CONCENTRATION CLOSE TO THE CONE FOR LINEAR WAVES

RAPHAEL COTE AND CAMILLE LAURENT

ABSTRACT. We are concerned with solutions to the linear wave equation. Our
main result concerns the computation of the asymptotic exterior energy outside of
the cone |x| > || + R for R > 0 and odd dimension. This proves, in the general
case, the results of (which were restricted to radial data). Also, along the
proof, we derive further expressions of the exterior energy (outside a shifted light
cone), valid in all dimension and for non radial data. We, in particular, generalize
the formulas of obtained in the radial setting.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

1.1. General results about asymptotic profile. In this paper, we consider solutions
to the linear wave equation in any dimension d > 1.

oy — Au =0,
(,0¢u) =0 = (uo, u1),

We are particularly interested in understanding how the energy of w concentrate
around the light cone for large times, that is, provide some formulas for quantities
which are typically

(1.1) (t,x) € R x R%.

tli)rfoo HVx,tMHHleZ(|x\>t+R)

where R € R is fixed, in terms of the initial data (u, 11). This kind of quantities
are very natural when thinking of finite speed of propagation for solutions to the
linear wave equation, but are also useful in nonlinear contexts, for example for the
channels of energy method, we refer for example to [DKM12] for one of the first
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time it was used in the context of the energy critical non linear wave equation. Such
formula where given in the radial setting, notably in [CKS14] and [KLLS15], and
we aim at generalizing the result therein to non radial linear waves.

Our main result in this article is Theorem[I.7]below concerning the exterior energy
outside of the cone for R > 0 and odd dimension. Before stating it, we will first
present several other results that are sometimes not completely new, but in a unified
presentation which we find interesting.

We can formulate our first results on solution of the half-wave equation, that is,
consider ¢f/P| f, where | D| is the operator defined as a multiplier in Fourier space

DIf (&) = I,

where f is the d-dimensional Fourier transform of f:

~

f@)= [ e fx)dx.

For any s € IR, we define the space H® as the completion of . (IR¥) for the norm

£ = [ 617 Pde.

For functions of several variables (say s and other ones), we will consider in an
analogous way |D;s|, where the Fourier transform is restricted to the s variable.
Our results on the half-wave equation will transfer to the wave equation as its
solutions can be written

1.2)

; ; 1 1 1 1
U= elf\D\f+e—zt|D\g where f:= 5 {uo + iD|u1] and g := 5 [uo - i|D|u1] .

We now introduce some notation. Given a function f on R and w € $971, let
f& : R — C be such that its 1-dimensional Fourier transform (as a function of
v € R)is

d—1 A

(1.3) TR V) = Lyzolv] 7 fvw).

We also use the notation
d—1 1

1.4 Ti=——m and ¢ = ————.

(1.4) ) 0 P

Finally, we define the operator .7 as follows: for a function v defined on R?, 7
is a function of two variables (s, w), defined on R x $9~1 by its (partial) Fourier
transform in the first variable s:

(1.5) Fs—(Tv)(v,w) = colv| T (e Lyco + e T1y50)d(vw).
that is,
(70)(s,w) = co (eiTv; (s) + e_iTU$(s)) .

Our first result is the description of the asymptotics for large times of solutions of
the half-wave equation, and then of the wave equation.

Proposition 1.1 (Radiation field and concentration of energy on the light cone).
1) (Half-wave equation) Let f € L?(R?). Then as t — oo, the convergence holds

el’f

(1.6) Pl f)(x) = ———
(2nlx|)T

fop (Xl =) =0 in L*(RY).
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Furthermore, one has

(1.7) limsup Heit‘D‘fHLz(\\x\7|t||2R) —0 as R — +oo.
t— oo

2) (Wave equation) Let (ug,u1) € H' x L>(R%), and u be the solution to (T.1). Then as
t — 400, the convergence holds

(1.8)
1 x -1 12 mdy1+d
t,x)— —————(0sTuyg— 7 —t,— 0 L (R .
Vuatlh0) = s @70 7w (=t ) < () 0 i 129
Furthermore, one has
(1.9) limiup IVexte(t) |2 x|~ jg=r) = 0 a5 R — oo
t—+oo

Of course, for ¢ € L?(IR?), one obtains the corresponding expression for e~ tIPlg by
considering the complex conjugate in (1.6)):

—it|D| et _ . 2 md
(1.10) (e Q) (x) (2n|x|)%gx”x|(|X| f) H—JFZOO in L°(R?%).

This also gives an expansion for t — —co. Also, 2) is a rather direct consequence of
1), as we will prove the following equality which has its own interest:
(1.11) (3s:Tug — Tuy)(s,w) = 2c00s(e’ fi + e 7gh) (s).

This result is therefore a computation of the radiation field of Friedlander [Fri80].
We refer to [BVW18]; in odd dimension, it can be classically written thanks to the
Radon transform (see [Mel95]], [LP67]), to which the operator .7 is related (see the
definition (L.23), sectiondand Lemma 4.8).

However, as far as we can tell, the correct computation of the convergence in L?
seems to be not classic, specially in even dimension, although an analoguous for-
mula to can be found in [Kat13] by Katayama (relying on the Radon transform).
Our proof follows from a rather elementary and short stationary phase analysis.
Our formula is amenable to further computations. For example, as an easy con-
sequence, we can also compute the energy outside a (shifted) light cone, or the
asymptotic energy at 400 and —oo in the following sense.

Definition 1.2. Given R € R and a space time function v, we denote
Eex(0) = 5 (B (19012 ) + 100210
ext, 2\t L2(|x|>t+R) L2(|x|>t+R)

+ lim (V0] L2 1) + |af0||%2<|x>|t|+R>))
assuming that the limits exist.
Then there hold
Corollary 1.3 (Mass outside the light cone). Let R € IR. We have the formula

. 2
A (|l e r)
dw.

1 s
-+ — —iZ(d-1) +
(112 (27mr)d-1 ./wesd—l fo(s)+e 2 8w (s) L2([R,+c0))

for any (ug, u1) € L% x H-Y(IRY) and u solution to (T.1). Also, in the case of an initial
datum (ug,u1) € H' x L2(R?) in the energy space, we have the formula

(1.13)

2

2 . 2
|W”||L2(\x|>t+R) = tl}{f‘w Hat”HL2(\x\>t+R)
3
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2
dw.
LZ([R,+00))

s f (s) + e T0sg5 ()

1
B (2m)d-1 /weSd—l

1
(L14) = 5195710 — T1[|T2 (g ooy sty

(The first equality in (1.13) is equipartition). As a consequence, there is asymptotic orthogo-
nality in the sense that

(1.15) Eext,r (1) = |95 guoan (IR, +00)xS4-1) + ||9u1||%2([R,+oo)><Sd*1)‘

(Here and below, R x $9~1 is equipped with the standard product measure). The
last two formulas and involving .7 reveal the important role of this
operator in our analysis. We can reformulate in the following way: denoting
u° [resp. u°] the solution to with initial data (ug,0) [resp. (0,u1)] then

Eext,r(4) = Eext,r (4°) + Eext,r(1°).

Another consequence of Theorem [1.1]is related to profile decomposition in the
sense of Bahouri-Gérard [BG99], for which we can prove Pythagorean expansion of
the linear energy with sharp cut-off: this in turn is useful for the channel of energy
method in a nonlinear setting (see [DKM12, [CKLS15al, (CKLS15b, [CKS14])). Let us
recall the notion of profile decomposition for the wave equation.

Definition 1.4. Let (1,0, 4, 1) be a bounded sequence in H! x L%. We say that it
admits a linear profile decomposition (ljli, (Aj)ns (t,n)ns (Xj,0)n)j, with remainder
(w{l) ] where the U] and the @/, are solutions to the linear wave equation, and the

parameters (A;, ), (t], Jn, (x ],,,) are sequences in [0, +-c0), R and RY respectively, if
it satisfies

(1) Decomposition: for all | > 1, there holds

(”n 0, Un, 1)(9()
t, x—Xx; 1 t, x—Xx;
jn jn i jn Jn =]
E — , ——=0 ll , 0),
= < Ad/2-1 ( Ain" Ajn > ' 2d72% ( A’ i > ) + @y (0)

2
where the remainder converges in the Strichartz space § = L/, (R*4)

lim sup |@h|ls =0 as J— 4.
n— 400

(2) Pseudo-orthogonality: for j # k,

A A
either: L 7/ N
Akn Ajn
or:  Vn, Aj, = A, and L1 | I — 0.
Ajn Ajn

Proposition 1.5 (Orthogonality with cut-offs in a profile decomposition). Let (1,0, 1y1)
be a bounded sequence of H' x L2, and assume that it admits a profile decomposition with

waves and parameters (le]L, (Aj)ns (tn)ns (Xj,n)n)j, and remainder (ZT)L),[,],
Let (ry)y and (x,) be two sequences of [0, +-c0) and R respectively. Then

3 v, (i 2
1 L _AJ'/"

|| (un,Or un,l) ||§_11 X L2(|x—xn|>rn) — Z

Lz(l)‘j,nx"’xj,n*xnl}rﬂ)

(116) 4[]0, @), )1 12 () + O (1)
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Note that an interesting byproduct of the proof is an explicit formula for recon-
structing the initial datum of a solution of the wave equation from its radiation

field described in (L.8), see (3.8), (3.10).

1.2. Odd dimension. In odd dimension, we are able to refine the previous results
and the asymptotic energy outside truncated cones |x| > t + R with R > 0.

We first consider the easier case R = 0. From our computations, we can easily
recover the following result, which goes back at least to Duyckaerts, Kenig and
Merle [DKM12].

Proposition 1.6. Assume d odd and u be a a solution to (1.1) with initial data (ug, uq) €
H' x L2(RY). Then, we have

1 2
(1.17) Eexto(#) = 5 [ (o, 42) [t 2 ey -

Then, we consider the case R > 0 where the previous result cannot hold. We
are nonetheless able to determine the solutions u that have vanishing asymptotic
energy on the exterior light cone |x| > t + R with R > 0, that is

Eext,R (u) = 0

By finite speed of propagation, initial data which are compactly supported in
|x| < R obviously satisfy this condition. We will call this space

Hreomp = {(0,11) € ' > LARY) (o, 1)l 11>y = 0}

where the equality is in the distributional sense.

It turns out that these are not the only examples. We will now need some further
notation.

We denote

(1.18) (Ye)rem

a countable orthonormal basis of spherical harmonics of $9~1. Y} is the restriction to
S9=1 of a harmonic (homogeneous) polynomial. For short, we will denote I = I(¥)
the degree of this polynomial.

The non radiative functions will be the following. Denote for k € IN,

ap = —1 —d+2k+2.

«x also depends on ¢, but here and below, we silence this dependence to keep
notations light. Then let

X
(1.19) 8k(x) = Lypysry x| Ye <|x|)
Note that gy € L? <= a; < —d/2. We introduce

Ny = Span (g; for k € N such that oy < —d/2)
Similarly, let

(IX|>MY(X> f
Py, (E) for|x| > R
(1.20) fry ={ VR 1

1
X X
(|R|> Y, <|x) for |x| < R.

Note that f; € H' <= a; < —d/2+ 1. Also, the value of f; in |x| < R is not very
important; our choice allows to keep continuity and that the restriction fi|;|x<r}
5



is a harmonic polynomial, so that f; is orthogonal to (in H') to functions with
compact support in B(0, R). Let
Jij%e = Span (fi; for k € N such thatay < —d/2+1).

For any ¢ € M, we note the space

Lo+
Py(R) = ‘/VRO,E X </V1{1,£f and P(R) = <%/R,comp @ @ Py(R)
teM
(the orthogonality is related to the natural scalar product of H' x L?). Then we
will prove that if u is a linear wave solution which is non radiative, that is such
that E,y; g(1) = 0, then (u, dsu)|;—¢ € P(R) (and the converse is true as well). We
actually have a quantitative version of this fact: this is our second main result.

Theorem 1.7. Assume d is odd, d > 3, and let R > 0. Let u be the solution to the linear
wave equation with initial data (u, opu))—g = (uo, u1) € H' x L2. Then, we have

(1.21) H(UO/ ul)“%‘{leZ(]Rd) = 2Eext,R(u) + ||7TR(”0/ ul)“%}leZ(]Rd) :

where 7ty is the orthogonal projection (in H' x L?) onto the space P(R) .
Moreover, if (ug, 1) € P(R), then the equality

u(t,x) =Y op(t,r)Yy(w)

teM
holds for all (t, x) in the (outer) truncated cone g = {(t,x) € RY |x| — |t > R}, where

B 1 B

j=1 i=0

for some d; ; € C, and where B := d“ + 1

The theorem above is the generahzatlon to non radial data of the main result in
[KLLSI5] (see also [KLSI4] where the projection onto P(R) first appeared in case
of dimension d = 5). Upon completion of this work, Liu, Shen and Wei [LSW21]
gave a description of non radiative solutions u to the wave equation (that is, such
that E,y g (1) = 0), in odd and even dimensions, but still in the radial case.

1.3. Even dimension. In even dimension, we are able to give a more tractable
formula for E,yo(u).

Proposition 1.8. Assume that d is even and let u be a solution to (1.1) with initial data
(1o, u1) € H' x L2(R?). Then, we have

1 2
Eexto(u) = 5 | (o, 1) [ 12 (e

/ / / T’S dT )T’MO(—T’UJ) — U (S(,U)Z/ll(—r(d) drdsdew.
wesi-1 r+s

d+1
More preczsely, there hold

. 2
2 lim ||V“||L2<|x\>t> = Eexto(1)

°°r2uorw ZLT( w)
(27) d“ /weSd 1/ / r—s drdsdco.

This is therefore an equivalent of Proposition [1.6] It extends the results of [CKS14]
where this formula first appeared for radial data (to recover this formula, notice

that 1g(—r) = 1p(r) when uy is radial). Very recently, Delort also derives a similar
formula in [Del21].
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1.4. Outline and organisation of the paper. The proof of Theorem [I.T]relies on an
adequate stationary phase analysis, which is reminiscent of second microlocalisa-
tion. Our main input is a careful bound on the remainder term, to derive L? type
convergence. Corollary [1.3|and Propositions [1.6| and [1.§| are easy consequences;
Proposition[I.5 requires an extra ingredient, depending on the various cases that
the cut-offs can take.

Our main goal is obviously Theorem 1.7} The operator .7 is related to the Radon
transform %, which is defined as follows for a function f € .7 (R%)

(1.23) V(s,w) e Rx S, (#f)(s,w) == /w LSy

We will prove in sectlon! 4] that some variant of the operator % can be extended
to a map L2(RY) + H'(RY) — /(R x $%~1) and that, when d is odd, one has the
equality

d—1

(1.24) T =co(~1)"T 0,7 %,

seen as operators on . (R%). We emphasize that ajTl is a differential operator, and
so, in odd dimensions, .7 enjoys similar locality properties featured by #: this is
a key aspect of the analysis. In order to retain these locality properties for data in
L? (or H! for 9;.7), we cannot use Fourier analysis and instead proceed by duality.
This is the purpose of section 4] Special attention is required by the fact that the
Radon transform has bad decay properties, even for Schwartz class functions.
Once this is done, we can formulate and prove Theorem[1.7] An abstract lemma
shows that it is enough to describe the kernel of 15> z.7 : L*(RY) — L?(R x §9-1),
and similarly for ds.7. The computation of both kernels is really similar, but has to
be carried out separately: we concentrate on ker 15> g.7. The computation of this
kernel follows from a combination of several observations.

First, we can restrict to compute harmonics by harmonics, that is for function of the
form w(|x|)Yy(x/|x|). Second, denoting .#, this kernel, we can prove that its image
by 7 is actually a polynomial restricted to |s| < R, with a bound on the degree. As
7 is an isometry on L?, we infer that 4,0 is finite dimensional. Third, an important
property is that %0 is stable by a semi-group of dilations, from which we infer that

it must be made of very specific function w, of type w(r) = r*Inf(|r|). We prove
that B = 0 and that « has to be an integer as a consequence of a further stability
property, namely by applying an operator related to the Laplacian A (correctly
localized). Finally, we have to prove that all the remaining functions do actually
belong to .#,°. This does not follow in an obvious way by direct computations,
because of integrability issues due to low decay; instead we use an induction and
stability by derivation again.

The next sections are organized as follows. In section 2} we prove Theorem [I.1]and
Corollary[1.3] As an application, we quickly deduce Propositions In section 3,
we detail the proof of Proposition[I.5 In section [#}, we develop a suitable functional
framework for the Radon transform in Sobolev space and in section[5] we study
the operator .7 outside balls and prove Theorem 1.7}

2. PROOF OF THEOREM [I.1] AND CONSEQUENCES

Before we proceed with the main proofs, let us first observe that .7 : L2(R%) —
L*(R x 8% 1) and 95.7 : H'(RY) — L?(R x $%~1) are isometries.
7



Lemma 2.1. The operator 7 : L>(R?) — L*(R x S%~1) is a (well defined and) continu-
ous map and

Vo € L*(R?), |70l 2rxse-1y = 19l 2 (re)-
Similarly, 9s.7 : H'(R?) — L2(R x $9~1) is a (well defined and) continuous map and
Vo € H'(RY, 0,70l agcsin, = ol

Also, if d is odd, then one has the symmetry: for s € R and w € 8771,

(2.1) To(—s,w) = (—1)dflﬂv(s, —w),
while if d is even
2.2) To(—s,w) = (=1)2.(Tv) (s, —w).

Above, € denotes the Hilbert transform with respect to the s variable.

Proof. The point is that the Fourier multiplier defining .7 is of modulus 1 for all
v, w. Tt suffices to show the equalities of norms for v € . (IR¥).
Let us first prove the first statement: we compute via Plancherel on R and R?,

HyUHLZ RxS4— 1) ~/Sd 1/ |</1R90(1/ w)|2d1/dw

1
2/ / |6(vew) [ |v]|? T dvdw
27r -1

/ / d(vw) v T dvdw
27r2 27r gd—1

= Gt e PO E = 0 gy

For the second statement, we observe that
FR(0:T0)(v,w) = WFR(T0)(v,w),

so that the same computations give

/ / (v, )| v dvdw
2n2 2m)d gd-1

= (271T)d /]Rd 150 (2)12d¢ = (2711)11 /w | Fra(V0)(8) 8 = |Vl 72 gay-
d

When d is odd, observe that ¢/ = (—1) 4t eit, Therefore, for v # 0,
Forsy(Tv(—s,w))(v,w) = Fr(Tv)(—v,w)

”aSyUH%Z(RXSﬂI—l)

= colv] T (€L yeg + e L 0)0( 1)

d—1 -1, ; : .
= (=1) Z colv| 2 (" Lygo + e " Lys0)0(v(—w)))
= (-1)T Zr(T0) (v, —w).

d
2

When d is even, we have instead /7 = —i(—1) ¢~ 7. Therefore, for v #£0,
Fssv(Tv(—s,w))(v,w) = ﬁR(ﬁv (—v,w)
= colv] T (€71 yeq + €71 y50)0(—vw)
= —i(=1)2eolv| 7 (=" Lo + ¢ L0)0(v(~w)))
= (—1)LFR(H T0) (v, —-w).

We conclude in both cases by taking inverse Fourier transform in the v variable. [J
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Proof of Theorem[1.1} We first prove 1), that is the computations for the half-wave
equation.

We will first assume that f € . (R?) are smooth and decaying, and that f €
2(R%\ {0}) is smooth and has compact support away from 0.

We denote v the solution of the first (outcoming) half wave equation, so that

a(t,¢) = el ().

The inversion formula gives

o(t,x) = ‘ e Celtlel £(7)d
(t,%) o7 [ e i @)
teo it -1
/ / el ”f rw)r* drdw
27T Sd- 1€
_ 1 /+ rd’lem/ e frw)drdw
(2m) Jo gi-1 '
We will use the polar coordinates notations ry, wy, thatis: ry := |x| and wy := ﬁ

We study the second integral thanks to the method of stationary phase, with r fixed
as a parameter that vary on a bounded set (relative to the support of f) and ry as a

large parameter. For r € R* and ¢ € 54-1 we denote Qrot 591 5 R the function
defined by

Pro(w) =10 - w.
The second integral can then be written

-/8‘1*1 eirwa?(rw)dw = ./Sd71 ei’x(Pr/wx (w)f(VCU)d(U

Observe that for all ¢ € S, @, , has two critical points
o w; = o with signature(¢;,(w1)) = (0,—(d — 1)) and det(¢},(w1)) =
(~ryt!
e wy = —o with signature(g},(w2)) = (d —1,0) and det(g}, (w2)) = r~1
Note that the computations of the properties of ¢}, can be obtained for instance by
reducing to o = (0, ...,0,1) by rotation invariance and working in local coordinates

w=(x1,...,%4_1, j:\/l —(x3+---+x3)) close to 0.
So, using the oscillatory integral formula, we have

d-1
/ ei’x'“’f(rw)dw (%) e*iTei”xf(rw )
gd-1 o\ *

X

2.3) “
2£ : iT ,—irry £ _
+ - e'Te " f(—rwy) + Rem(r, ry, wx),
X
. C
(2.4) with  |[Rem(7, 7y, wy)| < o
T2

and Rem has compact support in R as a function of 7. We refer for instance to
Grigis-Sjostrand [GS94, Proposition 2.3, p.22] or [H90, Theorem 7.7.5]). In these
references, the estimates for the oscillatory integral are given for regular compactly
supported functions on R?~1; it is easy to obtain the associated result on the
compact manifold $?~! by working in coordinate charts. The constant C then
depends on ¢, and some (L°°) bounds on the derivatives of w + f(rw). One can
check that once f such that f € 2(IR?\ {0}) is fixed, the constant C in can be
made uniform in r and w,. We also notice that in the above references, the estimate
9



is sometimes written for ry > 1, but it is easy to check that it remains true for small
rx, for which it is actually trivial. We also refer to [H90, Theorem 7.7.14] for a more
geometric result on such integral on a hypersurface.

Therefore, we have the pointwise estimate of the error term

(2.5) vVt e R, x € RY, ’/ Rem(r, rx,wx)rd_lei”dr <
0

We now compute the contribution of the other two terms

wn=(2)" a

O gy f i —irre 2
X / rz el {e*”e’”"f(rwx) + e’Tef’”Xf(—rwx)} dr
0

The first term writes
d—1

= —iT +oo 44 . .
o1(t,x) = (:) (26 T /0 P f(roy)dr.
RS

We want an asymptotic as t — +oo so that t + ry is a large positive parameter.
Therefore the phase in r is never critical, and we get that for any N € IN, there
exists Cy > 0 such that

1
(2.6) Vi >0, Vx € RY, |5(tx)| < Cn—

TXT (t + Vx)N

Thus we are left with the second term

d—1
1\ 2 iT +oo 4y . .
)= () T G e e
s
d—1

o iT 0 _ . R
- <1> 2 P [ e oy ar

- (:)% (2;{21@(& — ).

(Recall that f,, : R — C has Fourier transform .Zr(f,)(v) = 1,<o|v| %;]f(vw);
note that it is a Schwartz function because the support of its Fourier transform is
away from zero).

Gathering our computations yields the pointwise estimate, for f > 0 and x € R%:

C

e
x| 2

(2.7) <

o101 £ (5 'dlw
(e f)(x) — e fa, (Ix[ =)

This will make it quite clear that the solution is concentrated close to the annulus

Apg = {xe]Rd:\t|—R< x| < |t|+R}

for large R > 0 as t — +oco (with |t| > R). Due to the conservation of L2 norm, we

will infer that ¢/*P| f has vanishing L? norm outside large annuli centered around
the sphere of radius |¢|.
Indeed, we have more precisely

1P e = [y [ 1P ) o) P o

10



271'1)d T /sd 1 /,HR ('fw rt)|2+|fw(ft)0( )+O(:2>>drdw

B 1 o B HR gy 1/2 tR dy
— T ( [ R+ lalewo ([0%) +o ([ 75

:(an)d—l/sd_l /i yfw(r)\zdrdw+o<\/t1_7R>,

where the implicit constant is uniform in t > R > 0; we used the Cauchy-Schwarz
inequality, and the fact that, due to Plancherel identity

1 A
)2 _ )2y L 2
Lo [ famParo =25 [ [ fee) Pt =55 [ 17@)Rd
= 2m)"IfI%
Let ¢ > 0. The above computation shows that for R large enough

e Lo [ o R 11| <

Therefore, for such R,

D
timsup [P f2, )~ I£]1%] <&,
t—+oo

As [[ePIf|| 2 = || fll 2, we get

(2.8) lim hmsup ||e’t‘D‘fHL2 AR =0

R—+ oo

which is for t — +o0.
We can now finish up and prove . Due to the pointwise bound (2.7), we have
(e"1P1f) (x) — o ex =)

2
—+o0
/ dx < C/ ﬂ — 0
|x|>t/2 (27‘c| |)
Now, from (2.8), one easily has that

t/2 1% totoo

it|D
(29) ||eZ ‘ ‘f||L2(|X‘§t/2) tjm 0
On the other hand,
2
e falxl =1 o P (1
d 1/ Wx N - Told—1 1/ wx -
|x| LZ(‘x‘gt/z) B(O't/z) |x|
2.10 ” 5 (r—1)[2drd e ) drd
: - r= raw = r)|“drdw.
*10 Sy focgi V=) Lo [ e
We already saw that

Lo [ ) Pdrder = £ < oo,

so that the above is an exhausting integral, which thus tends to 0 as t — +co0. We
infer from this and that
(P ) - d]fwxu x| = t)

/\xlét/Z (27r|x|)

Hence is proved and 1) is complete for the case f € Z(R%\ {0}).
11

2
dx — 0.
t—r 400

)e



For the general case, by density, it is sufficient to notice that for fixed t, the maps

. iT
froePlf and fr (xm ——f (x| - 1))
(27|x[) ="
are linear continuous from L2(IR%) to L2(IR?) with bound uniform in t. The first one
is obvious due to Plancherel while the second one can be obtained by a computation
similar to (2.10).

Before we prove, 2), let us first derive the formula ([.10) for w(t) = e~*IPlg. One
can proceed as before, by noticing that that up to an error term with size as in (2.5),
the main contribution is

d-1

i x) = (i) N (2711)5’51

+o0o 49 . . . .
X / r oz it [e*”elmg(rwx) + e”eﬂ”"g(—rwx)] ,
0

and that this time, the only relevant term is

= —iT +oo .
w1 (t,x) = (1) e r%e_’(t_”)rg(rwx)dr

Iy (2m)%* Jo
1
1\7 et |
= = Ty —1t),
(Tx) (Zn)d%]gwx( g )

-1

as FR(84)(r) = Lrzor = &(rw).

Or as mentioned in the introduction, one can also simply take complex conjugate
in the expansion of ¢/*IPg and observe that

(8w (s) = 85 (s)-
Indeed, taking Fourier transform, there hold
ZR(@a)) = [ e @u)ds = [ e @als)ds = Fera (@) (V)

d-1%—— -
= 1 yeolv] 7 §(—vw) = Lyzolv| ‘T §(vw) = Fr(gh) (V).

We now turn to 2). We recall that with
1 1 1 1

we have f,¢ € H'(RY) and

_ itp| (iID|f _itjp| (—ilDlg 2 mod (14d
(2.11) Vixu(t) =e (fo +e V.g € L°(R%, C ™).
So thatfori =1,...,d, and using (L.6) and (1.10)
(2.12)
1 ey iy
&Mﬂ—c)T(WMMﬁMﬂ+eWﬂDwmxﬂM—ﬂ+%@ﬁ
TT|X
(2.13)
1 . _ .
u(t) = T (67 @uf )5 T (@8) ) (121 = £) + (8, )
TT|X

12



where |[|¢;(t)|[2(ge) — 0 as t — +o0. Now we have

d—1 d—1
2

TROif)o (V) = Lucov 7 3if (vw) = Ly<o|v| 7 (ivewy) f(vew) = wiZR (Bpfiy) (v),

so that
(9if ) (s) = wids(f5)(s) and similarly  (9;8)5(s) = wids(8d,)(s)-

Regarding the time derivatives:

(2.14)
FR(iID|f) (v) = Lucolv| 2 DIf(vw) = Lucolv|Z (=iv)f(vew) = ~ ZR(3pf) (v)
so that

(i|D|f), = —9sf, andsimilarly (—i|D|g)/, = —0sg..
This can be sumarized by considering the function defined for w € S~ and s € R
by

h(s,w) := 0s(e™fi; +e77"gh)(s),
so that
@15)  Viau(tx) = ——— (x| y ") ( -1 ) +e(t %),
)z x/|x|

(27t |x] Ed

where (t) — 01in L2(R?, C1*9). It suffices to relate & and .77, which we do now by
computing the 1D Fourier transform of / in the s variable:

Fomwh(v,w) = iv(e" Frfy +e T IR(gH) (V)

. -1, 5 S —i ~
=ivfy] 7 (eTly<of +e TLiz08) (vw)
Y = i 1/, 1 _; 1/, 1,
=iv|v| 2 |:€1T]].V<02 <u0—|— i|1/|u1> +e ”11005 <u0 - i|1/|u1>} (vw)

1., a1 [, s R 1 . _ R
=5 vlv| 2 {(e”]lvgo +e " 1y=0)ilp + il (e ly<o—e ’T]l@o)ul} (vw)

1, darg. s . ; s .
= §|V|T [Zl/(e”]lvgo +e ’T]lv>0)u0 — (61T1V<0 +e lTL,}Q)Lq] (I/(U)
1

= E (ivﬁsau(yuo)(ww) - fsﬁv(ﬂul)(y,w))

1
- S—V (z(asguo - 9‘”1)(1/,(4])) .
€o

Via inverse Fourier transform, we get h(s, w) = ﬁ (0s T ug — Tuy), which is (1.11),
and from (2.15), we derive (1.8). (1.9) follows similarly as for the half-wave case. [

Remark 2.2. Performing similar computations in the case uy € L?(IRY) and u; = 0,
whichis f = g = uy/2, we can write (1.12) in a simplified form, namely

. 2 1 2
(2.16) tll)l’_l{loo ||u\|Lz(‘x‘>t+R) = E/wesdfl HyuOHLZ([R,-‘roo))dw'

Remark 2.3. Note that it could seem surprising at first that from estimates like
where the constants C is strongly dependent on the smooth function f and
some of its derivatives, we can deduce some uniform estimates like for any L2
functions. It should be noticed then that the stationary phase estimates that we use
are then combined with L? estimates. They actually prove that the main term that
we obtain contains all the L? norm.

13



Proof of Corollary[L.3, Now, we turn to the proof of (1.12), that is the computation
of the L norm outside the ball B; g = {x eRYry < t+ R}. From (1.6) and (1.10)

1NEX)=(3”)f+€_”mgﬂx)=<ZH;D%1(5Tx/x* ) (3l =) +opz (D).

The same computations as before gives

1
— =/ = fll2/
(2rla)) 2 M
(and the same for g, so that, for t > 0,
d—1 2 d—1
@) () 2o ey = /w o / w(t rw) 2 drdeo

- /wesd 1/+R e fiy (r—t) +e gl (r — ) |Pdrdw + 0;2(1)

= [ T ) + g ) Pardeo + 01,
we

as desired for the L? case.
In order to complete the energy space case, we invoke (L.8). As ;.7 ug — Ju; €
L%(R x S%~1), we get as before

+0c0
2 2
2||at“(t)||L2(|x\>t+R) - /azesH /HR |05 T g — Tuy)(r — t,w)|"drdw + 02(1)
= 05T ug — 9“1||%z<[1z,+oo)xsd—1y

and an analogous computation for ||Vu(t) cas |x/|x|| = | — 1], both

limits are equal. (T.13) and (T.14) are proved.
Finally, for (I.15), it suffices to notice that t — u(—t) is the solution to the wave

equation w1th 1n1t1al data (up, —u1), so by linearity of .7,

HL2 (|x|>t+R)"

19 (Ol g4y = i 190 (=) 1251040y

1
= §||asﬁuo - y(_u1)||L2([R,+oo)><Sd*1) = EHBsﬂMO + yulH%Z([R,+oo)><Sd*])’

and the same holds for Vyu. Therefore, expanding the squares,

1
Eextr (1) = 5 (05T ug — Tu|[7 + 105 Tuo + Tu[7
2

([R,400)xSd-1) ([R,Jroo)de_l))
= Hasyu0|‘%2([R,+o@)ng—1) + H<7”1||%2([R,+00)><5d—1)- U

Proof of Proposition The goal is to compute E,y (1) when the dimension d is
odd. In that case, the symmetry (2.1) is available, so that

“+00
2||ﬂul|\%z([o,+oo)xsd,1) = 2/5»171 (/0 | T uq (s, w)|>dsdew

+o0 +oo ,
= Ad 1/ |<7M1(S/w)|2dsdw +/ / |<7L{1(—s, —w)| )dsdw
= /S"’ l/ | T uq (s, w) [Pdsdw = ||9u1||L2(RX$d . ||u1||%2,

due to the first part of Lemma 2.1} E As one also has the symmetry d;. 7 1p(—s, w) =
(—1) Ear N up(s, —w) (by differentiating (2.1)), similar computations show that

2”8 <7”0”@ ([0,400) xS4-1) — Ha <?MOHLZ RxS4-1) ||u0||le
14



where we used also the second part of Lemma Summing up and using (1.15),
we conclude

1
Eexto(u) = Hasyu0|‘%2([0/+w)xsd71) + Hyu1||%2([o,+oo)><gd—l) = E(H”OH%ﬂ + HulHé)
O

To conclude this section, our goal is now to give an expression of the energy outside
the light cone in even dimension, so as to prove Proposition We adopt the
following convention for the Hilbert transform .7 on the real line: for f € .(R),
we denote

w6 =po [ L4 sothar i5(@) = sn@) (@)
where sgn denotes the signum function. Also, for functions defined for (s, w) €

R x $%~1, 7 denote the Hilbert transform with respect to the s variable.

We start with a lemma, for which it is convenient to recall the Hankel transform,
defined for f € 2(R4) by

” Mdr

0 S+r

Hf(s) =
H extends to a bounded operator on L?(IR.) with norm 7.

Lemma 2.4. Let f € L?(R) then

1 By + 17 FBagey = 112 + =S // FEVED) g
1 F&)f (=)

2n||f|\ o [ [T E g
33 = 2 [P0 ),

Moreover, for f, g € L?>(R), we have

<ffg>m+_<%ff%3>m,: 2”_[2 (/ / f //f drds)

Proof. Denote f* =1g, (D)f and f~ = 1g_(D)f, then
f=f+f" and iHf=—f +f".

Therefore,
IRy = I ey + 1 oy +2% [ FFF
19 £ gy = W ey + 1 oy =2 [ FFF
B2y + 1€ f o) =[£I +2R(sgn- £, £*)

We denote (f,g) = [ fg the standard (complex) scalar product.

Using Parseval formula, we get (sgn- f~, f7) = 5= <sg;\f =, fF). Moreover, recall
that
— 1 __ 11 1 e
sgn~gzﬁsgn*gzgg*g i HG
where .77 is the R-Hilbert transform. Now

GCREI R - 78 fs(:r)dr = Hf(-
15
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so that

2R(sgn- f~, fF) = %%/Om _/OOO Wdrds.
Concerning the crossed term
<f/g>1R+ —(Hf, R
= Hfe 8 R, T f8 -8 e
= <f7’g+>]R+ +{f.8 )k + <f+’g+>]R+ —(f" 8k
<f+/87>]R++<f+/87>]12,+<f7/87>]R+ < >
= (fg" )+ (sgn-f1,87) +(f",87) +(sgn-f,8")
= (sgn-f7,8") + (sgn-f,87)-

In the computations above, we used the support properties of the functions f* and
¢ in Fourier space. As before, using Parseval Theorem, we get (sgn - f+, f*) =

% (sg??ﬂﬁ) and using again sg??i = l%ﬁ, we get

(fr8)w, — (HF AR zw(/ / fs_ dd+/ / f dds)
217[2</ / fs—r drds — //f drds) -

Proof of Proposition[I.8] We start with (1.14), and use the change of variable w >
—w and (2.2), to compute

2.17)
4t£Too ||vu|‘%2(|x|>t) - ||as§u0 - yu1||%2(R+XSd71) + H%asyuo+%yu1“%2(]1{7><5d71)

= ||859u0||%2(][{+><5d—1) + ||=%ﬂas<7”0||%z(]1{7xgd—1)
+ H=7u1||i2(R+><sd—1) + ”%gulH%Z(R,de*l)
— 2R (95T uy, yu1>L2(]R+><Sd*1) +2% <<%ﬂasyu0/=%pyul>L2(]R_><Sd*1) :

Let’s give an expression for each of the 3 lines of the last equality above. Recall (1.5)
and observe that ¢2T = —i(—1) g then, for fixed w, we use the first part of Lemma

with f such that f(v) = co|v|% (1,0 + e~ T1,50)i#; (vw). This yields, for
the u; terms (2nd line),

Hyu1||%2(]R+ng—l) + ||%yu1”%2(1[{ x&d-1)
_ 2 & LLT w)ifg (—rw)
- ||9u1\|L2(]RX5d71) ‘|‘\fz 27‘[ d 17_[2 /weSd 1/ / VS 2 —T+S drdsdw

_ 2 L 1(sw)iiy (—rw)
- ”MlHL2 d+1 /wesd 1/ / T’S 2 Tdrdsdw

For the 1, terms (1st line), we use now f such that f(v) = c01'1/|v|d%1 (€T, +
e " 1y>0)tip(vw), and thie gives

1957 w12, g1y + 105 Toll ooy

1 ; o ro iy (sw)ily(—rw)
— 9 2 S ZIT/ / / 7 OO drdsd
|| syuOHLZ(RXSd_l) \5‘2(27_()‘2,_171_26 wesi-1 Jo 0 (T’S) r+s rasaw




= 2 2(-1 iy (sw) g (—rw)
*””O”HﬁW A A

We now work on crossed terms (the last line of (2.17)): for this, we use the second
part of Lemma 2.4 with f and g such that

~ . -1, & i R
f(v) =coiv|v] 7 (e"Lycp+e T Lyzo)iip(vw)

and  §(v) = colv|“T (€T Lyco + €T 1y0) T (vw).
We obtain
. <asy1/10r 9u1>L2(]R xGd-1) +R <%839u0, %9u1>L2(R x&d-1)

d+1

B 1 © 2 ip(rw)s o ul(sw)
B 3?2(27r)d 121712 /weSd 1 (/ / s—r drds
0 poo L HEL ~ i ;i
+/ / r 2 ip(—rw)s 2 i ( sw)drds) deo
0o Jo s—r

o da+1
=R —— / / / r o(rw)s ki ul(sw)drdsdw.
(27‘[ Ya+1 Jpesi-1 s—r

Summing up the three above expressions yields the desired identity. O

3. PROOF OF PROPOSITION[L.5]

In this section, we focus on the proof of Proposition When expanding the
decomposition of u in order to get (1.16), we are left with the cross terms: the main
point is to show that these cross terms tend to 0. This is the purpose of the following
lemma.

Lemma 3.1. Let il = (u,0:u) and, for n € N, @, = (wy, 9wy, be solutions to the linear
wave equation (1)), bounded in € (R, H' x L2(R%)). Let t, € R, x, € R4 and r, > 0
be three sequences. Assume that that @, (—t,) — 0in H' x L2(IRY). Then

(3.1) /I ‘ Vixwn(0,x) - Vixu(ty, x)dx — 0 as n — +oo.
X—Xn| >t

Proof. We denote x, = p,wy, where p, > 0and w,, € Sa-1 Ttis enough to prove
that for any subsequence, at least one sub-subsequence of (3.1) converges to 0.
Therefore we can assume that the following sequences converge in R or $%~1:

(3.2)

2 2

r r Tn — r 1 [r Ty —t

tﬂ/ Pn/ Wy, pl/ l/ i/ u pn/ - tl’l/ T (7’1 - Pn) 7 u u .
tn tn Pn tn tn tn \ Pn On

Also observe the following claim

Claim 3.2. We can assume without loss of generality that one of the following four
possibilities occur:
(1) (whole space) 1B(x,r,) — Lae
(2) (void) 1p(y, ) — Oace.
(3) (ball) There exists xo € RY and 7 > 0 such that 1 B(xnrn) — LB(xeore0) 3-€-
(4) (half-space) There exist weo € $?~ 1 and ¢ € R such that 1 B(xur) — Lrww>c
a.e.

For the claim: first assume that p,, has as a finite limit. If 7, — 400, we are in the case

(whole space); if r, — 0, it is the (void) case; and if r, — 7 > 0 has a finite positive

limit, it is the case (ball). Now assume that p;, — 400, and let w be the limit of
17



wy. If py — 14 tends to —oo, we are in the (whole space) case; if p,, — 1, — 400, it is
the (void) case. Now if p, — r, — ¢ € R has a finite limit, we see that we are in the
(half-space) senario.

We can now proceed with the proof of Lemma [3.1]itself. If ¢, has a finite limit
te € R, then ii(t,) has a strong limit i (t«) in H' x L2. Therefore, by Lebesgue’s
dominated convergence theorem, we see that 1py, ;) Vixt(tn) has a strong limit

V € (L?)'*9, by inspecting each scenario of the claim. Moreover, the hypothesis of
the Lemma is that V; yw, — 0in (L?)1*9, therefore

/ VixWn(x) - Vixu(ty)(x)dx — /0 -V =0.
‘x*xn‘27’n

We now consider the case when £, has an infinite limit, and we can assume without
loss of generality that t, — +occ. In this case, our goal is to construct a solution
7€ €(R,H" x L2(R%)) to the linear wave equation (I.1) such that

(3.3) Hvt,xv(tn) - 1|X*Xn|>rnvtlxu(tn)||(L2)1+d — O as n — +OO

Assuming that such a 7 is constructed, the assumption on the weak convergence of
W, means that

/Vt,an(o,x) -Vixv(ty)dx — 0 as n — +oo,

from where we deduce (3.1) immediately. We therefore focus on the construction of
such a @.

We recall from (2.15) that
1 -1
Vixu(t,x) = —=h(|x| —t,x/|x < )—l—st,x,
1) = el =30/ () +e(60

where ¢(t, x) — 0in L>(R,C%*1) and
h(p,w) = 8p(e™fi; + ¢85 (p)-
The key point of the argument is the following:
Claim 3.3. 1j(y4t,)w—x,|<r, Nas a limit for a.e (p,w) € R x 841 which we call
a(p,w).

Of course, a(p, w) is measurable and 0 < a(p,w) < 1 a.e-(p,w) € R x 971, Let
us posptone the proof of Claim[3.3]to the end, and assume it for now. Let us then
define

h(p,w) = a(p, w)h(p,w).
The relevance of the definition comes from the

Claim 3.4.
(3.4)
1

— (]l‘x,xn|>,nh(|x| —tn,x/|x]) = B(|x| — tn,x/\x\)) —0 inL2(R%).
(27t|x]) 2

Proof. Ash(p,w) = a(p,w)h(p,w), is equivalent to showing the convergence
to 0, as n — oo of the quantity

S o oo, = 000 = b, @) (o = ta, ) P

or equivalently that

(35) L s Rpsnsosafor, = al0,@)lIh(e,w) Pdpdeo = 0.

18



Now,

Fpsvh(v,w) =iv <1V<0€in(VW) + ]l@()e*”g(vw)) ,
so that by Parseval
(3.6)

/R/SH |h(o, )| dpdew
0o +oo
= (2m)7! /S‘H </ |f (rew) 2|7 L dr —i—/o |§(rw)2rd+1dr> dw

67 = @0 (1B ey + 18120 ge) ) = @027 a0, e

Also, |1yt )w—zy|zr, — 4(p,w)| < 2. Using Claim we see that Lebesgue’s
dominated convergence theorem applies and gives the convergence (3.5). Hence

holds. O

It now suffices to define @ from /(p,w), which we do by following the steps,
backwards, of getting h(p, w) from ii. More precisely, define f,§ € H!(R?) by their
Fourier transform

3.8)
o :_7671-[6‘]71_ . , . :L it y , '

Then it follows that for (v, w) € R x 841
Fr(1)(v,w) = 1'1/|1/|d%1 (ﬂvgoein(VW) + ]lv>0e_if§(vw)) ,

so that for all w € 891, p € R, and with the notation (1.3)

(3.9) h(p, w)w = p(e' fiy +e7 785 (p)-
Finally let
(3.10) vw=F+g v =iD|(f-3),

and denote 7 the solution to the linear wave equation (L.I) with data (v, v7).
Arguing as for (2.15), we get

1 1),
3.11 Viyo(t,x) = ——— h(|lx| —t,x/|x|) + &t x
I Vi) = () B /e e
where (t,x) — 0in L?(R¢,C%*1) as t — +oo. Gathering together (3.11), and
[2:15), we see that holds: we are done, up to the proof of Claim 3.3} O

Proof of Claim We write |(0 + ty)w — xn| <10 = (0 +tn)? + 0% — 200wy -
w(p+1t) <1y <= p € [oy (W), o (w)] where

P (@) = —tu + puwn - @ £ /02 (wn - @)2 — 1) +12
with the convention that [o;, (w), o} (w)] = @ if 2 ((wy, - w)* — 1) + 12 < 0. Hence,
{(o,@):[(p+ta)w —xa| <ra} = U {(0,@)lp € [oy (), o5 ()]}

wesd-1

In terms of the rescaled variables 1}, = r,,/t, and p), = pn/tn, this writes

o (w) =ty (—1 + plwy - w £ \/pg,z((wn cw)?2—1) +r,’12) .
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We claim that there exists a finite set .# (depending only on the limits of the
sequences listed on (3.2)) such that if w - we & %, then p;- (w) both have a limit in
Rasn — +oo.

Consider a € [—1, 1] such that at least one of ¢, (—1 +pha+ \/p,’f(az -1)+ r,’f)

does not have a limit in R. As #, — 4oc0 and using the fact that all terms have a
limit in R, this implies that

—1+p;a+\/p;2(a2—l)+r;2—>0 or —1+plna—\/p§12(a2—1)+r{12—>0.

/
.. . . . . T
We argue by disjunction of cases: denote a = lim g, f = limr}, and y = lim —*.
n

o Assume first that « is finite and non zero, and g also is finite. Then

1t phadk \/pl (a2 — 1)+ 742 5 —1+aak fa(e2 — 1)+ .

Now by studying the variations of the functions a — aa + \/a(a? — 1) + B, one
concludes that there exists at most 2 points (for each function) where they take the
value 1; so .% is a subset of these (at most 4) points.

o If w is finite and B = +oo, =1+ pja + \/quz(az —1)+7,%2 = +oo, s0 that .7 is

empty.
oeIfa =0and B # 1, then

1t pha P2 (@ — 1)+ —14 2B A0,

and therefore .7 is empty.
e In the case « = 0 and B = 1, clearly

“1+pha— o2 (@ —1) + 12— -2,

so that p,, (w) always has a limit. For p;} (w) we expand

—1+ pha+ \/p;f(az —1) 412 =-1+pa+7, (1 + O(p;,z))

Denote § = lim r"p;t" = lim r;p,_l and assume that a # —6, then

n n

/

—1
oF (@) = tap) (p +a+o<p;>) ~ (64 a)pn,

n
which has a limit in R, even if § = 4+-00. Hence .# C {—6}.
elfa = +ooand y # 1, thena # ++/a2 — 1 + 1y so that

ohat \Joi2(a2 — 1) + 12 ~ pl(a £ Ja2 — 14 7).

If a # 0, the limits exist (and are infinite), so that # C {0}.
e In the case & = +oc0 and ¢ = 1, (which implies B = +00). Again we see that

ona + \/p{f(az —1)+1,?> = o0 so that it suffices to consider p;, (w). Then for
a # 0 we are allowed to expand

1 r? 1 r2
ro ’2 2_1 /2N r = ]_L ~ _'n
pha =\ P22 = 1)+ 12 ~ g, % ( p%2> 2t (Pn pn>
This sequence has always a limit in IR, which is 1 for at most one value of a. In that
case, .# is made of this point and 0.
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We have exhausted all possibilities for the limits, and in all cases, .# is made of
a finite number of points. If w - we ¢ %, we denote p*(w) the limits of p; (w)
(whose existence were just shown above).

Define

N = (0,400) x {w eS8 w-we € F}U U {(p~ (w),w), (p"(w),w)}.

wesd-1

Clearly .4 is a negligeable subset of (0, +00) x $9~1. Also if (p,w) € (0, +00) x
S4=1\ _#, by definition of a limit we see that either |(p + t,)w — x,| < 1y for
all n large enough, or |(p + t;)w — x,,| > r, for all n large enough; equivalently,
]l|(p+tn)w7x”‘>rn has a limit as n — +oo. [l

We can easily modify the proof of Lemma 3.1|to obtain a result in the setting of
solutions to the half-wave equation (in the L- setting). More precisely, we have the
following lemma, whose proof is left to the reader.

Lemma 3.5. Let f € Lz(le), and t, € R, x, € R and r, > 0 be three sequences. As-
sume that wy, is a bounded sequence of LZ(]Rd) such that e~ nIPly, — 0 and eitnIPly, —
0in L2(RY). Then

/ Wy (x) (" PLf) (x)dx = 0 as 1 — +oo.
[x—2xn| =1y
We finally prove Proposition [1.5} it is similar to the proof of [CKS14, Corollary 8] to

which we refer for further details. Expanding the norms we see that it suffices to
prove that for i # j

; tin Xx—x; i tin X—Xjp
Vi UL (— ) Ve U [ =5, JZ ) dx — 0,
./\xfx,,|>rn L )\i,n /\i,n L Ajr” Aff”
_— . t: X — X;
/ Vg0 (0,x) - Vol [ =22, 22701 ) gy 0,
|x—xn|=rn Ain” Ajn

Unscaling the integrals by A;, and then translating by x;,, we see that these
expressions are of the form of (3.1)): the condition of weak convergence hold for the
term in U} due to almost orthogonality of the profile, and for the term in (wy, o, ;1)

due to the construction of the profiles Ui in terms of weak limit of rescaled and
translated of S(t;,,) (14,0, Un,1)-

4. THE OPERATORS .7 AND 057 ON SOBOLEV SPACES

4.1. The Radon transform on the Schwartz class. In this paragraph, we state
the definitions and basic properties of the Radon transform on .7 (R%), for the
convenience of the reader. They are mostly classical: we refer to the paper [Lud66]
or the reference book [Hel99] for proofs and further details.

We recall the definition of the Radon transform Zf of a function f € .7 (R%):

V(s,w) e Rx S, (%f)(s,w) ;:/ F(y)dy.

w-y=s

where dy refers here to the surface measure on the hyperplane {y € R%;w -y = s}.
It can be checked that Zf € .7 (R x $%~1) and Zf is even in the sense that

“1) (Zf)(—w, =s) = (Zf)(w,3).
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An important related operator is its adjoint %#* defined for ¢ € . (R x $%~1) by
4.2) (% p)(x) = / o(xw,w)dw,
wesd-1

so that Z* ¢ € .7(R%) and for f € ./(R%) and ¢ € (R x $%~1), the following
duality relation holds:

@s) [ @NGw)el@dsdo = [ F0)@ )

Note that we have the important unitarity property in L? of the Radon transform
(and in fact, in any H®), up to a constant related to co (which appeared in (T.4)).

Proposition 4.1 (Unitarity). For every f € . (IR), we have

(@4) Jo PPy = [, 1057 f )P de
@5 S IVI WPy =G [ 1057 9 f o) P deo,
(4.6) ROy, f) = ;RS

4.7) R(Nf) = RRSf.

Proof. We refer to [Lax06, Theorem 3.13 page 31] where the proof is done in odd
dimension, but holds for even dimension as well. is obtained by combining
and (&.6). Note also that Lemma [2.T|can actually provide a proof of this Lemma
once the link between % and .7 is precised, as will be done in Lemma [4.8|below.
We also refer to Lemma 2.1 of [Hel99] O

Proposition 4.2 (Inverse). For every f € .7 (R%), we have
f=2"(colDs|* 1) %f.

Note that in odd dimension, (cy|Ds|4~1) is a differential operator.

The extension of the Radon transform to distributions presents some difficulties
mainly coming from the fact that %* does not obviously preserve decay: for exam-
ple, it does not map .7 (R?) or 2(R?) into itself.

One can however easily extend # to compactly supported distributions &’ (R?).

Proposition 4.3 (Radon transform on &”). %* maps (continuously) &(R x $4=1) =
€*(R x 8471 into £(RY) = €°(R?). As a consequence, for u € &' (RY), one defines
its Radon transform Zu € &' (R x S%~1) by the formula

(4.8) (Zu, @) 1 (Rxsi-1),6Rxst1) = (R Q) g1(Ra) (RY) -

Furthermore,

(4.9) Vo € S(Rx S, A%* ¢ =% (2%9),

so that also hold in &' (R%):

(4.10) Vu e &'(RY), #(Au) = 32 %u.

Proof. See [Lud66, Section 4], and in particular Theorem 4.9. g

An important result for our purpose is the description of the range of the Radon
transform. We will make extensive use of the following result, which describes the
images of Schwartz class functions.

Theorem 4.4. [Lud66, Theorem 2.1] ¢ € . (S~! x R) can be written ¢ = Zf for

some f € .7 (R?) if and only if the following two conditions are fulfilled
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(1) gis even, that is g(w,s) = g(—w, —s) for any (w,s) € $9~1 x RR.
(2) if Yy(w) is a spherical harmonics of degree | and if 0 < k < I integers, then

411 / / w)skY, (w)dsdw = 0.
(1) esit Joeg 81 ) Yelw)dsdeo

In proving Theorem|I.7] it will be important for us to know the Radon transform
of product of radial functions and spherical harmonics. This makes use of the
Gegenbauer polynomials, whose definition and properties are recalled below.

Definition 4.5. Let A € R*. For any [ € IN, we define the Gegenbauer polynomials
C} by iteration: C}(t) = 1, C}(t) = 2Atand for | > 2,

Crt) = % (2604 A= 1)1 (1) — (1 +21 2G5 ()

For A = 0, the Gegenbauer polynomials are the Chebychev polynomials where
similar formula holds, but will not be used here since it corresponds to the even
dimension d = 2.

Proposition 4.6 ([ASon| Section 22, page 773]). C; is a polynomial of degree | which is
an even (resp. odd) function if | is even (resp. odd).
The polynomials t — C}'(t) are orthogonal on the interval [—1,1] for the weight function

(1-— tz))‘_%. More precisely, for |, m € N, A > —1/2, we have

: Ly s m2AT(42))
/71Cl/\(t)cr/}l(t)(1_t2))\ dt = O1m I(I4+ AT (/\)

We will be using mostly in the specific case A = % — 1, because those polynomial
appear when computing the Radon transform of functions involving spherical
harmonics.

Proposition 4.7. 1. Ifh(s w) = g(s)Yy (w), whereg € €°(R)and g(—s) = (—1)'g(s),
then (Z*h)(x) = W(|x])Y, (i) where

X

) i1 s
(4.12) W(r) = (Z/w)(s) := Cd|/21(|) / 1C;’l/2 L(t)g(rt) (1 _ tz) dt.
We have W (r) = r'v(r?) where v € €% (R).

2. Similarly, if f(x) = w(|x|)Y; (ﬁ), where w(r) = r'v(r?) and v € #(R), then
(Zf)(s,w) = k(s)Yy(w) where

d—3

d—1 © 2\ 7
(413) k(s) — (%lw)(s) = CM /:_ C?/Z—l (;) w(f’)rd72 <1 — :'2) d?’.
1

The function k is in . (R) and satisfies k(—s) = (—1)'k(s).
3. Furthermore, under the notations of 2., w = %, (co|Ds 19=1)%w and moreover

+oo +oo _ 2
/ lw(r)|?ri—1d = co/ ‘|Ds|d71,%’lw‘ ds.
0 —o0

Proof. These results are the content of Lemmata 5.1 and 5.2, and of Theorem 5.1 of
[Lud66] O
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4.2. Extension for the operators .7 and d;.7. Let us first relate the operator .7
and the Radon transform, and, in particular, proves relation (1.24). We start with
expressing the Radon transform via a partial Fourier transform.

Lemma 4.8. The map defined on .7 (R?) by .7, { f (vw)} is the Radon transform in
the direction w. That is

@14 wflsw)= [ fwdy= 72 [fw)] o)
As a consequence, one has the equality as operators .7 (R?) — ./ (R x §41):
d—1

T =my(Ds)%# where my(v) := colv| 2 (eiT]1V<0 + e*iTILVZO> .
In particular, if the space dimension d is odd, then (1.24) holds:

T =co(—-1)7T3.7 %.

Proof. For fixed w, we compute for f € . (R¥) the 1D Fourier transform of s —
Rf(s,w). Then

(FrRf () 0) = [Ffw)eds= [ [ fly)edyds

= /S /y e F)e M dyds
= /xeRdf(x)e’iV“""dx = f(vw).

(We used Fubini’s theorem with R? = |J,cg(sw + w™) for the last line). This
proves ([£.14). The second equality is then direct via 1D Fourier transform, using
the definition (L.5).
If furthermore d is odd, recalling that T = %7‘(, we distinguish the odd cases
modulo 4:

o ifd =4k+1,my(v) = (—1)kco|v|?, so that T = cyo* %,

o ifd = 4k +3, my(v) = ico|v[* 1 (—1)1(—sgn(v)) = i(—1)*1cv?+1, so

that 7 = —cpo?+1%.

This yield the last equality, that is (1.24). O

In order to apply homogeneity arguments, we would like to extend the previous
applications to other spaces, in particular, containing homogeneous function of
the form |x|*Y, (ﬁ) with —d < a < 1 —d/2 that are not in H' because of the
behaviour close to zero. The purpose of this section is then to properly define d5.7
and .7 in some larger distributional sense.

We will present the statement in a context adapted to H! and 2, as it is our interest
here. One could proceed via partial Fourier transform, specially in view of Lemma
2.1} However, we crucially relie on locality properties in our argument, which
follow from that of the Radon transform. In order to achieve this, it is natural to
proceed by duality, and for this, the restriction to odd dimension appears naturally.
We begin with definition for the adjoint of .7.

Definition 4.9. We define a map 7* : .7(R x 1) — &(R%), by letting for
¢ c.7(R xS,

d—1
T* @ = co# 5% ¢.

We also need L? type spaces with symmetry.
24



Definition 4.10. We denote:
L2,,(R xS 1) .= {g € L2(R x 897 1); ¢(s,w,s) = —g(—s,—w),a.e.},

L2, (R x 81y .= {g € L2(R x 8%71); g(s,w) = g(—s, —w),a.e.} .

Proposition 4.11. Assume d > 3 is odd. Then, the operator 7 can be extended
7| H(RY) —» 7" (R x 871
pER

so that it satisfies
d—

d—1
1) iff € Z(RY), Tf =co(—1)T 052 %S,
(2) ifu € HP(RY) for some p € Rand ¢ € .7 (R x $471)),
-1
<<714, (P>,7/(]R><Sd*1),Y(IR><Sd*1)) =00 <Ll,<%7’*asz (p> .
HP(R4),H—P(IRY)
(3) ifu € HP(RY) then
(4.15) T (M) = 2T u.

4) ifu,ve | HP (R?) satisfy U|{|x|>R} = O|{|x|>R} in the distributional sense,
peR
then (Tu)|(s|>ry = (F0)|{js|>r}- (Here and below, {|s| > R} = {(s,w) €
R x $%~1; |s| > R} takes into account both variables (s, w)).
Furthermore, 5.7 extends to a linear map H' — #'(R x $9~1) as follows: if u €
H'(R?) and ¢ € .7 (R x 84°1)),

d—
2

(416) <as<7u, ¢>tyl(RXSd71)/=Sﬂ(RXSd71) = (0 <Vu V%*a §0> .
LZ(]Rd)d,L2(IRd)d

Therefore, 05 7 is defined on J,cr HF (RY) + H'(RY), and enjoy the locality property: if
u, ve |J H(RY) + HY(RY) satisfy
pER
Ui{lx[>R} = Ol{|x|>R}
in the distributional sense, then

(95 Tu)|(1s|>Ry = (95:T0)|{|s|>R}-

As mentioned above, the proof of Proposition is essentially done by duality.
The starting point for extending 7 is the next property.

Lemma 4.12. Assume d is odd.
Foranyp € R, 9* maps continuously .7 (R x $9=1) into HP (RY).

Moreover, VZ#*0 7 maps (continuously) L>(R x $%1) — L[2(R%)4, and .7 (R x
§4-1) — HP(RY)? forall p € R.
Proof. It is enough to prove the results for all p € IN.
Regarding .7*, the case p = 0 is given by duality from {@3) and @#4). Let k € IN.
For ¢ € .7 (R x $971), in view of (&.9), we see that A*7*¢ € L2(R?) for any k € N
so that .7* maps .7 (R x $%~1) into HZk(le). It gives the result.

i3
For V#*9s* , we also work by duality, first for p = 0. gives forj e {1,...,d},
after several integration by parts

T3 d—3

/]R L 87 (0 f) (s @)p(s,whdsde = (<1)T [ (0005 (4707 9) (1)
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Using for the left hand side, this gives

d—1
2

43 -1
[ f@0s @0 o) wdx = (-1 [ wp.
Due to and Cauchy-Schwarz inequality, we conclude

(Zf)(s,w)ep(s, w)dsdw

d—3
2

o [ (0092705 @) (x)dx < co | Pl 2moxsa1) fll2(mey -

d-3
2

This implies |10, %" Ds

goH < oo ||l 2 (RxS41) by duality, which is the case
L2(IR9)

p = 0. As for the other term, we treat the other regularities by applying A which
gives the same result by changing ¢ to 92 ¢.

Proof of Proposition .11 gives directly that for every f € .#(R%) and ¢ €
(R x 84-1)

(4.17) /]R o (TNl w)dsd = /]R (T ).

Therefore, as a by-product of Lemma we can extend .7 as an operator on
HP and 9;.7 on H!. Indeed, for any u € Hp(le), with p € R, we can define a
distribution Zu € .#'(R x $%~1) by

(4.18) (T, @) 1 (Rxsi-1),7Rxsi-1)) = (U T @) o (R, -0 (RY) -
The bracket defines a distribution due to Lemma .12} (4.17) gives that (4.18) coin-

cides with (T.24) for u € .7 (RY).
With this new definition, by duality, we still have the formula

Yu € H?(RY), 7 (Au) =092Tu,

where A has to be understood as an operator H°(R?) — H~2(R?) (both being
subspaces of .7/ (R?)), while 92 is understood acting on .#’(R x $9~1). That means
the equality makes sense in .7/ (R x §¢~1).

Similarly, for u € H!, formula and Lemmaallow to define 0;.7 € ..

We have extended 9;.7 in two ways, on U,cgr Hf (R?) and on H'(IRY). In order to see
that it indeed defines an extension UPG]RHP(]Rd) +H'(RY) - #"(R x $971), it only
remains to check that for u € Uper H” (R%) N H'(R?), the two definitions coincide.
That relies on verifying that for u € UPE]RHP(IRd) NHY(RY) and ¢ € .7 (R x §471)),
we have

!
—Cp <u,%*852 <p> = <
HP(RY),H—° (R¥)

which is easily done using again (£.9).

d-3
Vi, V& D,? (p> ,
LZ(]Rd)d’LZ(]Rd)d

We now prove the support properties (). A similar result is contained in [Lud66|
Theorem 4.9] for #, and follows from duality; we give a proof in the case of 7 for
completeness. Note that for this point, we use very strongly that the dimension is
odd and that the operators are local.

We first notice that u — v € &'(R?) C UperHP(IR?) is supported in B(0, R). Let
@ € C3(R x $971) so that ¢ is supported in {[s| > R} x S?~1, that is ¢(s,w) = 0

-1

for |s| < R and in particular, 9;> ¢ = 0 for |s| < R. By the definition (.2) of #*, it
-1

is clear that it implies (#*9s;? ¢)(x) = 0 for |x| < R. Now, we can compute

(Tu—To, §D><7’(IR><S‘1*1),5/’(]R><Sd*1)) =(u-o, y*(P>HP(IR”’),H—P(IR”’)
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d—1
2

=) <u—v,%*as q)> .
HP(R4),H° (R¥)
—1
2

d

This is zero thanks to the respective support properties of u — v and (%29
very similar computation yields the result for d;.7.

¢). A

O
We define the scaling operator on R?, (resp. R x 8¢~ 1), for A > 0 by

My(x) = Ax, x€R?
My (s,w) = (As,w), (s,w) e R xS
(with a slight abuse of notation), so that for u € .#/(R%), f € . (R%) and v €
(R x 8% 1), 9 € #(R x S1), we have
(10 My, f) gr(way, ooy = A~ (1, f © M1/2) on(ra), o (ret)

(V0 My, @) gr(rxst-1), 7 (Rxsi-1)) = A" (0,90 Mi/2) gor(Rxsi-1), 5 (Rxsi-1))

We say that a distribution u € .7/ (IR¥) is homogeneous of order a if u 0 My = A%u.

Lemma 4.13. Assume d is odd.

Ifu € HP(RY), then (3,.7) (10 My) = AV =" (3s.7) o M.

In particular, if u is homogeneous of order w, then 7 u is homogeneous of order « + %
and 957 u is homogeneous of order o — 1 + d%l (the latter is also true if u € H'(R?)).

Proof. We easily get that for ¢ € .7(R x S71), %* (¢ o My ) (x) = (Z*¢)(x/A),
so that 7*(¢po My,)) = q%’*&?((p oMy,)) = AT (7*¢) o My,. So, we com-
pute
((9sTu) © My, @) (R xsd1), 7 (Rxsi1))

= = A", (F795) (9 0 Miya)) s (rety 1 (re)

= AT (U, (70sg) 0 Mi/2) bs (Re),H-s (R¥)

= AT (o My, (T7059)) s (R, 1 (RY)

= AT (3,7 (uo My), P)) 1 (Rx81-1), 7 (RxS-1)) - O

We saw in Lemmathat 7 was, in some sense, isometric on L2 (and 9.7 on H 1).
Below, we precise the range.

Lemma 4.14. We consider here the restriction of 7 to L?(IR%) (which we still denote 7).
We saw that 7 is an isometry from L2(R?) — L2(R x S%~1). Then

Leoen(R x 8771) ifd = 1[4]

Range(T) = {Lﬁdd(lR x 841y ifd =3[4]

Similarly, the restriction 9.7 : H'(R?) — L2(S%~1 x R) is isometric and

L2 (RxS1)  ifd=1[4]

Range(9:.7) = {Lgm(JR x 8T ifd =3[4]”

Proof. The extension and unitarity comes from (4.4). Concerning the range of .7, we
assume that d = 4k + 1 (that is d = 1[4]) to fix ideas, and it is enough to prove that
[2,,,(S971 x R) C Range(.7): indeed, Range(.7) is closed since .7 is an isometry,
and is clearly contained in L2,,,(S?! x R).
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In view of Theorem 4.4 it suffices to prove that any function in i € L2,,,(5% x R)

can be approximated by a function of the form 9%¢ where ¢ € .7(5%"! x R)
is even and satisfies (4.11). Decompose h(w,s) = Yyemhe(s)Yo(w) (recall that
(Y¢)¢em form an orthonormal basis of spherical harmonics of L2(S?~1) of degree
I = 1(¢)). The condition that & be even can be written h,(—s) = (—1)'h(s). Given
¢ > 0, we are looking for g, € .(R) so that

LYY Hhk,l - |DS‘%gk'l’ ;(IR)

o gri(=9) = (-1)'gui(s),
°/ gk,lsdeZOforj:O,...,l_l_
s€R

<e

Translating this conditions in the Fourier side, yields
~ i1 |2
® Y Hhk,l — 18|77 &k, 12(Ry)
o 8ii(—8s) = (=1)'gki(%s)

i |
e — 5 (0)=0forj=0,---,I—1.

<g,

agl
These conditions can clearly be met: this gives the result for Range(.7).
One can argue in a similar way in dimension d = 3[4, and for 9;.7. 0

5. THE RADON TRANSFORM OUTSIDE A BALL

Our goal in this section is to prove Theorem We will mostly study properties of
the Radon transform on L? or H'. Throughout all this section,

we assume that the dimension d is odd.
We define the operator
Ljgj>R L*(R x 8971) — L2(R x &7 1), (Lisjzrf)(s,0) = Ligzrf(5, w).

This is obviously an orthogonal projection. We will be interested in the operators

Lsr7 : LX(RY) - L*(Rx $"') and 137 : H'(R?) — L* (R x §%°1).
Definition 5.1. Denote the kernels

K} = ker(Ljg5r.7) C L>(RY) and Kk = ker (15> 7) C HY(R?)

respectively, and 77g and 7 the orthogonal projections on K and K} respectively.

Lemma 5.2. Let H, H' be two Hilbert spaces, ¢ : H — H' a unitary operator (that is
isometric and bijective) and p an orthogonal projection on H'. Then, denoting 7t : H — H'
the orthogonal projection on ker(p¢), there hold

vfeH, flE = l(pe) (NI + 7 (F)IF

Proof. Consider ¢~'p¢ : H — H. One computes that it is an orthogonal projection
with kernel N = ker(p¢), that is ¢~ p¢ = 1 — 7. Therefore, Pythagorean theorem
yields that

VfeH, |flk= 10" pe)(DIE+ 11— ¢ ) (NE-
Now, ¢~ : H' — H is isometric, so that ||(¢~'p¢)(f)lz = ||(p¢)(f)|m, and
1 —¢~!pgp = 7 so that the above equality writes

vfeH, flE = Il(pe) (NI + 7 m
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As a direct consequence of the above lemma and of Lemma we get that
d
G Vu e LARY), |wlf = |1srTm ||%2(Rxsd71) + || R ||%z(1Rd)/
: d
62 Vupe H'(RY, (gl = 185r0s 7002 i, + kol ey
Our main goal in this paragraph will be to give explicit expressions of the kernels

K9 and K}, and to relate them to the space P(R) defined in the introduction. We
emphasize that for this, we will make an essential use that d is odd.

The main object of this section is to obtain the following theorem. We denote
H*(|x| < R) = {f € H*(R");Supp f € B(0,R)},

and recall (1.18) that (Yy)scpv is an orthonormal basis of spherical harmonics, I =
1(¢) is the degree of Y, and

o =—1—d+2k
(it also depends on ¢), and we defined in the introduction the functions f; (adapted
to the FH! context) and g (adapted to the L? context), see (T.19)-(T.20).

Theorem 5.3. Assume d is odd. Then

L
€L
(5.3) Ky = L*(]x| <R) ® AR where AR = P ARy
leM

(here | means L?-orthogonality) and
Jij& =Span (g, ke IN*, ap < —d/2).
Similarly, there hold

1
. 1
(5.4) Kr =H'(|x| <R) ® AR where AN = P A3y,
leM

(here L means Hl—orthogonality) and
ANy =Span (fi; keN*, ap <1-d/2).

Remark 5.4. The kernel of the partial Radon transform has already been computed
by Quinto [Qui83] (3.14)] in different (weighted) spaces, namely L%, (E), defined by
. _ d—1 _ —2\p/2

its norm | £, = V2||1x| "2 (1 = {22,
Corollary 3.4]), that the null space of 15> % : L%(E ) — L%(E’ ) is the closure of the
span |x|~47KY,(x/|x|) where 0 < k < I and k — [ is even.

We however do not relie on this result, and actually use a different approach of
proof.

Theorem is actually similar to the main result in [KLLS15] (that was restricted
to radial data). Their method was based on expansions involving Bessel functions,

while ours, taking advantage of scaling and action of A, should provide a simplified
(or at least shorter) proof.

. He proves there ([Qui83|

We will first consider the L? case, that is prove (5.3), and then treat the H' case for
which the proof is analoguous, and we will only highlight the differences.

Proof of (5.3). As the dilation f — ﬁ f(-/R) is an isometry on L?>(R%), we can
assume without loss of generality that R = 1.

Step 1: Reduction to spherical harmonics.
29



We define .#{° to be the L?-orthogonal complement of L?(|x| < 1) in KY:

i
KY=12(]x| <1) @ A,
so that we have the explicit description
M0 = {fe L2(R%); f =0on {|x| <1} and Zf = 0on {|s| > 1}}

It is convenient to introduce the following notation: if w : R — Rand Y : $9~1 — R
are two functions, then we define

weY: R =R, x|—>w(|x|)Y(|§|>.

As all the functions we consider have symmetry in the s variable, we keep track of
it in the following definitions. For this, we denote

L0 = {w € LR |r|""dr);¥r € Rae, w(-r) = (~1)w(r)},
which we endow with the natural Hilbert norm:
. |gd—11/2
lollz = 15" /2 [0l g2(g0 oyt 12
The symmetry we impose on functions w € L%a 4 18 essentially technical (the

information required is given for r > 0); it is given for coherence purpose with the
definition of %, (in Proposition@ mostly in Step 2 below. Then, for £ € M, let

- {f € Lz(]Rd) Jw € Lmdl’f - ZU®Y€},
so that
L
— @ 12,
teM
and the map L2 , — L2, w — w ® Y, is a bijective isometry up to a constant:

lw @ Yolliz = 1¥ellpzsa sy lollz

The main point of this step is that .7 preserve the structure in L?. More precisely,
denote

d—1_4-1
F:=co(—1) 7 9:2 %,
then due to Proposition@ ) can be extended to an isometry from Lfa 41 to L*(R)
(and arguing as in Lemma [4.14} it is actually bijective):

65) Vo€ Ly, Tl = ol

and we have the formula
Vwe Lz, TwaY,)=7(w)®Y,.
We will now fix £ € M and study the kernel
My = ker(Lg ) = {w € L sw® Y, € A},

so that
1

EB MY @{Y.}).

eM

Step 2: N, (, is finite dimensional.

Let us first give an insight of the range of .7, when restricted to </V10€.
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. . d—>5
Lemma 5.5. Let w € Jl/loz. Then there exists a polynomial P such that deg P < [ + —
(with the convention that deg0 = —o0), and

Vs €R, (Jw)(s) = Ljg<1P(s).
Also P has the parity of 1 + dz;l

Proof. By definition, q(s) = Zjw is an L?(R) function supported on [—1,1]. We
would like to use formula but we have to be careful of integrability issues,
so we work by duality instead. We prove that ) = 0 on ] — 1,1[ in the sense of
distributions, for k > I + g , and proceed via smooth approximations.

Letg € (]~ 1,1[). Fore > 0,let x € 2({|r| > 1}) N L}, suchthat |w — x| 2 <

e.Since x € Lfa 41 18 smooth and compactly supported far from zero, it can be written

x(s) = r'v(r?) for some v € 2(R) C .#(R). In particular, we can apply Lemma@]

to compute Jjx and its derivatives. Using that x is supported in {|r| > 1}, formula
d—

gives for [s| < 1:
Sd 1 - 2\ 7
) = & / (%) xtnr 2(1—r2> dr

d-3
d—1 +oo 2N\ 2
_ |S | / ()= (1 = ;) dr.

We now differentiate k + dz—l times (using that % x is a smooth function in | — 1, 1[)
to obtain

4k de |Sd 1| +o0 d—1 A /S s2 dz;s
x| () = co(=1 )T / —ka2 cl(r)(l—ﬂ> dr

43
Since Cl)L is a polynomial of order [ and (1 - i—i) *isa polynomial of order d — 3

(d is odd!), the right hand side is zero if k 4 dz;l > | +d — 3. In particular, for
k>1+43

dk
Vs € [-1,1], <dskylx) (s)=0.
As 7] is isometric (see (5.5)), we have
g = Zixllez,, = lw—=xl2 <e

Since g = 0 for [s| > 1, there holds || Zx|| ;2 ( a(js[>1) S € and

<| [, Y a0 - A +
\s\<1

§28‘(p

<p(k s)ds

/ o) (s) Tixds
|s]<1

Therefore, we obtain that / 9" (s)q(s)ds = 0 for any ¢ € 2(] —1,1[). Hence, g is
R

a polynomial of degree less or equal to [ 4 d% on ] —1,1[. Since q is a L? function
that is zero on {|s| > 1}, it gives the result. O

Remark 5.6. It is likely that the previous method applies well to other spaces like
H™F (as the Radon transform was extended to these spaces), as long as its elements
can be approximated by functions with compact support in {|s| > 1}.
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Corollary 5.7. L/V& is finite dimensional, of dimension K, < H + %J .

Proof. The space of symmetric polynomials of degree at most m has dimension
T +1lor mTH depending on the parity of m and even/odd polynomial; in any case,
it is at most | % + 1|. Lemma 5.5|thus implies that .7 JV& is contained in a finite
dimensional subspace of dimension less than [% + ’14;1J Since .7} is an isometry

on its Range, as seen in Step 1, .4,’, is therefore finite dimensional with the same
dimension. O

Step 3: ", is spanned by functions of the type In(|r|)Pr*, a € C, p € N.
We now have some precise information about the image of .4,%, by 7, so that it only

remains to invert it. Since 7] is invertible in the appropriate L?-related spaces, it
might be possible to directly use Lemma@to recover JV& by applying the inverse
of .7, to functions which are the product of a polynomial by an indicatrix function.
Yet, we prefer to apply homogeneity arguments that yield directly the result that
JV&, being finite dimensional, can only contain the restriction of homogeneous
distributions.

Lemma 5.8. For any A > 1, define the dilation/restriction operator S, acting on functions
w:R — Rby

(5.6) VreR, (Spw)(r) == 1 sqw(Ar).
Then for any £ € M, S, maps ,/V& into itself.

Proof. Letw € .#,%, and consider v = (S,w) ® Yy, so that Zj(Syw) @ Y, = 7 (v).
Observe that

0 =Lz (w®Yy) o My) = (Ljyza(w®Y)) 0 My
Therefore, using Lemma .13} adapted to .7 instead of 5.7, we infer

1

_d-1
(7(21) =A"2 (y(]].‘x‘>/\(ZU®Yg))> o M,.
Now, let ¢ € Z(RR x $%~1) so that ¢ is supported in {|s| > 1}. We get

(7 (0), @) 1 (Rxs1-1),7 (RxS41)

L1
A 1<9(]1|x‘>)\(w®YZ))’¢oMl//\>,y’(]R><Sd’l)fV(IRde*l).

The assumption on Supp(¢) implies that ¢ o My, is supported in {[s| > A}.
Applying Proposition to 1jy > (w ®Yy), we get that
(y(]]"x@)l(w ® Yf)) ‘{|s|>/\}><$'71*1 = (9(7’0 ® Yf)) |{‘s‘>/\}><5d71 =0,
since w € </V10€ and A > 1. So, we have proved that for any test function ¢ supported
in{[s| >1}
(7(0), @) 9 (Rxs11),7Rxs1-1) =0,

in other words, 7 (v) = 0 on {[s| > 1}: hence 1,51 7(Syw) = 0 and Syw €
A2, 0
We now state a general fact, which describes finite dimensional spaces of 1D

functions invariant by scaling.
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Lemma 5.9. Let N C L} ([1,+0o0)) be a finite dimensional vector space such that for

any A > 1, S, (N) C N. Then, there exist a finite set I, («;)ic; C C, (pi)ier C IN so that
N = Span (r — log(r)iri;i € 1,0 < j < pi — 1) .

Proof. Notice that all the (5,)~1 are commuting applications: 5, S p = Sap- Also, in
the logarithmic variable s = log(r), s > 0, S is the translation with generator the
derivation. That is, if w € N and v : s — w(e®), we have with this representation
S.50(s) = 1550v(s + B), and this defines a semigroup. Denote A the infinitesimal
generator of f — S,¢. Choose a basis of N so that A has a Jordan form: it is block
diagonal block and each diagonal block (of size say p + 1) takes the form

w1 T 1 A& 4
a 1 (0) 1 A
w1 1 A
= . . sothat eV =M
J (0) R (0)
o N
I l I 1]

In particular, in this base (go, - - - ,§p) we can write for any s, A > 0

go(s +A) = e'go(s),
g1(s +A) = AeMgo(s) +e'gi(s),

AP
8p(s+A) = ﬁeA”‘go(S) Mgy (s).
Taking s = 0 in this equalities gives
N

8j(A) = ]-76)‘“80(0) o e (0),

that is denoting f; : s — s/e®, there hold

[80(0) £1(0) £2(0) GOT T a1 T o
0(0) 1(0) ¢ jﬁl) §(l>

20(0) (00) e

© s LT

g0 | [fr-1| |81
go(0)] L fp i L 8p |

Observe that go(0) # 0 (otherwise go = 0 which would contradict (g;); being a
base), so that the above matrix is invertible, and the (f;)o<<p form a base of each
block of the Jordan base of A in N. We get the result getting back to the original
variable r = €°. O

Gathering together the above two results, we infer that .4,%, admit a base made of
functions w € Lfﬂ 4 such that for r > 0,

(5.7) w(r) = L,>1 In(r)Pr*

for some p € N and « € C. Denote #Z the set of couples (p,a) € N x C which ap-
pear in this base: due to Lemmalp.9} 4 is a finite union of { (0, &;), (1, ;), ..., (pi, a;) }.
Finally, we state a second stability result, to be used in the following step.
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Lemma 5.10. Consider the operator A : f 1y Af. Then A (is well defined and) maps
MO L2 to itself: forall f =w ® Y, € A,° N L?, we also have ]l\x\>lAf e M0NL2.

This is of course strongly connected to the explicit special form of w € Ji/loé.

Proof. For w as in (5.7), a direct computation yields that 1},-1(A(w ® Yy)) € L?
(it is a smooth function on {|x| > 1}), and recalling the form of the Laplacian in
spherical coordinates, this function belongs to L?. Now, from [@.I5), we also have
that

TANw®RY) =0;T (wRY),
sothat 15517 A(w®Yy) = 0. By Propositionid.11} .7 (11 A(w ®Yy) and TA(w ®
Y;) coincide on {|s| > 1}, and are both 0 there. Hence 1,.1A(w @ Y;) € A", O

Step 5: ;0 N L2 is spanned by the gj.
We recall the following formula, valid for p € N and « € C: for x # 0,

68 |tog([x1)71x1*Y; (7 )| = llata+ d =2~ 101+ 4 - 2] tog(lx)?

+p(2a-+d = 2)log(|+)" + p(p ~ Dlog(lx1)? 2] <t 21, ( 77

(with the convention that |x|® = 1; for the convenience of the reader, a derivation

of this formula is presented in Appendix[A). We now claim:

Lemma 5.11. Let (p,a) € B.Thenp =0, 0 < —d/2and o« = —1 —d +2(k+ 1) for
some k € IN.

Proof. Denote w € 4,9 such that
Vr>1, w(r)=In(r)fr".

DAswel?,, o< —d/2

2) We next prove thata = —I —d +2(k + 1) for some k € IN.
As Ji/lo N L% is isometric to Ji/log, it is finite dimensional. On the other hand, it is
stable by A, due to Lemma Therefore, for all k € IN, Ak(w ®Yy) € /1/10 n L%.
Now, as A has the same action as A for {|x| > 1}, direct computations which follow
from give that for |x| > 1,
p—1
A(w ® Yy) (x) = Celog(|x])Px]* 25, ( ﬂ + Z cjxlog(|x])/[x|* Y, (T)

for some coefficients ¢j; € C and where Cy =1 and by induction, for k € N,

Cip1 = ((a = 2k)(a =2k +d —2) = I(1 +d —2))Cy.
However the functions (r + log(r)/|x|*~2)ren are linearly independent (recall
& < —d/2), so that the (A¥(w ® Y;)) too: as A" N L? is finite dimensional, it
implies that for some k € IN, Cy 11 = 0, in other words,
(o —2k)(a —2k+d—2)—1(l+d—2) =0.

Asa — 2k < 0, weinfer that o — 2k = — —d + 2.
3) Let us finally prove that p = 0. We argue by contradiction and assume that

p € N*. Then, thanks to the structure of 4 already precised, we have (1,&) € £.
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Without loss of generality we can furthermore assume that « is minimal for this
property. Now, we compute that for x| > 1

a tog(lehlxive ()]

= [[a(a+d—2) —1(I+d—2)]log(|x]) + (2a +d —2)] |x|*2Y, (i) .
If « # —1 — d + 2, by linear independence, we would have (1,& — 2) € %4, which
would contradict the minimality of «. Hence w = =/ —d+2and asa < —d/2,
20 +d —2 < 0is not null, so that (0,a —2) = (0,—] —d) € %A. Applying A et
using repetitively, we would get (0, -1 —d — 2k) € % for all k € IN, which
contradicts that 4 is finite. Therefore p = 0. g

Let Ny € N be the maximum of the k such that (0, =/ — d + 2k) € . Then by
applying repetitively A (and using (5.8)) to w ® Y; where w € L2, g and w(r) = rNe
for r > 1, we get that for all k € [1,N/], (0,—1 —d + 2k) € . Recalling the
definition of the g; (I.19), we can reformulate this by saying that

(5.9) 9N L2 = Span(gi; k € [1, N/]).

Step 6: Conclusion.
We now complete the description of .4;° N L2, that is we prove that

MON L2 = Span(gi;k € N, ay < —d/2).

For this, it suffices to prove that if o < —d/2, then g € </V10 N L%.

It is certainly possible to prove it by direct computation using the formulae of
Lemmal4.7|and Similar computations are made for instance in Quinto [Qui83)
Formula (3,14)] (see also [GR07, Section 7.3-7.4 p795] for related computations). Yet,
it is not easy (but certainly doable) to justify the computations when the functions
do not have enough decay.

Instead, we will use some ideas related to Lemmal|5.10

Lemma 5.12. Let k € N such that a < —d /2. Then g, € 40N L%.

Proof. Observe that, as o < —d/2, g € L2.
Since A is a differential operator, we have (Agx) {|x|>1} = A(8k){|x|>1} in the sense

of distribution (the A being an operator on distributions either in R? or in {|x| > 1}).
(8k){|x|>1} is a smooth function, so formula (with p = 0), applies for k > 1, in
the classical sense, to give

AgK) {x>1) = k(8k—1){x[>1}s
for some ¢, € IR, either in the classical sense or in the distributional sense in
2'(]x| > 1). Thanks to the previous remark, we obtain

(AgK) {1x|>1} = k(8k—1) {|x|>1}
Using now part (4) of Proposition 4.1} it gives

(7 (g gs>1) = k(T gk-1) {s>1}-

Using this time part (3) of Proposition[4.11]and after restricting to {s > 1}, there
holds

(T (D8N (s>1y = (03T 8k) (s1}-
35



As g € L?, denote Iy € L*({|s| > 1}) such that (78 lqis|>1y = e ® Yy we
obtained fork > 1

(5.10) 02y = chy_q.
Similarly, and by definition of 9 and spherical harmonic, we get

A(80){jx/>13 = 0.
Let us prove by induction on k (such that a; < —d/2) that iy, = 0.
For k = 0, the function u(t,x) = go(x) is solution of Ou = 0 on {|x| > [t| + 1}
(outside of the light cone). In particular, by finite speed of propagation, the solution
w to the wave equation with initial data (go,0), satisfies w(t, x) = go(x) on {|x| >

|t| +1}. In particular, (2.16) gives
: 2 2
0=2 Hm [[w]iz2(ejzr1) = | 780l 2((s1)xs01)

This proves that hy = 0.

Let k > 1 and assume that /17 = 0. In view of (5.10), we infer that there exists
®,B € R such that i (s) = as + B fors > 1. As hy € L2({|s| > 1},ds),a =B =0
and hy = 0. This completes the induction.

Now, hy = 0 precisely means that 15517 g, = 0, and so g € M0, O
This completes (5.3), that is the proof of Theorem in the L? case. O

Proof of (5.4). As g — %gQ/R) is an isometry on H'(IR¥)), we can assume as

before that R = 1. In this proof, all orthogonalities are meant with respect to the H*
scalar product.

Step 1: Reduction to spherical harmonics
We now define .#;! to be the H!-orthogonal complement of H'(|x| < 1) in K}:
1_ o
Kl = (x| < 1) & AL

The explicit description of Ji/ll is now different from the [2, as it involves the
harmonic extension of in B(0,1):

M= {f € HY(RY); Af =0on {|x| <1} and 3s.7 f = 0 on {|s| > 1}}
Analoguously to the L? case, we define
Hyp = {w € HY(R, |r)"dr);Vr € Rae., w(—r) = (—1)l+1w(r)}.

This time, we equip Hrla 41 With a family of norm which are all equivalent, but
adapted to the Y;:

A-1) -1y, 12 ._ 2 w2
S ol = 180l o 10+ A= 2) || T

L2([0,+00),|r|4—1dr)
Then, we can define
so that
. 1
H'(RY) = D Hj,
teM
and the map Hrla ¥ s Ht}, w — w ® Y, is a bijective isometry up to a constant, for
the right norm:
lw @Yl = [[wllg -
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d+1

Again, 957 preserve this structure: 9;.7 = cp(—1) d%las 2 %, can be extended to a
(bijective) isometry from H}, , to H'(R)
1) Vo € By s Ti0l iy = Il
and the commutative diagram still holds
Vw e Hyyy 057 (w®Yy) = (0sTw) ® Y.

As mentioned above, we will use the harmonic extension on B(0, 1), that is the
operator & such that, for f € H', 2f satisfies Zf(x) = f(x) for |x| > 1 and
AZf =0onB(0,1), so that

ML= {f € 3(2);0s.7f =0on {|s| >1}}.

2 is actually the H'-orthogonal projector on H'(|x| < 1)*. Observe that the action

of 2 on Hj is simple: for w € H}, ,

(w@Ye)(x) = w(|r))Ye(x/[x]) if |x[>1,

L@(w®Y2)(x) = {w(1)|x|lYg(X/|x|) if |x| < 1.

In other words, we can define an operator &, : H! ., — H! .,
I+1),.1¢
W = Ly <gsgn(x) ™ |x|" + Ly,

so thatforall/ € Mand w € H}ad’l, Z(wRYy) = (Pw)®Y,.
We will now fix £ € M and study the kernel

My = ker(Ly ) = {w € Hyy oo Y, € M}
= {w € H}ad’l;w(r) = cr' for0 <7 < 1and ds.Z;w = O on {|s| > 1}},

and there hold
1

M= D (M@ {Ye}).
teM
Step 2: g/l/llé is finite dimensional.
0 . . d—-3
Lemma 5.13. Let w € A7, Then there exist a polynomial P such that deg P < I + —
(with the convention that deg0 = —o0), and
Vs €R, (Jw)(s) = Ljg<1P(s).

Also P has the parity of | + dle

Proof. The L? proof adapts mutatis mutandis, working on q(s) = 95 Zjw which is in
L2, O
rad,l

Corollary 5.14. JV& is finite dimensional, of dimension at most H + d%lJ .

Proof. Asin the L?, it is consequence of 9.7} being an isometry and 9.7} (.#,},) being
finite dimensional, in view of the previous lemma. O

Step 3: E/V& is spanned by functions of the type In(|r|)Pr*, a € C, p € N.
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Lemma 5.15. Forany A > 1, define the dilation/restriction operator S, acting on functions
w € Hyyy, by

(5.12) (Sy = (2)(r = w(Ar)).
Then for any ¢ € M, Sy maps ,/1/11/ into itself.

Proof. The proof follows the path of its L? counterpart with a little variation due to
the harmonic extension. We also need the operator 2" which is defined as £ on
H'(R?), but performs the harmonic extension on B(0, A) instead (" is a rescale
of &, not to be confused with &7, which is a quotient map of ).
Letw € Jl/l,lé, and consider v = (S,w) ® Yy, so that 9.7 (v) = (3.7 (S w)) @ Y.
The key point is that

v=(PNwRY,))oM,.
Now, using Lemma we infer

9T (v) = A~ T (asﬂ(ng(w@Y[))) o My.
Let ¢ € 2(R x $%71) so that ¢ is supported in {|s| > 1}. We get

(957 (0), @) 1 (Rxsd-1), 7 (Rx8d-1)
-4 A
=AY <y(gZ (waYp)), 9o Ml//\>,7’(]R><Sd’1),Y(IR><Sd’1) '
The assumption on Supp(¢) implies that ¢ o My, is supported in {|s| > A}. Also,

P w = won {|x| > A so that, applying Proposition we get that
(asy(,@)\(w X YZ))|{|S|>/\}><S’1_1 = (asﬂ(w & YZ))|{‘S‘>)\}><S‘1_1 = O,

since w € f/Vl% and A > 1. So, we have proved that for any test function ¢ supported
in {|s| > 1}

(057 (0), @) 71(Rxs1-1),.7 (Rxs1-1) = 0,
in other words, 9;.7 (v) = 0 on {|s| > 1}: hence ]1|S|<185,7l(§;\w) =0and Syw €
A, 0

Now observe that S has the same action as S for |r| > 1: for w € Hrlad,lf and
r>1,(Syw)(r) = w(Ar) = (Syw)(r), so that we can still use Lemmaas is. We
conclude that Jl/llé admits a base made of functions w € Hrla 4, such that for some
peENandaeCandr >0,

In(r)Prvifr > 1,
rif0<r < 1.

(5.13) w(r) = {

Denote again % the set of couples (p,a) € N x C which appear in this base: due to
Lemma % is a finite union of {(0,a;), (1,&;), ..., (pi, a;)}-
The other stability result, suitably modified, also holds in the H! context. The only
subtlety is the definition of extension operator. We already defined the harmonic
extension &, but it can easily be extended in the following way: if f € € ({|x| > 1})
is continuous up to the boundary, one can consider the harmonic extension g of
f|&~in B(0,1):
Ag=00nB(0,1), glsa1 = flga1-

Then we still denote

Sfixs {g<x> it [+ <1,

f(x) if|x| > 1.
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If w € €([1,400)) then this is simply

(sgn(r) T [r' if x| <1,

PwRY,) =w®Y,, where wW(r)= .
we) ‘ ) {w(r) if ] > 1.
Observe that if w € Hslym({]r| > 1}) in the sense that:

2
[ee)

2 o 2 _n ¥
e L PR Rl = IR

thenw® Y, = Z(w®Y,) € H}, and the map w — @ is a continuous linear map.

Lemma 5.16. Consider the operator A : f +— & ((Af)|{\x|>1}>~ Then A (is well defined
and) maps A2 N H} to itself: for all f = w®Y, € AN H}, we also have Af €
AN H].

Proof. If suffices to prove it for f = w ® Y;, where w is of the form (5.13). A direct
computation (like (5.8)) yields that (Af)||{x>1} = v ® Y, where v € €' ({|r| > 1}),

and recalling the form of the Laplacian in spherical coordinates, v € H! ., ({|r| >
1}). Now, from (4.15), we also have that
TANwRY) =0;T (wRY),

so that 9;.7A(w ® Yy) = 0 on {|s| > 1}. By Proposition .11} 9;.7 (2 (v ® Y;))
and 9;.7A(w ® Y;) coincide on {|s| > 1}, and are both 0 there. Hence Af =
@(U & Yg) S JVlo. [l

Step 5: ;1 N L2 is spanned by the f.

Lemma 5.17. Let (p,a) € B. Thenp =0, 0 < —d/2+1landa = -1 —d +2(k+1)
for some k € IN.

Proof. If w € A% = is such that
Vr>1, w(r)=In(r)"r*,
the condition that w € H' ,, writes & < —d/2 + 1.

Then as A acts as A on |r| > 1 (like A does), the proof of Lemma works word
for word. O

Let Ny € N be the maximum of the k such that (0, -/ —d + 2k) € %. Then by
applying repetitively A (and using (5.8)) to w ® Y, where w € H,,;, and w(r) = r™e
for r > 1, we get that for all k € [1,N/], (0,—] —d + 2k) € . Recalling the
definition of the f; (1.20), we can reformulate this by saying that

(5.14) AN H} = Span(fi;k € [1,N/]).

Step 6: Conclusion.
Lemma 5.18. Let k € N such that o < —d/2+ 1. Then f € A1 N H].

Proof. Observe that,asay < —d/2+1, f; € H% Moreover, due to (5.8) (with p = 0),
fork >1,

]]-|x\>1Afk = dk]]-|x\>1fk71 for some dk € R,
and by definition of xp and spherical harmonic,

]l‘x|>1Af0 =0.
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Therefore, due to Proposition there hold

(057 (L1188 [ (s>1) = (057 (8gK)) | s13 = (93 (957 8k)) 5513

As g € H}, denote hy € L*({|s| > 1}) such that (9T fi)l(s|>1y = hx @ Yy we
obtained for k > 1 that

(5.15) 02hy = dihy_q.

Let us prove by induction on k (such that ay < —d/2 + 1) that Iy = 0.

For k = 0, the function u(t,x) = fo(x) is solution of Cu = 0 on {|x| > |t| + 1}
(outside of the light cone). In particular, by finite speed of propagation, the solution
w to the wave equation with initial data (fp,0), satisfies w(t, x) = fo(x) on {|x| >
|t| + 1}. In particular, gives

: 2 2
0=2 lim [[Vwli2(yse) = 1957 follia(gsz1yxsi-1)

This proves that iy = 0.

Let k > 1 and assume that /i_; = 0. In view of (5.15), we infer that there exists
®, B € R such that hy(s) = as + B fors > 1. As by € L2({|s| > 1},ds),a =B =0
and f = 0. This completes the induction.

Again, hy = 0 precisely means that 11957 fx = 0, and thus fi € ML O
This concludes the proof of Theorem[5.3] O

We can now complete the:

Proof of Theorem The relations (5.1) and (5.2) write
(o, 1) 131 12 = Nluoll 3 + 172
2 1,2 2 0,112
= 115 1>r9s T tol| 72 (rcse-1) + 7R U0 g + (1 Tjs 2R T 11l 2R g1y + TR ][ 2-
First, due to (1.15) and symmetry, there hold

Eext,r(u) = ||asy”0||%2([1q,+oo)x5d71) + ||9“1H%2([R,+00)X5471)
= ! (||]1|s|>Ras<7u0||%z i1y T H]1|s|>R=7u1||22 -1 )
2 > (RxG4-1) > L2(RxS41)
Second,
ker 1g = P(R) = K} x K% = ker itk x ker 713,
so that
172R (o, un) |30, 2 = IekolF + IR 3.

Therefore, we conclude that
(o, 1) 151 12 = 2Eext,r (1) + [|7R (110, 1) |31 -

This is . It remains to describe u when uy € K% and u; € K(l), on the outer
cone 61 := {|x| > t+1} for t > 0 (the case t < 0 being treated with data (1o, —u1)
and by scaling, we get the description for any R > 0). For this, it suffices to
compute the solution v to (1.I) with initial data (fx,0) on %) for any k € IN (notice
that for large k, these solutions to the wave equation do not belong to H' x L?).
Indeed, for k > 0, then 9;v;1 is the solution to (I.I) with initial data (0, Afy1).
As (Afrr)l{x>1) = Ck8kl{|x|>1} With ¢k # 0 for k > 1, so that by finite speed of
propagation Cl—katka coincide on on %] with the solution to with initial data
(0, 8k)-
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We prove by induction on k € IN that there exists a; ; € R for j € [0, k] such that
k .
(5.16) V(t,x) €€, vt x) = gak,j#(k*f) filx).
]:

For k = 0, simply recall that (Afy)||x~1 = 0 so that for (t,x) € €1, vo(t, x) = fo(x).
Assume that holds for some k > 0, and let us prove it for k + 1. Observe
that Aoy, 1 is a solution to (L.I), with initial data (Af11,0). As (Afii1)l{x>1) =
ckfkl{|x|>1y for some ¢ € R, by uniqueness in the Cauchy problem for and
finite speed of propagation, we infer that

V(t,x) € 61, Ounvri1(t,x) = Avg1(t, x) = crog(t, x).
By induction hypothesis, we infer that

k o
V(t,x) € 61, Ouvpyq(t,x) = szk,]-tz(k*])fj(x).
j=0

Integrating in time twice for each fixed x, (with 0;vy,1(0,x) = 0 and vy, 1(0,x) =
fien (x), we get

k

zxk,-
I VY (o oy 1

PEDR2L(x) + fig (x).

This ends the induction step. Notice that ), = 1 (by induction or by evaluation at

t=0).

The proof of Theorem[1.7]is complete. O
APPENDIX A. COMPUTATIONS OF THE LAPLACIAN OF SOME FUNCTIONS

Using the Laplacian in polar coordinates

1 9 [ 4q0f 1 0% d—19f 1
an A _rdlar<r m)ﬂzAsﬂf a2t e TptsS

We first compute

Tll—l % (rd_laarr”‘) =a(a+d—2)r"2

In particular, since |x|'Y; is a harmonic polynomial, we have
”
0=A [rlyg] = 11 4+d =2 2Y; + S8y,
which gives Aga 1Y, = —A; Yy, with A; = [(I 4+ d — 2). It gives also

(A2) A[rtYy) = [a(a+d —2) = 1(1+d =2)] %Y,

We also compute
1 9 d—1 0 Pt
s e <r 3 log(r)Pr
=2 [uc(tx +d —2)log(r)? + p(2a +d —2)log(r)P L+ p(p — 1) log(r)pfz}
which gives (5.8), namely
A [log(r)Pr*Y,] = r*72Y, [ (e +d—2)—1(l4+d—2)]log(r)?

+p(2a+d—2) log(r)”*1 +p(p—1) log(r)pfz} .
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