
ON THE SET OF NON RADIATIVE SOLUTIONS FOR THE
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Abstract. Non radiative solutions of the energy critical non linear wave equa-
tion are global solutions u that furthermore have vanishing asymptotic energy
outside the lightcone at both t → ±∞:

lim
t→±∞

∥∇t,xu(t)∥L2(|x|⩾|t|+R) = 0,

for some R > 0. They were shown to play an important role in the analysis of
long time dynamics of solutions, in particular regarding the soliton resolution:
we refer to the seminal works of Duyckaerts, Kenig and Merle, see [8] and the
references therein.

We show that the set of non radiative solutions which are small in the
energy space is a manifold whose tangent space at 0 is given by non radiative
solutions to the linear equation (described in [3]). We also construct nonlinear
solutions with an arbitrary prescribed radiation �eld.

1. Introduction

We consider solutions u : I × Rd → R (I interval of R) of the energy critical
semilinear wave equation in dimension 3 ⩽ d ⩽ 6:

(1) □u = f(u),

with f(x) = ±|x|q−1x or f(x) = ±xq (if q is an integer), where q = d+2
d−2 is the

Ḣ1-critical exponent. If u is a time dependent function, we denote u⃗ = (u, ∂tu).

Denote H := Ḣ1(Rd)× L2(Rd). For a time interval I ⊂ R, we de�ne the spaces

W (I) = Lq(I, L2q(Rd)) and N(I) = L1(I, L2(Rd))

together with

X(I) = {u ∈ C (I, Ḣ1(Rd)) ∩W (I) : ∂tu ∈ C (I, L2(Rd))},

with the natural norm

∥u∥X(I) = ∥u∥C (I,Ḣ1(Rd)) + ∥∂tu∥C (I,L2(Rd)) + ∥u∥W (I).

We now de�ne the linear and nonlinear �ows: if (u0, u1) ∈ H, then u⃗L(t) =
SL(t)(u0, u1) is the solution of the linear wave equation

(2)

{
□uL = 0,

u⃗L(0) = (u0, u1).

Similarly, concerning the nonlinear equation, the problem is locally well posed for
data (u0, u1) in H and furthermore, if they are small in that space, the non lin-
ear solution is global and scatters linearly as t → ±∞: see for example Strauss
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[20], Rauch [19], Pecher [18], Ginibre-Velo [10] or Lindblad-Sogge [17] among oth-
ers. In that case, we will denote u⃗(t) = S(t)(u0, u1) the solution to the nonlinear
wave equation (1) with initial data u⃗(0) = (u0, u1). We may write SL(u0, u1) and
S(u0, u1) to denote the space time function u⃗L and u⃗ respectively.

For a space time function v⃗ ∈ X(R), we de�ne its radiation energy outside a light
cone (of base R ⩾ 0) by

Eext,R(v⃗) :=
1

2

(
lim

t→+∞
(∥∇v∥2L2(|x|⩾t+R) + ∥∂tv∥2L2(|x|⩾t+R))

+ lim
t→−∞

(∥∇v∥2L2(|x|⩾|t|+R) + ∥∂tv∥2L2(|x|⩾|t|+R))

)
,

provided that the limits exist.
If u is a solution to the linear energy critical wave equation (2), due to �nite speed
of propagation, the energy outside a light cone

∥∇u∥2L2(|x|⩾t+R) + ∥∂tu∥2L2(|x|⩾t+R)

is decreasing as a function of t ≥ 0 and admits a limit as t → +∞, for any R ⩾ 0
(and also as t → −∞), and so its radiation energy is well de�ned for any R ⩾ 0. If
u ∈ X(R) is a global solution to the non linear energy critical wave equation (2),
there is linear scattering, so that the radiative energy is well de�ned as well (this
is always the case for small data). See also [6] for the case of large data, global

solutions to (2) which enjoy an a priori Ḣ1 × L2 bound.

We say that a space time function v⃗ ∈ X(R) is non radiative if Eext,R(v⃗) = 0 for
some R ⩾ 0. Non radiative solutions play a crucial role as the main obstruction in
the energy channel method: this machinery was developed with great success, by
Duyckaerts, Kenig, Merle and collaborators, to understand the long time behavior
of solution to the radial energy critical non linear wave equation, in relation with
the soliton resolution conjecture. The classi�cation of small radial non radiative
solutions of (1) was addressed in [7, 1]; we also refer [5, 8] and the references therein.
An important issue, raised in [1, Theorem 1.3], is to extend solutions which are non
radiative for some R > 0 (de�ned on the exterior light cone {|x| ⩾ t + R}), to
solutions which are non radiative for R = 0. All in all, we believe that a �ne
understanding of these particular solutions might constitute a useful step as well in
the soliton resolution in the general case (without symmetry).

Our goal in this article is to give a description of an initial data which leads to non
radiative solutions u⃗ to (1).

We described in [3], for odd dimensions, the linear space PL(R) of initial datum
(v0, v1) ∈ H that give rise to a solution v⃗ = SL(v0, v1) to the linear wave equation
such that Eext,R(v⃗) = 0, in terms of the the Radon transform of the initial data
(v0, v1) and according to its decomposition in spherical harmonics: for the conve-
nience of the reader, we give further details in the Appendix A, see in particular
(20). This was �rst done for radial data in odd dimension by [12], and in even
dimension in [14] (see also [2]), and it was extended to non radial data for odd
dimensions in [3] and later in even dimension in [13].
Let us de�ne the operator T as follows: for a function v de�ned on Rd, T v is
a function of two variables (s, ω), de�ned on R × Sd−1 by its (partial) Fourier
transform in the �rst variable s:

Fs→ν(T v)(ν, ω) = c0|ν|
d−1
2 (eiτ1ν<0 + e−iτ

1ν⩾0)v̂(νω),(3)
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where τ :=
d− 1

4
π, c0 =

1√
2(2π)d−1

,

and v̂ is the Fourier transform on Rd of v:

∀ξ ∈ Rd, v̂(ξ) =

∫
e−iξ·xv(x)dx.

The previous formula can also be expressed in term of the Radon transform R: it
is de�ned for f ∈ S(Rd) by

Rf : R× Sd−1 → R, (s, ω) 7→
∫
ω·y=s

f(y)dy,

(with Lebesgue measure on the hyperplane {y : ω · y = s}) and it can be extended
to f ∈ L2(Rd). Then there holds

T = md(Ds)R where md(ν) := c0|ν|
d−1
2

(
eiτ1ν<0 + e−iτ

1ν⩾0

)
.

In odd dimension, this relation simply writes:

T =
(−1)

d−1
2√

2(2π)d−1
∂

d−1
2

s R.

We refer to [3] for details.
Our statement regarding the radiation of linear wave solutions is as follows. It is
closely related to the radiation �eld of Friedlander [9], see also Katayama [11] for a
related result.

Proposition 1.1 (Radiation �eld and concentration of energy on the light cone,
[3, Theorem 1.1]). Let (v0, v1) ∈ H, and v⃗ = SL(v0, v1) be the linear solution to
(2). Then as t → +∞, there holds the convergence in L2(Rd)1+d

∇t,xv(t, x)−
1

√
2|x| d−1

2

(∂sT v0 − T v1)

(
|x| − t,

x

|x|

)
×
(

−1
x/|x|

)
→ 0.(4)

Furthermore, one has

lim
t→+∞

∥∇v∥2L2(|x|⩾t+R) = lim
t→+∞

∥∂tv∥2L2(|x|⩾t+R) =
1

2
∥∂sT v0 − T v1∥2L2([R,+∞)×Sd−1).

(5)

The function ∂sT v0 − T v1 in (4) is called the radiation �eld (at +∞) of v⃗. Note
that changing v1 to −v1 and reversing time, we get the same result in negative time

lim
t→−∞

∥∇v∥2L2(|x|⩾t+R) = lim
t→−∞

∥∂tv∥2L2(|x|⩾t+R) =
1

2
∥∂sT v0 + T v1∥2L2([R,+∞)×Sd−1),

(6)

so that

Eext,R(v⃗) = ∥∂sT v0∥2L2([R,+∞)×Sd−1) + ∥T v1∥2L2([R,+∞)×Sd−1).

We want to de�ne P(R) the (nonlinear) space of initial datum giving rise to non-
linear radiative solutions. More precisely, we denote

P(R) = {(u0, u1) : S(u0, u1) is de�ned globally on R and Eext,R(S(u0, u1)) = 0} .

Our �rst result states that around 0 ∈ H, P(R) is a submanifold of H, whose
tangent space at 0 is PL(R).

Theorem 1.2. Let d = 3 or 5. Let R > 0, and denote πR the orthogonal projection
on PL(R) (in H).
There exists ε > 0 and a C 1 map

Φ : BH(0, ε) → H.
3



so that Φ is a di�eomorphism to its image V = Φ(BH(0, ε)) ⊂ BH(0, 2ε) whose
di�erential at zero is the identity and satis�es

∀(u0, u1) ∈ BH(0, ε), ∥(u0, u1)− Φ(u0, u1)∥H ⩽ ∥(u0, u1)∥qH.

∀(u0, u1) ∈ BH(0, ε), πR ◦ Φ(u0, u1) = πR(u0, u1).

Moreover, when restricted to PL(R), we have Φ (PL(R) ∩BH(0, ε)) = P(R) ∩ V .
In particular, P(R) ∩ V is a submanifold of H with tangent space at 0 equal to
PL(R). Moreover, (πR)|P(R)∩V is a chart from P(R)∩V to PL(R)∩BH(0, ε) with
inverse Φ.

In particular, this result proves that there are a lot of nonlinear radiative solu-
tions, at least as many as the linear set PL(R) which is actually a large space, see
Appendix A. This description extends some results of [1] to the non radial case.

Simple non radiative solutions can be constructed as follows: it su�ces to consider
a static solutions u(t, x) = u(x) for |x| ≥ |t|+R, with −∆u = f(u). Such solutions
outside of a ball have been precisely described in our recent work [4] for analytic
nonlinearity (which is useful for (1) in dimension 3). The set P(R)stat of such
small solutions is also a manifold whose tangent set at 0 is the set PL(R)stat of
linear solutions of ∆uL = 0; but P(R)stat is actually a strict subset of P(R), by a
substantial margin: see Remark A.1 for more precisions.
PL(R)stat is also a subset of PL(R), so we recover the inclusion P(R)stat into
P(R) at the tangent space level. Yet, in [4], we give a more precise statement: the
nonlinear static solutions of P(R)stat �look� like the linear one PL(R)stat at in�nity.
In a suitable space Zr of analytic functions on Sd−1 adapted to the operator ∆,
there exists a unique uL ∈ PL(R)stat so that

∥(u− uL)(r·)∥Zr
−→

r→+∞
0.

Moreover, the application u 7→ uL, that appears as a kind of scattering operator is
a (local) bijection. It would be very interesting to obtain such precise description
for the nonlinear non radiative solutions.

Our second result is related to wave operator: it says that given any radiation �eld
F (as in (4)), there exists a unique nonlinear solution of (1) with this prescribed
radiation �eld. This result already appears in the literature, in a form or another,
see below. The precise statement is as follows.

Theorem 1.3. Let 3 ⩽ d ⩽ 6 and F ∈ L2(R× Sd−1). Then, there exist T ∈ R and
a unique u ∈ X([T,+∞) solution of the nonlinear equation (1) so that, as t → +∞,

∇t,xu(t, x)−
1

√
2|x| d−1

2

F

(
|x| − t,

x

|x|

)
×
(

−1
x/|x|

)
→ 0 in L2(Rd)1+d.

Furthermore, if ∥F∥L2(R×Sd−1) is small enough, one can choose T = 0 and u ∈ X(R)
is de�ned globally.

We refer to [16, Theorem 1.1] for a result with a similar �avor, for wave type
equations (with other nonlinearities) in dimension 3, but in di�erent functional
spaces; see also [15].
Theorem 1.3 is independent of Theorem 1.2, but relies on a linear scattering result
in X and on Proposition 2.5 which ensures that the map giving the radiation of
(from a linear solution) is onto: this last result goes back to Friedlander [9] (see
also the appendix of [6]). Here, we provide a new proof based on formula (3), which
actually gives an explicit expression of the inverse.
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2. Proofs

The spaces W (I), X(I) and N(I) were chosen to satisfy the following Strichartz
and nonlinear estimates. For a constant independent of the interval I (or of t ∈ R),
we have

∥SL(t)(u0, u1)∥X(R) ⩽ C ∥(u0, u1)∥H ,

∥(u(0), ∂tu(0))∥H ⩽ C ∥u∥X(R) ,∥∥∥∥∫ +∞

−∞
cos(τ |Dx|)h(τ)dτ

∥∥∥∥
L2(Rd)

⩽ C ∥h∥N(R) ,∥∥∥∥∫ +∞

−∞
cos(τ |Dx|)h(τ)dτ

∥∥∥∥
L2(Rd)

⩽ C ∥h∥N(R) ,∥∥∥∥∫ +∞

−∞
sin(τ |Dx|)h(τ)dτ

∥∥∥∥
L2(Rd)

⩽ C ∥h∥N(R) ,(7)

∥v∥X([t,+∞)) + ∥v⃗(t)∥H ⩽ C ∥h∥N([t,+∞))

where v(t) =

∫ +∞

t

sin((.− τ)|Dx|)
|Dx|

h(τ)dτ.

The related Strichartz estimates can for example be found in [17, Theorem 3.1], see
also [10]. Also notice that N is such that if h ∈ N([A,+∞)) for some A ∈ R, then

∥h∥N([t,+∞)) → 0 as t → +∞,(8)

(and similarly in a neighbourhood of −∞). We will �nally need the nonlinear esti-
mate

∥f(u)− f(v)∥N(I) ⩽ C ∥u− v∥W (I) (∥u∥
q−1
W (I) + ∥v∥q−1

W (I)).(9)

It does hold in the cases considered for (1) since |f ′(s)| ⩽ C|s|q−1 and due to Hölder
estimates. In fact, our proofs work in any functional setting that respects the above
conditions (7)-(8)-(9).

Let us start by a a few observations related to the operator T .

De�nition 2.1. We denote:

L2
odd

(R× Sd−1) :=
{
F ∈ L2(R× Sd−1); F (s, ω) = −F (−s,−ω), a.e.

}
,

L2
even

(R× Sd−1) :=
{
F ∈ L2(R× Sd−1); F (s, ω) = F (−s,−ω), a.e.

}
.

Lemma 2.2 ([3, Lemma 4.14]). Let d be odd. T de�nes an isometry from L2(Rd) →
L2(R× Sd−1) and is therefore an isomorphism to its range de�ned by

Range(T ) =

{
L2
even

(R× Sd−1) if d ≡ 1[4],

L2
odd

(R× Sd−1) if d ≡ 3[4].

Similarly, ∂sT : Ḣ1(Rd) → L2(Sd−1 × R) is isometric and

Range(∂sT ) =

{
L2
odd

(R× Sd−1) if d ≡ 1[4],

L2
even

(R× Sd−1) if d ≡ 3[4].
.

We obtain the following corollary.

Corollary 2.3. Let d be odd and R > 0. There exists a continuous linear map
G1

R : L2((R,+∞) × Sd−1) 7→ L2(Rd) so that for any F ∈ L2((R,+∞) × Sd−1),
T G1

RF = F a.e. on (R,+∞).

Similarly, there exists a continuous linear map G0
R : L2((R,+∞)×Sd−1) 7→ Ḣ1(Rd)

so that for any F ∈ L2((R,+∞)× Sd−1), ∂sT G0
RF = F a.e. on (R,+∞).
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Proof. We just prove the result for T and d ≡ 1[4], the other cases being similar.
Since Range(T ) = L2

even
(R× Sd−1) is a closed subsets of the Banach space L2(R×

Sd−1), we can apply the open mapping Theorem of Banach to de�ne a continuous

inverse T −1 from L2
even

(R× Sd−1) to L2(Rd). Let F̃ be the even extension of F ∈
L2((R,+∞)× Sd−1) that is equal to zero on s ∈ [−R,R]. More precisely

F̃ (s, ω) = F (s, ω) for s > R

F̃ (s, ω) = F (−s,−ω) for s < −R

F̃ (s, ω) = 0 for s ∈ [−R,R].

It is clear that F̃ ∈ L2
even

(R×Sd−1). De�ning G1
RF = T −1F̃ , we obtain T G1

RF = F̃
which satis�es the expected result. □

Given a source term f , we can now construct a solution to the linear equation with
this source term, which is non radiative.

Proposition 2.4. Let d odd and X, N functional spaces satisfying (7) and (8).
Let h ∈ N(R). There exists a continuous linear map T : N(R) → X(R), such that
for any h ∈ N(R), u = Th is the unique element u ∈ X(R) satisfying

(1) u is solution of □u = h,
(2) Eext,R(u⃗) = 0,
(3) πR(u⃗(0)) = 0.

Proof. Step 1. We �rst look for ũ satisfying the hypothesis 1) and 2), but not
necessarily 3) We decompose ũ = v + w where

v(t) :=

∫ t

−∞

sin((t− τ)|Dx|)
|Dx|

h(τ)dτ,

so that □v = h with morally 0 data at −∞ and w solution of □w = 0 is to be
chosen later on. Notice that changing t to −t in (7), we get

∥v⃗(t)∥H ⩽

∥∥∥∥∫ t

−∞

sin((t− τ)|Dx|)
|Dx|

h(τ)dτ

∥∥∥∥
H

⩽ C ∥h∥N((−∞,t]) .

Using (8), this directly implies

lim
t→−∞

(∥∇v∥2L2(Rd) + ∥∂tv∥2L2(Rd)) = 0.(10)

Also, by (7), there hold
∥v∥X(R) ⩽ C ∥h∥N(R) .

Let us now estimate the exterior energy (outside a truncated cone) of v⃗ as t → +∞.
We write

v(t) =

∫ +∞

−∞

sin((t− τ)|Dx|)
|Dx|

h(τ)dτ −
∫ +∞

t

sin((t− τ)|Dx|)
|Dx|

h(τ)dτ

=
sin(t|Dx|)

|Dx|

∫ +∞

−∞
cos(τ |Dx|)h(τ)dτ − cos(t|Dx|)

∫ +∞

−∞

sin(τ |Dx|)
|Dx|

h(τ)dτ

−
∫ +∞

t

sin((t− τ)|Dx|)
|Dx|

h(τ)dτ

=:
sin(t|Dx|)

|Dx|
v1+ + cos(t|Dx|)v0+ + r(t).(11)

In other words, v⃗ = SL(v0+, v1+) + r⃗. We estimate using (7)

∥v1+∥L2(Rd) =

∥∥∥∥∫ +∞

−∞
cos(τ |Dx|)h(τ)dτ

∥∥∥∥
L2(Rd)

⩽ C ∥h∥N(R) ,(12)
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∥v0+∥Ḣ1(Rd) =

∥∥∥∥∫ +∞

−∞
sin(τ |Dx|)h(τ)dτ

∥∥∥∥
L2(Rd)

⩽ C ∥h∥N(R) ,

∥r∥X(R) =

∥∥∥∥∫ +∞

.

sin((· − τ)|Dx|)
|Dx|

h(τ)dτ

∥∥∥∥
X(R)

⩽ C ∥h∥N(R) ,

∥r⃗(t)∥H =

∥∥∥∥∫ +∞

t

sin((t− τ)|Dx|)
|Dx|

h(τ)dτ

∥∥∥∥
H

⩽ C ∥h∥N([t,+∞)) .

In particular, due to (8), we have

lim
t→+∞

(∥∇r∥2L2(Rd) + ∥∂tr∥2L2(Rd)) = 0.(13)

We will select (w0, w1) = (w(0), ∂tw(0)) the data at initial time for w, so that
w(t) = SL(t)(w0, w1). We can now compute the radiation of u in terms of (w0, w1)
and (v0+, v1+). Indeed, for t → −∞, using (6) and (10), we have

lim
t→−∞

(∥∇ũ∥2L2(|x|⩾|t|+R) + ∥∂tũ∥2L2(|x|⩾|t|+R))

= lim
t→−∞

(∥∇w(t)∥2L2(|x|⩾|t|+R) + ∥∂tw(t)∥2L2(|x|⩾|t|+R))

= ∥∂sT w0 + T w1∥2L2([R,+∞)×Sd−1).

Similarly, for t → +∞, ⃗̃u(t) = SL(t)(w0 + v0+, w1 + v1+) + r⃗(t) so that using (13)
and (5), we have

lim
t→+∞

(∥∇ũ∥2L2(|x|⩾|t|+R) + ∥∂tũ∥2L2(|x|⩾|t|+R))

= lim
t→+∞

(∥∇(v + w)(t)∥2L2(|x|⩾|t|+R) + ∥∂t(v + w)(t)∥2L2(|x|⩾|t|+R))

= ∥∂sT (w0 + v0+)− T (w1 + v1+)∥2L2([R,+∞)×Sd−1).

Hence, summing up, we get:

(14) Eext,R(⃗̃u) =
1

2
∥∂sT w0 + T w1∥L2([R,+∞)×Sd−1)

+
1

2
∥∂sT (w0 + v0+)− T (w1 + v1+)∥L2([R,+∞)×Sd−1).

We therefore look for (w0, w1) ∈ Ḣ1 × L2 such that{
∂sT w0 + T w1 = 0 on [R,+∞)× Sd−1, a.e.

∂sT (w0 + v0+)− T (w1 + v1+) = 0 on [R,+∞)× Sd−1, a.e.
(15)

Equivalently:{
2T w1 = −T v1+ + ∂sT v0+ on [R,+∞)× Sd−1, a.e.

2∂sT w0 = −∂sT v0+ + T v1+ on [R,+∞)× Sd−1, a.e.

Due to Corollary 2.3, the previous equations can be solved with a continuous inverse.
To summarize, we �nally de�ne

w1 =
1

2
G1

R(−T v1+ + ∂sT v0+) and w0 =
1

2
G0

R(−∂sT v0+ + T v1+).(16)

Then (w0, w1) solve the system (15) and, thanks to Lemma 2.2 and (12), satisfy
the estimates

∥(w0, w1)∥H ⩽ C ∥T v1+ − ∂sT v0+∥L2([R,+∞)×Sd−1)

⩽ C ∥v1+∥L2(Rd) + C ∥v0+∥Ḣ1(Rd) ⩽ C ∥h∥N(R) .
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Then we let ⃗̃u = v⃗ + SL(w0, w1) where v⃗ is de�ned in (11) and (w0, w1) is de�ned

in (16). Then □ũ = □v = h and, in view of (14), Eext,R(⃗̃u) = 0. Also, we have the
bound

∥ũ∥X(R) ⩽ ∥v∥X(R) + ∥w∥X(R) ⩽ C ∥h∥N(R) + ∥(w0, w1)∥H ⩽ C ∥h∥N(R) .

Step 2.Now that ũ is de�ned, we simply let u = ũ−uR where u⃗R = SL(πR (ũ(0), ∂tũ(0))):
indeed, uR is a non radiative solution, and solves □uR = 0. Also, regarding conti-
nuity of the map, we just need to write

∥uR∥X(R) ⩽ C ∥πR (ũ(0), ∂tũ(0))∥H ⩽ ∥(ũ(0), ∂tũ(0))∥H ⩽ C ∥ũ∥X(R) ⩽ C ∥h∥N(R) ,

so that ∥u∥X(R) ⩽ C∥h∥N(R). This �nishes the existence part.

Step 3. Concerning uniqueness: let u1 and u2 be two such solutions of the problem.
In particular, z = u1 − u2 satisfy:

(1) z is solution of □z = 0,
(2) Eext,R(z⃗) = 0,
(3) πR(z⃗(0)) = 0.

In particular, the �rst and second assumptions imply (z(0), ∂tz(0)) ∈ PL(R) and
therefore z⃗(0) = πR(z⃗(0)). Together with the third assumption, we infer (z(0), ∂tz(0)) =
0 and therefore z = 0, and u1 = u2. □

With Proposition 2.4 in hand, we can now prove the theorem.

Proof of Theorem 1.2. For (u0, u1) ∈ H, let u⃗L = SL(u0, u1). We are looking for a
solution u of

u = uL + T (f(u)).(17)

Indeed, if u ∈ X(R) solves (17), then

□u = □(Tf(u)) = f(u),

so that u solves (1). To solve (17), given (u0, u1) ∈ PL(R) with ∥(u0, u1)∥H ⩽ ε, we
use a �xed point argument on small closed balls B(0, ε) of X(R) for the map

G : r 7→ T (f(uL + r)).

Due to the continuity of T : N(R) → X(R) (provided by Proposition 2.4), and
using (7) and (9), we get for r, r̃ ∈ X(R),

∥G(r)∥X(R) ⩽ C ∥f(uL + r)∥N(R) ⩽ C ∥uL + r∥qX(R) ⩽ C(εq + ∥r∥qX),

∥G(r)−G(r′))∥X(R) ⩽ C ∥f(uL + r)− f(uL + r̃)∥N(R)

⩽ C ∥r − r̃∥W (R) (∥uL + r∥q−1
W (R) + ∥uL + r̃∥q−1

W (R))

⩽ C ∥r − r̃∥X (εq−1 + ∥r∥q−1
X + ∥r̃∥q−1

X ).

So, for ε small enough, G admits a unique �xed point v in BX(R)(0, ε), the closed
ball of radius ε in X(R). Furthermore

(18) ∥v∥X(R) = ∥G(v)∥X(R) ⩽ C∥(u0, u1)∥qH.

Then u := uL + v solves (17). Also, by regularity of the Banach �xed point with
parameter, the map (u0, u1) 7→ v is C 1 from BH(0, ε) to X(R) (notice that the
nonlinearity is C 1), with di�erential 0 at 0 ∈ H, due to (18). Finally,

πR(u(0), ∂tu(0)) = πR(u0, u1) + πR(T (f(u))(0), ∂tT (f(u))(0)) = πR(u0, u1).
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Therefore, the map

Φ : (u0, u1) 7→ (u, ∂tu)(0),

(where u is as above) satis�es the �rst part of Theorem 1.2, up to possibly dimin-
ishing ε.
Now, assuming (u0, u1) ∈ PL(R), we de�ne u⃗ = SΦ(u0, u1), the associated nonlinear
solution. We have f(u) ∈ N(R) due to (9) and as Eext,R(SL(u0, u1)) = 0, the
radiation of u is well de�ned and

Eext,R(u⃗) = Eext,R(T (f(u)), ∂tT (f(u))) = 0,

so that u ∈ P(R). So, we have proved Φ(PL(R) ∩BH(0, ε)) ⊂ P(R) ∩ V .
Reciprocally, let (v0, v1) ∈ P(R)∩V . By de�nition of V , it can be written (v0, v1) =
Φ(u0, u1) with (u0, u1) ∈ BH(0, ε). Denoting u⃗ = SΦ(u0, u1) = S(v0, v1), the asso-
ciated nonlinear solution, we have, by de�nition of Φ, u⃗ = SL(u0, u1)+T (f(u)). In
particular, as Eext,R(T (f(u)), ∂tT (f(u))) = 0, we have

Eext,R(u⃗) = Eext,R(SL(u0, u1)).

Now we assumed (v0, v1) ∈ P(R), so that Eext,R(u⃗) = Eext,R(S(v0, v1)) = 0, and

Eext,R(SL(u0, u1)) = 0.

Thus, (u0, u1) ∈ PL(R) and (v0, v1) ∈ Φ(PL(R) ∩BH(0, ε)).
The last statement of the theorem is only a rephrasing of the previous results in
terms of submanifolds in Banach spaces. □

Now, we turn to the proof of Theorem 1.3 and begin by a Proposition stating that
the radiation operator is onto.

Proposition 2.5 (Friedlander [9]). The application

H −→ L2(R× Sd−1)

(v0, v1) 7−→ ∂sT v0 − T v1

is a bijective isometry.

Proof. For the convenience of the reader, we provide a proof with an explicit inver-
sion formula in terms of Fourier transform. Formula (3) gives

Fs→ν(∂sT v0 − T v1)(ν, ω) = c0|ν|
d−1
2 (eiτ1ν<0 + e−iτ

1ν⩾0)(iνv̂0(νω)− v̂1(νω)).

For the injectivity, we could compute directly that the application is an isometry,
see for instance [3, Lemma 2.1.] for a closely related computation. Here we can
directly check that ∂sT v0 −T v1 = 0 implies iνv̂0(νω) = v̂1(νω) almost everywhere
in R× Sd−1. Applying at (ν, ω) and (−ν,−ω), it gives (v0, v1) = (0, 0).

For the surjectivity, given F ∈ L2(R × Sd−1), denote for simplicity F̂ = Fs→νF ,
and de�ne v0 and v1 by their Fourier transform as follows: for ξ ∈ Rd \ {0}, with
ξ = ρω where ρ > 0 and ω ∈ Sd−1, we set

v̂0(ξ) =
1

2ic0ρ
d+1
2

(
eiτ F̂ (ρ, ω)− e−iτ F̂ (−ρ,−ω)

)
,

v̂1(ξ) = − 1

2c0ρ
d−1
2

(
eiτ F̂ (ρ, ω) + e−iτ F̂ (−ρ,−ω)

)
.

Then for ω ∈ Sd−1, we have for ν > 0

Fs→ν(∂sT v0 − T v1)(ν, ω) = c0ν
d−1
2 e−iτ (iνv̂0(νω)− v̂1(νω))

= c0ν
d−1
2 e−iτ

(
iν

2ic0ν
d+1
2

(
eiτ F̂ (ν, ω)− e−iτ F̂ (−ν,−ω)

)
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+
1

2c0ν
d−1
2

(
eiτ F̂ (ν, ω) + e−iτ F̂ (−ν,−ω)

))
= F̂ (ν, ω),

and if ν < 0,

Fs→ν(∂sT v0 − T v1)(ν, ω) = c0|ν|
d−1
2 eiτ (−i|ν|v̂0(|ν|(−ω))− v̂1(|ν|(−ω)))

= c0|ν|
d−1
2 eiτ

(
− i|ν|
2ic0|ν|

d+1
2

(
eiτ F̂ (|ν|,−ω)− e−iτ F̂ (ν, ω)

)
+

1

2c0|ν|
d−1
2

(
eiτ F̂ (|ν|,−ω) + e−iτ F̂ (ν, ω)

))
= F̂ (ν, ω).

Hence there hold
(∂sT v0 − T v1) = F.

We verify that (v0, v1) de�ned as above are indeed in H.

∥v0∥2Ḣ1 =
1

(2π)d
∥| · |v̂0(·)∥2L2 =

1

(2π)d

∫ +∞

0

ρd−1

∫
ω∈Sd−1

ρ2 |v̂0(ρω)|2 dω dρ

=
1

4c20(2π)
d

∫ +∞

0

∫
ω∈Sd−1

∣∣∣eiτ F̂ (ρ, ω)− e−iτ F̂ (−ρ,−ω)
∣∣∣2 dω dρ.

∥v1∥2L2 =
1

(2π)d
∥v̂1(·)∥2L2 =

1

(2π)d

∫ +∞

0

ρd−1

∫
ω∈Sd−1

|v̂1(ρω)|2 dω dρ

=
1

4c20(2π)
d

∫ +∞

0

∫
ω∈Sd−1

∣∣∣eiτ F̂ (ρ, ω) + e−iτ F̂ (−ρ,−ω)
∣∣∣2 dω dρ.

Finally, it is an isometry: indeed,
1

4c20(2π)
d
=

1

4π
and

∣∣∣eiτ F̂ (ρ, ω)− e−iτ F̂ (−ρ,−ω)
∣∣∣2 + ∣∣∣eiτ F̂ (ρ, ω) + e−iτ F̂ (−ρ,−ω)

∣∣∣2
= 2

∣∣∣F̂ (ρ, ω)
∣∣∣2 + 2

∣∣∣F̂ (−ρ,−ω)
∣∣∣2 ,

so that

∥v0∥2Ḣ1 + ∥v1∥2L2 =
1

2π

∫ +∞

0

∫
ω∈Sd−1

∣∣∣F̂ (ρ, ω)
∣∣∣2 + ∣∣∣F̂ (−ρ,−ω)

∣∣∣2 dω dρ

=
1

2π

∫ +∞

0

∫
ω∈Sd−1

∣∣∣F̂ (ρ, ω)
∣∣∣2 + ∣∣∣F̂ (−ρ, ω)

∣∣∣2 dω dρ

=
1

2π

∫
R

∫
ω∈Sd−1

∣∣∣F̂ (ρ, ω)
∣∣∣2 dω dρ =

∫
R

∫
ω∈Sd−1

|F (s, ω)|2 dω ds

= ∥F∥2L2(R×Sd−1) . □

Proof of Theorem 1.3. Step 1. We �rst construct the linear scattering state, that is
�nd (v0, v1) ∈ H such that, denoting v⃗L = SL(v0, v1), as t → +∞,

∇t,xvL(t, x)−
1

√
2|x| d−1

2

F

(
|x| − t,

x

|x|

)
×
(

−1
x/|x|

)
→ 0 in L2(Rd)1+d.(19)

Due to Proposition 2.5, there exists (v0, v1) ∈ H so that

F = (∂sT v0 − T v1).

In view of (4), we see that v⃗L = SL(·)(v0, v1) satis�es the expected asymptotic (19).
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Step 2. We now construct u⃗, solution to (1) such that ∥u⃗− v⃗L(t)∥H → 0 as t → +∞:
this is simply the wave operator, and is standard. We provide some elements of proof
for the sake of completeness. We decompose u⃗(t) = v⃗L(t) + w⃗(t) and write w⃗ as
solution of a �xed point problem. Let T ∈ R to be chosen later: the Duhamel
formula on [t, τ ] (for τ ⩾ t) gives

v⃗L(τ) + w⃗(τ) = SL(τ − t)(v⃗L(t) + w⃗(t)) +

∫ τ

t

SL(τ − s)

(
0

f(vL(s) + w(s))

)
ds.

Notice that v⃗L(t) = SL(t − T )v⃗L(T ); compose by SL(t − τ) and let τ → +∞: as
∥SL(t − τ)w⃗(τ)∥H = ∥w⃗(τ)∥H is meant to tend to 0, we arrive at the �xed point
formulation:

w⃗(t) = Ψw⃗(t), where Ψv⃗(t) := −
∫ +∞

t

SL(t− s)

(
0

f(vL(s) + v(s))

)
ds.

Let T ∈ R to be �xed later, we work in small closed balls B(0, ε) of X([T,+∞)).
By (7) and (9), we have for v⃗ ∈ X([T,+∞)),

∥Ψv⃗∥X([T,+∞)) ⩽ C∥f(vL + v)∥N([T,+∞)) ⩽ C
(
∥vL∥qW ([T,+∞)) + ∥v∥qW ([T,+∞))

)
.

Similarly,

∥Ψv⃗ −Ψ⃗̃v∥X([T,+∞)) ⩽ C∥f(vL + v)− f(vL + ṽ)∥N([T,+∞)

⩽ C
(
∥vL∥q−1

W ([T,+∞)) + ∥v∥q−1
W ([T,+∞)) + ∥ṽ∥q−1

W ([T,+∞))

)
∥v − ṽ∥W ([T,+∞)).

Let T be such that ∥vL∥q−1
W ([T,+∞)) ⩽ ε be small enough, then Ψ admits a unique

�xed point w⃗ in B(0, ε), and u⃗ = v⃗L + w⃗ answers the question. □

Appendix A. Description of the set PL(R) of linear non radiative

solutions

In this section, we gather some results of [3] where a precise description of the set
PL(R) was performed for R > 0. This corresponds to classifying the linear solutions
u that have vanishing asymptotic energy on the exterior light cone |x| ⩾ t+R with
R > 0, that is

Eext,R(u) = 0.

By �nite speed of propagation, initial data which are compactly supported in |x| ⩽
R obviously satisfy this condition. We will call this space

KR,comp =
{
(u0, u1) ∈ Ḣ1 × L2(Rd) : (u0, u1)|{|x|>R} = 0

}
.

where the equality is in the distributional sense.
It turns out that these are not the only examples. We will now need some further
notation.
We denote (Yℓ)ℓ∈M a countable orthonormal basis of spherical harmonics of Sd−1.
Yℓ is the restriction to Sd−1 of a harmonic (homogeneous) polynomial. For short,
we will denote l = l(ℓ) the degree of this polynomial.
The non radiative functions will be the following. Denote for k ∈ N,

αk := −l − d+ 2k + 2.

αk also depends on ℓ, but here and below, we silence this dependence to keep
notations light. Then let

gk(x) = 1{|x|>R}|x|αkYℓ

(
x

|x|

)
.

Note that gk ∈ L2 if and only if αk < −d/2. We introduce

N 0
R,ℓ = Span (gk; for k ∈ N such that αk < −d/2)
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Similarly, let

fk(x) =


(
|x|
R

)αk

Yℓ

(
x

|x|

)
for |x| > R(

|x|
R

)l

Yℓ

(
x

|x|

)
for |x| ⩽ R.

Note that fk ∈ Ḣ1 if and only if αk < −d/2 + 1. Also, the value of fk in |x| ⩽ R
is not very important; our choice allows to keep continuity and that the restriction
fk|{|x|<R} is a harmonic polynomial, so that fk is orthogonal to (in Ḣ1) to functions
with compact support in B(0, R).
Let

N 1
R,ℓ = Span (fk; for k ∈ N such that αk < −d/2 + 1) .

For any ℓ ∈ M, we note the space

Pℓ(R) = N 0
R,ℓ ×N 1

R,ℓ.

Remark A.1. For a �xed spherical harmonics Yℓ, only the value k = 0 corresponding
to α0 = −l − d + 2 produces a solution of the stationary equation ∆u = 0, and
from [4] (in dimension 3), a nonlinear stationary solution de�ned outside a large
ball: via time invariance, this yields a curve (manifold of dimension 1) of solutions
stationary outside a light cone.
Theorem 1.2 constructs a non radiative solution for all elements in Pℓ(R), which,
except for those on the curve above, are not stationary outside a light cone.

One of the result of [3, Theorem 1.7] was the precise description of PL(R) in odd
dimensions as follows.

PL(R) = KR,comp

⊥
⊕

⊥⊕
ℓ∈M

Pℓ(R).(20)

(the orthogonality is related to the natural scalar product of Ḣ1 × L2).

References

[1] Charles Collot, Thomas Duyckaerts, Carlos Kenig, and Frank Merle. On classi�cation of
non-radiative solutions for various energy-critical wave equations. Adv. Math., 434:Paper No.
109337, 91, 2023.

[2] Raphaël Côte, Carlos E. Kenig, and Wilhelm Schlag. Energy partition for the linear radial
wave equation. Math. Ann., 358(3-4):573�607, 2014.

[3] Raphaël Côte and Camille Laurent. Concentration close to the cone for linear waves. Rev.
Mat. Iberoam., 40(1):201�250, 2024.

[4] Raphaël Côte and Camille Laurent. A scattering operator for some nonlinear elliptic equa-
tions. arXiv:2312.17514, 2024.

[5] Thomas Duyckaerts, Carlos Kenig, and Frank Merle. Classi�cation of radial solutions of the
focusing, energy-critical wave equation. Camb. J. Math., 1(1):75�144, 2013.

[6] Thomas Duyckaerts, Carlos Kenig, and Frank Merle. Scattering pro�le for global solutions of
the energy-critical wave equation. J. Eur. Math. Soc. (JEMS), 21(7):2117�2162, 2019.

[7] Thomas Duyckaerts, Carlos Kenig, and Frank Merle. Decay estimates for nonradiative solu-
tions of the energy-critical focusing wave equation. J. Geom. Anal., 31(7):7036�7074, 2021.

[8] Thomas Duyckaerts, Carlos Kenig, and Frank Merle. Soliton resolution for the radial critical
wave equation in all odd space dimensions. Acta Math., 230(1):1�92, 2023.

[9] Friedrich G. Friedlander. Radiation �elds and hyperbolic scattering theory.Math. Proc. Cam-
bridge Philos. Soc., 88(3):483�515, 1980.

[10] Jean Ginibre and Giorgio Velo. Generalized Strichartz inequalities for the wave equation. J.
Funct. Anal., 133(1):50�68, 1995.

[11] Soichiro Katayama. Asymptotic behavior for systems of nonlinear wave equations with multi-
ple propagation speeds in three space dimensions. J. Di�erential Equations, 255(1):120�150,
2013.

[12] Carlos Kenig, Andrew Lawrie, Baoping Liu, and Wilhelm Schlag. Channels of energy for the
linear radial wave equation. Adv. Math., 285:877�936, 2015.

12



[13] Liang Li, Ruipeng Shen, Chenhui Wang, and Lijuan Wei. Asymptotic behaviour of non-
radiative solution to the wave equations. Preprint, https://arxiv.org/abs/2201.02286, 2022.

[14] Liang Li, Ruipeng Shen, and Lijuan Wei. Explicit formula of radiation �elds of free waves
with applications on channel of energy. Analysis & PDE, 17(2):723�748, March 2024.

[15] Hans Lindblad and Volker Schlue. Scattering for wave equations with sources close to the
lightcone and prescribed radiation �elds. Preprint, https://arxiv.org/abs/2303.10569, 2023.

[16] Hans Lindblad and Volker Schlue. Scattering from in�nity for semilinear wave equations
satisfying the null condition or the weak null condition. J. Hyperbolic Di�er. Equ., 20(1):155�
218, 2023.

[17] Hans Lindblad and Christopher D. Sogge. On existence and scattering with minimal regularity
for semilinear wave equations. J. Funct. Anal., 130(2):357�426, 1995.

[18] Hartmut Pecher. Nonlinear small data scattering for the wave and Klein-Gordon equation.
Math. Z., 185(2):261�270, 1984.

[19] Je�rey Rauch. I. The u5 Klein-Gordon equation. II. Anomalous singularities for semilinear
wave equations. In Nonlinear partial di�erential equations and their applications. Collège
de France Seminar, Vol. I (Paris, 1978/1979), volume 53 of Res. Notes in Math., pages
335�364. Pitman, Boston, Mass.-London, 1981.

[20] Walter A. Strauss. Decay and asymptotics for cmu = F (u). J. Functional Analysis, 2:409�
457, 1968.

Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg,
7 rue René-Descartes, F-67084 Strasbourg Cedex, France
Email address: rcote@unistra.fr

CNRS UMR 9008, Université Reims-Champagne-Ardennes, Laboratoire de Mathéma-
tiques de Reims (LMR), Moulin de la Housse-BP 1039, 51687 REIMS cedex 2, France
Email address: camille.laurent@univ-reims.fr

13


	1. Introduction
	2. Proofs
	Appendix A. Description of the set PL(R) of linear non radiative solutions
	References

