∫
|∇ϕ|3 |u|2 − Cs

∫∫
ω

λ2θ3|u|2

≥ ε

∫∫
s3λ4θ3|u|2 + εsλ

∫∫
θ |∇u|2

−C

∫∫
ω

s3λ4θ3|u|2 − Csλ

∫∫
ω

θ |∇u|2 ,(B.14)

where we have used the decomposition
∫∫

Ω\ω =
∫∫ − ∫∫

ω
for the second inequal-

ity. Replacing u by e−sϕq and computing ∇q = esϕ [∇u− sλθu∇Ψ], we have, after
absorption, ∫∫ [

s3λ4θ3|q|2 + sλθ |∇q|2
]
e−2sϕ

≤ C

∫∫ [
s3λ4θ3|u|2 + sλθ|∇u|2 + s3λ3θ3|∇ψ|2|u|2]

≤ C

∫∫ [
s3λ4θ3|u|2 + sλθ|∇u|2] ,(B.15)

∫∫
ω

s3λ4θ3|u|2 + sλ

∫∫
ω

θ |∇u|2

≤ C

∫∫
ω

[
s3λ4θ3|q|2 + sλθ |∇q|2 + s3λ3θ3|∇ψ|2|q|2

]
e−2sϕ

≤ C

∫∫
ω

[
s3λ4θ3|q|2 + sλθ |∇q|2

]
e−2sϕ.(B.16)

Combining (B.14), (B.15), and (B.16), we get the expected result:∫∫ [
s3λ4θ3|q|2 + sλθ |∇q|2

]
e−2sϕ

≤ C

∫∫
|i∂tq +Δq|2 e−2sϕ + C

∫∫
ω

[
s3λ4θ3|q|2 + sλθ |∇q|2

]
e−2sϕ.
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Weak pseudoconvexity: End of the proof of Proposition B.2. Assumption
(B.5) yields that for λ large enough

−4s�
∫∫

Ω\ω
Hess(ϕ)(∇u,∇u) ≥ εs

∫∫
Ω\ω

θλ2 |∇Ψ · ∇u|2 .

We finish the proof similarly to get

(B.8) + (B.9) + (B.10) ≥
∫∫

Ω\ω
εs3λ |∇ϕ|3 |u|2 − C

∫∫
ω

s3λ4θ3|u|2 − Csλ

∫∫
ω

θ |∇u|2

+ εs

∫∫
Ω\ω

θλ2 |∇Ψ · ∇u|2 − Cs

∫∫
θ |∇Ψ · ∇u|2

−Csλ−1

∫∫
|∇ϕ|3 |u|2 − Cs

∫∫
ω

λ2θ3|u|2

≥ ε

∫∫
s3λ4θ3|u|2 + εsλ2

∫∫
θ |∇Ψ · ∇u|2

−C

∫∫
ω

s3λ4θ3|u|2 − Csλ

∫∫
ω

θ |∇u|2

and then∫∫ [
s3λ4θ3|q|2 + sλ2θ |∇Ψ · ∇q|2

]
e−2sϕ

≤ C

∫∫
|i∂tq +Δq|2 e−2sϕ + C

∫∫
ω

[
s3λ4θ3|q|2 + sλθ |∇q|2

]
e−2sϕ.

B.2. Carleman estimates with potential L∞([−T, T ], L3). The following
result proves that the strong pseudoconvexity allows one to absorb some potential
terms in L∞([−T, T ], L3). This is in contrast with the weak pseudoconvexity, which
absorbs only terms in L∞([−T, T ]× Ω).

Proposition B.3. Assume dim(Ω) ≤ 3. Let V1, V2 ∈ L∞([−T, T ], L3). Then,
Proposition B.1 holds with L replaced by L(q) = i∂tq +Δq + V1q + V2q.

Proof. We use the notation of Proposition B.1. We write∫∫
|i∂tq +Δq|2 e−2sϕ ≤ 4

∥∥e−sϕL(q)
∥∥2
L2([0,T ],L2)

+ 4
∥∥e−sϕ(V1q)

∥∥2
L2([0,T ],L2)

+4
∥∥e−sϕ(V2q)

∥∥2
L2([0,T ],L2)

.

But, by the Hölder inequality and Sobolev embedding, we have for s > 1∥∥e−sϕV1q
∥∥2
L2([0,T ],L2)

≤ C ‖V1‖2L∞(L3)

∥∥e−sϕq
∥∥2
L2(L6)

≤ C
(∥∥e−sϕq

∥∥2
L2(L2)

+
∥∥∇(e−sϕq)

∥∥2
L2(L2)

)
≤ C
(∥∥e−sϕq

∥∥2
L2(L2)

+
∥∥e−sϕ∇q∥∥2

L2(L2)

+ s2λ2
∥∥θ(∇Ψ)e−sϕq

∥∥2
L2(L2)

)
≤ C

(∫∫ [
s2λ2θ3|q|2 + θ |∇q|2

]
e−2sϕ

)
,

where we have used θ ≥ C. We get the desired result using estimate (B.6) of Propo-
sition B.1 for s large enough.
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Remark B.1. The uniqueness results we will obtain from the former proposition
are not optimal with respect to the regularity of the potential. Indeed, some recent
papers (see the work of Koch and Tataru [27] or Dos Santos Ferreira [19]) establish
Carleman-type estimates in Lp which are much better than what we get. They are
more complicated and not required for our purpose. Yet, they would become necessary
if we considered nonlinearities |u|αu with α > 2.

B.3. Application to uniqueness.
Proposition B.4. Let Ω, T, ω,Ψ fulfill the same assumptions as in Proposition

B.1. Let q ∈ L∞([−T, T ], H1(Ω)) be a compactly supported solution of i∂tq + Δq +
V1q + V2q = 0 with Vi ∈ L∞([−T, T ], L3). Let D be an open subset of Ω such that
m̃ = infx∈D {Ψ(x)} > supx∈ω {Ψ(x)} = m. Then, q = 0 on ]− T, T [×D.

Remark B.2. By considering the maximum of Ψ, we see that the assumptions of
Proposition B.4 cannot be fulfilled on a compact manifold. Therefore, we will apply this
result only on an open set Ω of M , and the compact support of u becomes important.

Since the previous Carleman estimates hold for every time interval (with constants
depending on its length), we are reduced to the following lemma.

Lemma B.5. Under the assumptions of Proposition B.4, there exists one η > 0
such that q = 0 on ]− η, η[×D.

Proof. Fix λ ≥ λ0 > 1 (the next constants could depend on λ but not on s). Let
T ≥ η > 0 be chosen later. Denote λ1 = eλCψ − eλm̃ and λ1 + ε = eλCψ − eλm with
λ1 > 0 and ε > 0. By definition of m̃ and m, we have for s ≥ 0

e−2sϕ ≤ e
−2s

λ1+ε

T2−t2 ∀(t, x) ∈]− T, T [×ω,
e
−2s

λ1
T2−η2 ≤ e−2sϕ ∀(t, x) ∈]− η, η[×D.

Moreover, once λ1 and ε are fixed, there exists some constant C such that y3e−2(λ1+ε)y

≤ Ce−2(λ1+ε/2)y for y ≥ 0. Therefore, for every (t, x) ∈]−T, T [×Ω with x ∈ Supp q =
K, we have

(sθ)3e
−2s

λ1+ε

T2−t2 ≤ C

(
s

T 2 − t2

)3

e
−2s

λ1+ε

T2−t2 ≤ Ce
−2s

λ1+ε/2

T2−t2 ≤ Ce−2s
λ1+ε/2

T2 .

Here, the constant C does not depend on s. Then, using the Carleman estimate and
θ ≥ C > 0, we get∫∫

]−η,η[×D

s3|q|2e−2s
λ1

T2−η2 ≤ C

∫∫
]−T,T [×ω

[
|q|2 + |∇q|2

]
e−2s

λ1+ε/2

T2 .

Therefore,

s3e
−2s

λ1
T2−η2

∫∫
]−η,η[×D

|q|2 ≤ Ce−2s
λ1+ε/2

T2 ‖q‖2L2(H1) .

Then, to finish the proof, we just have to choose η such that −2 λ1

T 2−η2 > −2λ1+ε/2
T 2 ,

that is, η2 < T 2ε/2
λ1+ε/2 , and let s tend to +∞.

B.4. Geometrical examples. We give some geometrical examples where Propo-
sition B.4 applies. Denote q ∈ L∞([−T, T ], H1(Ω)) a solution of i∂tq+Δq+V1q+V2q =
0 with Vi ∈ L∞([−T, T ], L3). In these following cases, Assumptions 2 and 4 are ful-
filled. For the convenience of the reader, we recall the problem.
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Proposition B.6. Let (M, ω̃) be either
– (T3,

{
x ∈ R3/(θ1Z× θ2Z× θ3Z) |∃i ∈ {1, 2, 3}, xi ∈]− ε, ε[+θiZ

}
),

– (S3, ω̃), where ω̃ is a neighborhood of S3 ∩ {x4 = 0} in S3 ⊂ R4,
– (S2 × S1, (ω1 × S1) ∪ (S2×]0, ε[)), where ω1 is a neighborhood of the equator of

S2.
For every T > 0, the only solution in C([0, T ], H1) to the system{

i∂tq +Δq + b1(t, x)q + b2(t, x)q = 0 on [0, T ]×M,
q = 0 on [0, T ]× ω̃,

(B.17)

where b1(t, x) and b2(t, x) ∈ L∞([0, T ], L3), is the trivial one q ≡ 0.

B.4.1. M = T3. We assume q = 0 on ω̃ = {x ∈ R3/(θ1Z × θ2Z × θ3Z)|∃i ∈
{1, 2, 3}, xi ∈]− ε, ε[+θiZ}. We define q̃ on R3 by q̃(x) = q(x) if x ∈ [0, θ1]× [0, θ2]×
[0, θ3] and q̃(x) = 0 otherwise. q̃ satisfies the same Schrödinger equation on R3

with compact support K. By translation, we can assume that 0 is the center of the
rectangle.

We use the function Ψ = ‖(x, y, z)‖2 +C. C is chosen large enough so that (B.2)
is fulfilled on K. Let δ > 0 small. Outside of ω = B(0, δ), Ψ is stricly convex (that
is, strongly pseudoconvex for the flat metric inherited from R3) and ∇Ψ 
= 0. Then,
assumptions (B.1) and (B.4) are fulfilled.

We can apply Proposition B.4 with Ω = R3, ω = B(0, δ), and D = B(0, 2δ)c. As
δ is arbitrary, we get q̃ = 0 everywhere and so q = 0.

B.4.2. M = S3.
Lemma B.7. Let Sn ⊂ Rn+1 be the unit sphere. Then, the function h :

(x1, . . . , xn+1) �→ xn+1 restricted to Sn ∩ {xn+1 < 0} has a strictly positive Hessian
for the metric induced by Rn+1.

Proof. h defined on Rn+1 is linear. Then, using Exercise 2.65(b) of [20], we get
Hess(h) = −hg, where g is the bilinear form of the Riemannian structure. Then,
Hess(h) is positive definite if and only if h < 0.

We assume q = 0 on a neighborhood of x4 = 0. Let δ > 0 be small. We choose
Ω = {x ∈ S3|x4 < 0},D = {x ∈ S3|x4 ∈]−1+2δ, 0[}, and ω = S3∩{x4 ∈ [−1,−1+δ[}.
We use the function Ψ = x4 + C. C is chosen large enough so that (B.2) is fulfilled
on the support of q. On Ω\ ω, Ψ is stricly convex thanks to Lemma B.7 and ∇Ψ 
= 0.
Therefore, assumptions (B.1) and (B.4) are fulfilled. As the support of q is compact
in Ω, Proposition B.4 applies and we get q = 0 on D. Since δ is arbitrary, we get
q = 0 on S3 ∩ {x4 < 0}. The symmetry of the problem gives q = 0 on S3.

B.4.3. M = S2 × S1.
Let ω1 ⊂ S2 be a neighborhood of the equator {x3 = 0} and ε > 0. We assume

q = 0 on
(
ω1 × S1

)⋃ (
S2×]− ε, ε[

)
.

The geometric situation is quite similar to the case of T3: this is a product of
manifolds, and the weight function Ψ will be the sum of two pseudoconvex weights in
each coordinate.

The current point x of S2 will be denoted by its coordinates in R3 and the current
point y of S1 = T1 = R/Z by its coordinates in R. Then, we can define q̃ on the open
set Ω = {x ∈ S2|x3 < 0} × R by q̃(x, y) = q(x, y) if y ∈ [0, 1] and 0 otherwise. q̃ is
then compactly supported and is the solution of the same Schrödinger equation.

We choose Ψ(x, y) = x3 + y2 + C with C large enough. Ψ is positive definite
everywhere and nonsingular everywhere outside of any ω = {(x, y) ∈ S2 × R|x3 ∈
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[−1,−1 + δ[ and y2 < δ} for δ > 0. Then, choosing

D =
{
(x, y) ∈ S2 × R

∣∣x3 ∈]− 1 + 3δ, 0[ or y2 > 3δ
}

and applying Proposition B.4 we get q̃ = 0 on D. Therefore, q = 0 on S2 × S1.
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d’espace, Astérisque, no. 237 (1996), pp. 163–187.

[25] V. Isakov, Carleman type estimates in an anisotropic case and applications, J. Differential
Equations, 105 (1993), pp. 217–238.

[26] S. Jaffard, Contrôle interne exacte des vibrations d’une plaque rectangulaire, Portugal. Math.,
47 (1990), pp. 423–429.

[27] H. Koch and D. Tataru, Dispersive estimates for principally normal pseudodifferential oper-
ators, Comm. Pure Appl. Math., 58 (2005), pp. 217–284.

[28] V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer-Verlag, New York,
2005.

[29] I. Lasiecka and R. Triggiani, Well-posedness and sharp uniform decay rates at the L2(Ω)-
level of the Schrödinger equation with nonlinear boundary dissipation, J. Evol. Equ., 6
(2006), pp. 485–537.

[30] I. Lasiecka, R. Triggiani, and X. Zhang, Global uniqueness, observability and stabilization
of nonconservative Schrödinger equations via pointwise Carleman estimates. II. L2(Ω)-
estimates, J. Inverse Ill-Posed Probl., 12 (2004), pp. 183–231.

[31] I. Lasiecka, R. Triggiani, and X. Zhang, Global uniqueness, observability and stabilization
of nonconservative Schrödinger equations via pointwise Carleman estimates. I. H1(Ω)-
estimates, J. Inverse Ill-Posed Probl., 12 (2004), pp. 43–123.

[32] C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on
an interval, ESAIM Control Optim. Calc. Var., to appear.

[33] G. Lebeau, Contrôle de l’équation de Schrödinger, J. Math. Pures Appl. (9), 71 (1992),
pp. 267–291.

[34] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, New York, 1967.
[35] A. Mercado, A. Osses, and L. Rosier, Inverse problems for the Schrödinger equation via

Carleman inequalities with degenerate weights, Inverse Problems, 24 (2008), 015017.
[36] L. Miller, Controllability cost of conservative systems: Resolvent condition and transmuta-

tion, J. Funct. Anal., 218 (2005), pp. 425–444.
[37] L. Molinet, On ill-posedness for the one-dimensional periodic cubic Schrödinger equation,

Math. Res. Lett., 16 (2009), pp. 111–120.
[38] K.-D. Phung, Observability and control of Schrödinger equations, SIAM J. Control Optim.,

40 (2001), pp. 211–230.
[39] J. V. Ralston, Approximate eigenfunctions of the Laplacian, J. Differential Geom., 12 (1977),

pp. 87–100.
[40] L. Rosier and B.-Y. Zhang, Control and Stabilization of the Nonlinear Schrödinger Equation

on Rectangles, http://arxiv.org/abs/1002.1126v1 (2010).
[41] L. Rosier and B.-Y. Zhang, Local exact controllability and stabilizability of the nonlinear

Schrödinger equation on a bounded interval, SIAM J. Control Optim., 48 (2009), pp. 972–
992.

[42] C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation, Springer-Verlag, New York,
1999.

[43] G. Tenenbaum and M. Tucsnak, Fast and strongly localized observation for the Schrödinger
equation, Trans. Amer. Math. Soc., 361 (2009), pp. 951–977.

[44] L. Thomann, The WKB method and geometric instability for nonlinear Schrödinger equations
on surfaces, Bull. Soc. Math. France., 136 (2008), pp. 167–193.

[45] R. Triggiani, Exact controllability in L2(Ω) of the Schrödinger equation in a Riemannian
manifold with L2(Σ1)-Neumann boundary control, in Functional Analysis and Evolution
Equations, H. Amann, W. Arendt, J. von Below, M. Hieber, F. Neubrander, and S. Nicaise,
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